Live cell fluorescence microscopy-an end-to-end workflow for high-throughput image and data analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39484095
PubMed Central
PMC11525050
DOI
10.1093/biomethods/bpae075
PII: bpae075
Knihovny.cz E-zdroje
- Klíčová slova
- Cellpose, Fiji, ImageJ, automated, blinded, cells, data analysis, microscopy, unbiased, yeast,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fluorescence microscopy images of biological samples contain valuable information but require rigorous analysis for accurate and reliable determination of changes in protein localization, fluorescence intensity, and morphology of the studied objects. Traditionally, cells for microscopy are immobilized using chemicals, which can introduce stress. Analysis often focuses only on colocalization and involves manual segmentation and measurement, which are time-consuming and can introduce bias. Our new workflow addresses these issues by gently immobilizing cells using a small agarose block on a microscope coverslip. This approach is suitable for cell-walled cells (yeast, fungi, plants, bacteria), facilitates their live imaging under conditions close to their natural environment and enables the addition of chemicals during time-lapse experiments. The primary focus of the protocol is on the presented analysis workflow, which is applicable to virtually any cell type-we describe cell segmentation using the Cellpose software followed by automated analysis of a multitude of parameters using custom-written Fiji (ImageJ) macros. The results can be easily processed using the provided R markdown scripts or available graphing software. Our method facilitates unbiased batch analysis of large datasets, improving the efficiency and accuracy of fluorescence microscopy research. The reported sample preparation protocol and Fiji macros were used in our recent publications: Microbiol Spectr (2022), DOI: 10.1128/spectrum.01961-22; Microbiol Spectr (2022), DOI: 10.1128/spectrum.02489-22; J Cell Sci (2023), DOI: 10.1242/jcs.260554.
Zobrazit více v PubMed
Gournas C, Saliba E, Krammer E-M. et al. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. MBoC 2017;28:2819–32. PubMed PMC
Chen CH, Pan CL.. Live-cell imaging of PVD dendritic growth cone in post-embryonic C. elegans. STAR Protoc 2021;2:100402. PubMed PMC
Grousl T, Opekarová M, Stradalova V. et al. Evolutionarily conserved 5’-3’ exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One 2015;10:e0122770. PubMed PMC
Vaškovičová K, Awadová T, Veselá P. et al. mRNA decay is regulated via sequestration of the conserved 5′-3′ exoribonuclease Xrn1 at eisosome in yeast. Eur J Cell Biol 2017;96:591–9. PubMed
Grossmann G, Opekarová M, Malinsky J. et al. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 2007;26:1–8. PubMed PMC
Stringer C, Wang T, Michaelos M, Pachitariu M.. Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 2021;18:100–6. PubMed
Zahumenský J, Mota Fernandes C, Veselá P. et al. Microdomain protein Nce102 is a local sensor of plasma membrane sphingolipid balance. Microbiol Spectr 2022;10:e0248922. PubMed PMC
Balazova M, Vesela P, Babelova L. et al. Two different phospholipases C, Isc1 and Pgc1, cooperate to regulate mitochondrial function. Microbiol Spectr 2022;10:e0248922. PubMed PMC
Vesela P, Zahumensky J, Malinsky J.. Lsp1 partially substitutes for Pil1 function in eisosome assembly under stress conditions. J. Cell Sci 2023;136:jcs260554. PubMed
Zahumenský J, Malínský J. Live cell microscopy sample preparation (yeast culture). protocols.io2024:1–7. doi:10.17504/protocols.io.8epv5r23dg1b/v1. DOI
Brown CM. Fluorescence microscopy—avoiding the pitfalls. J. Cell Sci 2007;120:3488–3488. PubMed
Sage D, Unser M. Easy Java programming for teaching image-processing. In Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), vol. 2, 298–301. IEEE, 2001.
Stirling DR, Swain-Bowden MJ, Lucas AM. et al. CellProfiler 4: improvements in speed, utility and usability. BMC Bioinformatics 2021;22:1–11. PubMed PMC
Lord SJ, Velle KB, Dyche Mullins R, Fritz-Laylin LK.. SuperPlots: communicating reproducibility and variability in cell biology. J. Cell Biol 2020;219:e202001064. PubMed PMC
Caloca B, Navarro A, Canales‐Torres M. et al. Comparison of concanavalin A and poly‐ <scp>l</scp> ‐lysine as cell adhesives for routine yeast microscopy applications. Yeast 2022;39:312–22. PubMed
Malinska K, Malinsky J, Opekarova M, Tanner W.. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J. Cell Sci 2004;117:6031–41. PubMed
Dietler N, Minder M, Gligorovski V. et al. A convolutional neural network segments yeast microscopy images with high accuracy. Nat Commun 2020;11:5723–8. PubMed PMC