Functional histology of the skin in the subterranean African giant mole-rat: thermal windows are determined solely by pelage characteristics

. 2020 ; 8 () : e8883. [epub] 20200408

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32296606

Excavation of burrows is an extremely physically demanding activity producing a large amount of metabolic heat. Dissipation of its surplus is crucial to avoid the risk of overheating, but in subterranean mammals it is complicated due to the absence of notable body extremities and high humidity in their burrows. IR-thermography in a previous study on two species of African mole-rats revealed that body heat was dissipated mainly through the ventral body part, which is notably less furred. Here, we analyzed the dorsal and ventral skin morphology, to test if dermal characteristics could contribute to higher heat dissipation through the ventral body part. The thickness of the epidermis and dermis and the presence, extent and connectivity of fat tissue in the dermis were examined using routine histological methods, while vascular density was evaluated using fluorescent dye and confocal microscopy in the giant mole-rat Fukomys mechowii. As in other hitherto studied subterranean mammals, no subcutaneous adipose tissue was found. All examined skin characteristics were very similar for both dorsal and ventral regions: relative content of adipose tissue in the dermis (14.4 ± 3.7% dorsally and 11.0 ± 4.0% ventrally), connectivity of dermal fat (98.5 ± 2.8% and 95.5 ± 6.8%), vascular density (26.5 ± 3.3% and 22.7 ± 2.3%). Absence of large differences in measured characteristics between particular body regions indicates that the thermal windows are determined mainly by the pelage characteristics.

Zobrazit více v PubMed

Ackerman E. The histogenesis of hair follicles in the zebra and giraffe with special reference to pigmentation and cutaneous vasculature. 1976. p. 104. MSc Dissertation, University of Pretoria.

Alexander CM, Kasza I, Yen CLE, Reeder SB, Hernando D, Gallo RL, Jahoda CAB, Horsley V, MacDougald OA. Dermal white adipose tissue: a new component of the thermogenic response. Journal of Lipid Research. 2015;56(11):2061–2069. doi: 10.1194/jlr.R062893. PubMed DOI PMC

Atlee BA, Stannard AA, Fowler ME, Willemse T, Ihrke PJ, Olivry T. The histology of normal llama skin. Veterinary Dermatology. 1997;8(3):165–176. doi: 10.1046/j.1365-3164.1997.d01-13.x. PubMed DOI

Baldo MB, Antenucci CD, Luna F. Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum. Journal of Thermal Biology. 2015;53:113–118. doi: 10.1016/j.jtherbio.2015.09.002. PubMed DOI

Boyles JG, Verburgt L, McKechnie AE, Bennett NC. Heterothermy in two mole-rat species subjected to interacting thermoregulatory challenges. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 2012;317(2):73–82. doi: 10.1002/jez.723. PubMed DOI

Bryden MM. Insulating capacity of the subcutaneous fat of the southern elephant seal. Nature. 1964;203(4951):1299–1300. doi: 10.1038/2031299a0. PubMed DOI

Bryden MM, Molyneux GS. Arteriovenous anastomoses in the skin of seals. II: the California sea lion Zalophus californianus and the northern fur seal Callorhinus ursinus (Pinnipedia: Otariidae) Anatomical Record. 1978;191(2):253–260. doi: 10.1002/ar.1091910210. PubMed DOI

Buffenstein R. Ecophysiological responses of subterranean rodents to underground habitats. In: Lacey E, Patton JL, Cameron GN, editors. Life Underground: The Biology of Subterranean Rodents. Chicago: The University of Chicago Press; 2000. pp. 62–110.

Burda H, Šumbera R, Begall S. Microclimate in burrows of subterranean rodents—revisited. In: Begall S, Burda H, Schleich CE, editors. Subterranean Rodents: News from Underground. Berlin: Springer; 2007. pp. 21–33.

Cutrera AP, Antenucci D. Fur changes in the subterranean rodent Ctenomys talarum: possible thermal compensatory mechanism. Revista Chilena de Historia Natural. 2004;77(2):235–242. doi: 10.4067/S0716-078X2004000200003. DOI

Daly J, Buffenstein R. Skin morphology and its role in thermoregulation in mole-rats, Heterocephalus glaber and Cryptomys hottentotus. Journal of Anatomy. 1998;193(4):495–502. doi: 10.1046/j.1469-7580.1998.19340495.x. PubMed DOI PMC

Driskell RR, Jahoda CAB, Chuong C-M, Watt FM, Horsley V. Defining dermal adipose tissue. Experimental Dermatology. 2014;23(9):629–631. doi: 10.1111/exd.12450. PubMed DOI PMC

Ebensperger LA, Bozinovic F. Energetics and burrowing behaviour in the semifossorial degu Octodon degus (Rodentia: Octodontidae) Journal of Zoology. 2000;252(2):179–186. doi: 10.1111/j.1469-7998.2000.tb00613.x. DOI

Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Krajewski C. Mammalogy: adaptation, diversity, ecology. Baltimore: Johns Hopkins University Press; 2015.

Guerrero-Juarez CF, Plikus MV. Emerging nonmetabolic functions of skin fat. Nature Reviews Endocrinology. 2018;14(3):163–173. doi: 10.1038/nrendo.2017.162. PubMed DOI PMC

Hislop MS, Buffenstein R. Noradrenaline induces nonshivering thermogenesis in both the naked mole-rat (Heterocephalus glaber) and the Damara mole-rat (Cryptomys damarensis) despite very different modes of thermoregulation. Journal of Thermal Biology. 1994;19(1):25–32. doi: 10.1016/0306-4565(94)90006-X. DOI

Kasza I, Hernando D, Roldán-Alzate A, Alexander CM, Reeder SB. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight. 2016;1(13):e87146. doi: 10.1172/jci.insight.87146. PubMed DOI PMC

Kasza I, Suh Y, Wollny D, Clark RJ, Roopra A, Colman RJ, Yen CLE. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PlOS Genetics. 2014;10(8):e1004514. doi: 10.1371/journal.pgen.1004514. PubMed DOI PMC

Kawalika M, Burda H. Giant mole-rats, Fukomys mechowii, 13 years on the stage. In: Begall S, Burda H, Schleich CE, editors. Subterranean Rodents: News From Underground. Berlin: Springer; 2007. pp. 205–219.

Kawamata S, Ozawa J, Hashimoto M, Kurose T, Shinohara H. Structure of the rat subcutaneous connective tissue in relation to its sliding mechanism. Archives of Histology and Cytology. 2003;66(3):273–279. doi: 10.1679/aohc.66.273. PubMed DOI

Khamas WA, Smodlaka H, Leach-Robinson J, Palmer L. Skin histology and its role in heat dissipation in three pinniped species. Acta Veterinaria Scandinavica. 2012;54(1):46. doi: 10.1186/1751-0147-54-46. PubMed DOI PMC

Kimani JM. Comparative skin morphology and wound healing in Kenyan African mole rat (Tachyoryctes ibeanus) and naked mole rat (Heterocephalus glaber) Kenya: Theses, Department of Veterinary Anatomy and Physiology, University of Nairobi; 2013. 155.

Klir JJ, Heath JE. Thermoregulatory responses to thermal stimulation of the preoptic anterior hypothalamus in the red fox (Vulpes vulpes) Comparative Biochemistry and Physiology A. 1994;109(3):557–566. doi: 10.1016/0300-9629(94)90194-5. PubMed DOI

Krattenmacher R, Rübsamen K. Thermoregulatory significance of non-evaporative heat loss from the tail of the coypu (Myocastor coypus) and the tammar-wallaby (Macropus eugenii) Journal of Thermal Biology. 1987;12(1):15–18. doi: 10.1016/0306-4565(87)90017-9. DOI

Kuhn RA, Meyer W. Infrared thermography of the body surface in the Eurasian otter Lutra lutra and the giant otter Pteronura brasiliensis. Aquatic Biology. 2009;6:143–152. doi: 10.3354/ab00176. DOI

Kvadsheim PH, Folkow LP. Blubber and flipper heat transfer in harp seals. Acta Physiologica Scandinavica. 1997;161(3):385–395. doi: 10.1046/j.1365-201X.1997.00235.x. PubMed DOI

Kverková K, Bělíková T, Olkowicz S, Pavelková Z, O’Riain MJ, Šumbera R, Němec P. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Scientific Reports. 2018;8(1):9203. doi: 10.1038/s41598-018-26062-8. PubMed DOI PMC

Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R. Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nature Protocols. 2008;3(11):1703–1708. doi: 10.1038/nprot.2008.172. PubMed DOI PMC

Liwanag HEM, Berta A, Costa DP, Budge SM, Williams TM. Morphological and thermal properties of mammalian insulation: the evolutionary transition to blubber in pinnipeds. Biological Journal of the Linnean Society. 2012;107(4):774–787. doi: 10.1111/j.1095-8312.2012.01992.x. DOI

Lovegrove BG. The cost of burrowing by the social mole rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber: the role of soil moisture. Physiological Zoology. 1989;62(2):449–469. doi: 10.1086/physzool.62.2.30156179. DOI

Luna F, Antenucci CD. Energetics and thermoregulation during digging in the rodent tuco–tuco (Ctenomys talarum) Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2007;146(4):559–564. doi: 10.1016/j.cbpa.2005.12.025. PubMed DOI

Marquart-Elbaz C, Lipsker D, Sick H, Grosshans R, Cribier B. Does the “subcutaneous cellular tissue” exist? Annales de Dermatologie et de Venereologie. 2001;128(11):1201–1205. PubMed

Martin AL, Irizarry-Rovira AR, Bevier DE, Glickman LG, Glickman NW, Hullinger RL. Histology of ferret skin: preweaning to adulthood. Veterinary Dermatology. 2007;18(6):401–411. doi: 10.1111/j.1365-3164.2007.00627.x. PubMed DOI

Matoltsy AG. The skin of mammals: dermis. In: Bereiter-Hahn J, Matoltsy AG, Sylvia Richards K, editors. Biology of the Integument 2, Vertebrates. Berlin: Springer; 1986. pp. 272–277.

McNab BK. The physiological ecology of vertebrates: a view from energetics. New York: Cornell University Press; 2002.

Mitchell G, Skinner JD. Giraffe thermoregulation: a review. Transactions of the Royal Society of South Africa. 2004;59(2):109–118. doi: 10.1080/00359190409519170. DOI

Mohler FS, Heath JE. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna. American Journal of Physiology. 1988;254(2):R389–R395. PubMed

Okrouhlík J, Burda H, Kunc P, Knížková I, Šumbera R. Surprisingly low risk of overheating during digging in two subterranean rodents. Physiology & Behavior. 2015;138:236–241. doi: 10.1016/j.physbeh.2014.10.029. PubMed DOI

O’Riain MJ, Jarvis JUM, Faulkes CG. A dispersive morph in the naked mole-rat. Nature. 1996;380(6575):619–621. doi: 10.1038/380619a0. PubMed DOI

Reichard JD, Prajapati SI, Austad SN, Keller C, Kunz TH. Thermal windows on Brazilian free-tailed bats facilitate thermoregulation during prolonged flight. Integrative and Comparative Biology. 2010;50(3):358–370. doi: 10.1093/icb/icq033. PubMed DOI PMC

Scantlebury M, Speakman JR, Bennett NC. The energy costs of sexual dimorphism in mole-rats are morphological not behavioural. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1582):57–63. doi: 10.1098/rspb.2005.3280. PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Tinevez JY. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Schmidt-Nielsen K. Animal physiology—adaptation and environment. Fifth Edition. Cambridge: Cambridge University Press; 1997.

Scudamore CL. A practical guide to the histology of the mouse. Hoboken: Wiley Blackwell; 2014.

Sherwood L, Klandorf H, Yancey PH. Animal physiology: from genes to organisms. Second Edition. Seattle: Brooks/Cole; 2013.

Sokolov VE. Mammal skin. Berkeley: University of California Press; 1982.

Solomon RW. Free and open source software for the manipulation of digital images. American Journal of Roentgenology. 2009;192(6):W330–W334. doi: 10.2214/AJR.08.2190. PubMed DOI

Šumbera R. Thermal biology of a strictly subterranean mammalian family, the African mole-rats (Bathyergidae, Rodentia)—a review. Journal of Thermal Biology. 2019;79:166–189. doi: 10.1016/j.jtherbio.2018.11.003. PubMed DOI

Šumbera R, Zelová J, Kunc P, Knížková I, Burda H. Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography. Physiology & Behavior. 2007;92(3):526–532. doi: 10.1016/j.physbeh.2007.04.029. PubMed DOI

Steen I, Steen JB. Thermoregulatory importance of the beaver’s tail. Comparative Biochemistry and Physiology A. 1965;15(2):267–270. doi: 10.1016/0010-406X(65)90352-X. PubMed DOI

Tarasoff FJ, Fisher HD. Anatomy of the hind flippers of two species of seals with reference to thermoregulation. Canadian Journal of Zoology. 1970;48(4):821–829. doi: 10.1139/z70-144. DOI

Thigpen LW. Histology of the skin of a normally hairless rodent. Journal of Mammalogy. 1940;21(4):449–456. doi: 10.2307/1374885. DOI

Tucker R. The digging behavior and skin differentiations in Heterocephalus glaber. Journal of Morphology. 1981;168(1):51–71. doi: 10.1002/jmor.1051680107. PubMed DOI

Van De Graaff KM. Human anatomy. Sixth Edition. New York: McGraw-Hill Publishing Company; 2001.

Vanhoutte G, Verhoye M, Raman E, Roberts M, Van der Linden A. In-vivo non-invasive study of the thermoregulatory function of the blood vessels in the rat tail using magnetic resonance angiography. NMR in Biomedicine. 2002;15(4):263–269. doi: 10.1002/nbm.768. PubMed DOI

Weissenböck NM, Weiss CM, Schwammer HM, Kratochvil H. Thermal windows on the body surface of African elephants (Loxodonta africana) studied by infrared thermography. Journal of Thermal Biology. 2010;35(4):182–188. doi: 10.1016/j.jtherbio.2010.03.002. DOI

Wilson DE, Lacher TE, Jr, Mittermeier RA. Handbook of the Mammals of the World, Volume 7: Rodents II. Barcelona: Lynx Editions; 2017.

Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz-Neto AP. Ecological and environmental physiology of mammals. Oxford: Oxford University Press; 2016.

Wojciechowicz K, Gledhill K, Ambler CA, Manning CB, Jahoda CAB. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLOS ONE. 2013;8(3):e59811. doi: 10.1371/journal.pone.0059811. PubMed DOI PMC

Zelová J, Šumbera R, Okrouhlík J, Burda H. Cost of digging is determined by intrinsic factors rather than by substrate quality in two subterranean rodent species. Physiology & Behavior. 2010;99(1):54–58. doi: 10.1016/j.physbeh.2009.10.007. PubMed DOI

Zudaire E, Gambardella L, Kurcz C, Vermeren S. A computational tool for quantitative analysis of vascular networks. PLOS ONE. 2011;6(11):e27385. doi: 10.1371/journal.pone.0027385. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...