Guidelines for naming and studying plasma membrane domains in plants
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39134664
DOI
10.1038/s41477-024-01742-8
PII: 10.1038/s41477-024-01742-8
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána * metabolismus MeSH
- membránové mikrodomény * metabolismus MeSH
- rostliny * MeSH
- terminologie jako téma * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Biological membranes play a crucial role in actively hosting, modulating and coordinating a wide range of molecular events essential for cellular function. Membranes are organized into diverse domains giving rise to dynamic molecular patchworks. However, the very definition of membrane domains has been the subject of continuous debate. For example, in the plant field, membrane domains are often referred to as nanodomains, nanoclusters, microdomains, lipid rafts, membrane rafts, signalling platforms, foci or liquid-ordered membranes without any clear rationale. In the context of plant-microbe interactions, microdomains have sometimes been used to refer to the large area at the plant-microbe interface. Some of these terms have partially overlapping meanings at best, but they are often used interchangeably in the literature. This situation generates much confusion and limits conceptual progress. There is thus an urgent need for us as a scientific community to resolve these semantic and conceptual controversies by defining an unambiguous nomenclature of membrane domains. In this Review, experts in the field get together to provide explicit definitions of plasma membrane domains in plant systems and experimental guidelines for their study. We propose that plasma membrane domains should not be considered on the basis of their size alone but rather according to the biological system being considered, such as the local membrane environment or the entire cell.
Agroécologie INRAE Institut Agro Université de Bourgogne Dijon France
Cell and Molecular Sciences James Hutton Institute Dundee UK
Cell Biology Faculty of Biology University of Freiburg Freiburg Germany
Centre of Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
Department of Biological Science Graduate School of Science Nagoya University Nagoya Japan
Department of Biological Sciences University of Toronto Scarborough Toronto Ontario Canada
Department of Biology Friedrich Alexander Universität Erlangen Nuremberg Erlangen Germany
Department of Biology Stanford University Stanford CA USA
Department of Life Sciences Imperial College London UK
Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
Division of Plant Sciences School of Life Sciences University of Dundee Dundee UK
Faculty of Synthetic Biology Shenzhen Institute of Advanced Technology Shenzhen China
Haixia Institute of Science and Technology Fujian Agriculture and Forestry University Fuzhou China
Howard Hughes Medical Institute Stanford University Stanford CA USA
Institute of Experimental Botany Czech Academy of Sciences Prague Czech Republic
IPSiM Université de Montpellier CNRS INRAE Institut Agro Montpellier France
Laboratoire de Biogénèse Membranaire UMR5200 Université de Bordeaux CNRS Villenave d'Ornon France
Laboratory of Biochemistry Wageningen University Wageningen the Netherlands
School of Biological Sciences Nanyang Technological University Singapore Singapore
School of Plant Sciences and Food Security Tel Aviv University Tel Aviv Israel
Zobrazit více v PubMed
Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972). PubMed DOI
Suzuki, K. G. N. & Kusumi, A. Refinement of Singer–Nicolson fluid-mosaic model by microscopy imaging: lipid rafts and actin-induced membrane compartmentalization. Biochim. Biophys. Acta Biomembr. 1865, 184093 (2023). PubMed DOI
Nicolson, G. L. & de Mattos, G. F. The fluid–mosaic model of cell membranes: a brief introduction, historical features, some general principles, and its adaptation to current information. Biochim. Biophys. Acta Biomembr. https://doi.org/10.1016/j.bbamem.2023.184135 (2023).
Nicolson, G. L. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta Biomembr. 1838, 1451–1466 (2014). DOI
Nicolson, G. L. Update of the 1972 Singer–Nicolson fluid-mosaic model of membrane structure. Discoveries (Craiova) 1, e3 (2013). PubMed
Gorelova, V., Sprakel, J. & Weijers, D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. Nat. Plants https://doi.org/10.1038/s41477-021-01021-w (2021).
Muroyama, A. & Bergmann, D. Plant cell polarity: creating diversity from inside the box. Annu. Rev. Cell Dev. Biol. 35, 309–336 (2019). PubMed DOI
Hutten, S. J. et al. Visualization of BRI1 and SERK3/BAK1 nanoclusters in Arabidopsis roots. PLoS ONE 12, e0169905 (2017). PubMed DOI PMC
Bucherl, C. A. et al. Visualization of BRI1 and BAK1(SERK3) membrane receptor heterooligomers during brassinosteroid signaling. Plant Physiol. 162, 1911–1925 (2013). PubMed DOI PMC
Platre, M. P. et al. Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science 364, 57–62 (2019). PubMed DOI
Pan, X. et al. Auxin-induced signaling protein nanoclustering contributes to cell polarity formation. Nat. Commun. 11, 3914 (2020). PubMed DOI PMC
Miao, Y., Guo, X., Zhu, K. & Zhao, W. Biomolecular condensates tunes immune signaling at the host–pathogen interface. Curr. Opin. Plant Biol. 74, 102374 (2023). PubMed DOI
Jarsch, I. K. et al. Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell 26, 1698–1711 (2014). PubMed DOI PMC
Jaillais, Y. & Ott, T. The nanoscale organization of the plasma membrane and its importance in signaling: a proteolipid perspective. Plant Physiol. 182, 1682–1696 (2020). PubMed DOI
Malinsky, J., Opekarová, M., Grossmann, G. & Tanner, W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. Annu. Rev. Plant Biol. 64, 501–529 (2013). PubMed DOI
Gouguet, P. et al. Connecting the dots: from nanodomains to physiological functions of REMORINs. Plant Physiol. 85, 632–649 (2020).
Tapken, W. & Murphy, A. S. Membrane nanodomains in plants: capturing form, function, and movement. J. Exp. Bot. 66, 1573–1586 (2015). PubMed DOI
Daněk, M. et al. Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins. Plant J. Cell Mol. Biol. 101, 619–636 (2019). DOI
Bücherl, C. A. et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife 6, e25114 (2017). PubMed DOI PMC
Malínská, K., Malínský, J., Opekarová, M. & Tanner, W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436 (2003). PubMed DOI PMC
Wang, P. et al. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24, 1397–1405 (2014). PubMed DOI
Bayle, V. et al. Single-particle tracking photoactivated localization microscopy of membrane proteins in living plant tissues. Nat. Protoc. 6, 1600–1628 (2021). DOI
Fratini, M. et al. Plasma membrane nano-organization specifies phosphoinositide effects on Rho-GTPases and actin dynamics in tobacco pollen tubes. Plant Cell 33, 642–670 (2021). PubMed DOI
Lv, X. et al. Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. Plant J. 90, 3–16 (2017). PubMed DOI
Béziat, C. & Jaillais, Y. Should I stay or should I go: the functional importance and regulation of lipid diffusion in biological membranes. J. Exp. Bot. 74, 2479–2488 (2023). PubMed DOI
Raghupathy, R. et al. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161, 581–594 (2015). PubMed DOI PMC
Róg, T. et al. Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochim. Biophys. Acta Biomembr. 1858, 281–288 (2016). DOI
Grosjean, K., Mongrand, S., Beney, L., Simon-Plas, F. & Gerbeau-Pissot, P. Differential effect of plant lipids on membrane organization. J. Biol. Chem. 290, 5810–5825 (2015). PubMed DOI PMC
Noack, L. C. & Jaillais, Y. Functions of anionic lipids in plants. Annu. Rev. Plant Biol. 71, 71–102 (2020). PubMed DOI
Smokvarska, M. et al. The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling. Sci. Adv. 9, eadd4791 (2023). PubMed DOI PMC
Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997). PubMed DOI
Smokvarska, M. et al. A plasma membrane nanodomain ensures signal specificity during osmotic signaling in plants. Curr. Biol. 30, 4654–4664 (2020). PubMed DOI
Ma, Z. et al. Membrane nanodomains modulate formin condensation for actin remodeling in Arabidopsis innate immune responses. Plant Cell 34, 374–394 (2022). PubMed DOI
Liang, P. et al. Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc. Natl Acad. Sci. USA 40, 201721868 (2018).
Heilmann, M. & Heilmann, I. Regulators regulated: different layers of control for plasma membrane phosphoinositides in plants. Curr. Opin. Plant Biol. 67, 102218 (2022). PubMed DOI
Fuchs, V. A. F. et al. Nanodomain-mediated lateral sorting drives polarization of the small GTPase ROP2 in the plasma membrane of root hair cells. Preprint at bioRxiv https://doi.org/10.1101/2021.09.10.459822 (2021).
Gronnier, J. et al. Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors. eLife 11, e74162 (2022). PubMed DOI PMC
Hurst, C. H. et al. S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signaling. Curr. Biol. 33, 1588–1596 (2023). PubMed DOI
McKenna, J. F. et al. The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc. Natl Acad. Sci. USA 4, 201819077 (2019).
Tran, T. M. et al. The bacterial quorum sensing signal DSF hijacks Arabidopsis thaliana sterol biosynthesis to suppress plant innate immunity. Life Sci. Alliance 3, e202000720 (2020). PubMed DOI PMC
Gronnier, J. et al. Structural basis for plant plasma membrane protein dynamics and organization into functional nanodomains. eLife 6, e26404 (2017). PubMed DOI PMC
Perraki, A. et al. Plasma membrane localization of Solanum tuberosum Remorin from Group 1, Homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement. Plant Physiol. 160, 624–637 (2012). PubMed DOI PMC
Sun, H. et al. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat. Commun. 12, 4064 (2021). PubMed DOI PMC
Ott, T. Membrane nanodomains and microdomains in plant–microbe interactions. Curr. Opin. Plant Biol. 40, 82–88 (2017). PubMed DOI
Martin, S. W., Glover, B. J. & Davies, J. M. Lipid microdomains—plant membranes get organized. Trends Plant Sci. 10, 263–265 (2005). PubMed DOI
Zappel, N. F. & Panstruga, R. Heterogeneity and lateral compartmentalization of plant plasma membranes. Curr. Opin. Plant Biol. 11, 632–640 (2008). PubMed DOI
Yu, M., Cui, Y., Zhang, X., Li, R. & Lin, J. Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci. 77, 275–287 (2020). PubMed DOI
Nakamura, M. & Grebe, M. Outer, inner and planar polarity in the Arabidopsis root. Curr. Opin. Plant Biol. 41, 46–53 (2017). PubMed DOI
Łangowski et al. Cellular mechanisms for cargo delivery and polarity maintenance at different polar domains in plant cells. Cell Discov. 2, 16018 (2016). PubMed DOI PMC
Langowski, L., Růzicka, K., Naramoto, S., Kleine-Vehn, J. & Friml, J. Trafficking to the outer polar domain defines the root–soil interface. Curr. Biol. 20, 904–908 (2010). PubMed DOI
Kleine-Vehn, J. et al. Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol. Syst. Biol. 7, 540 (2011). PubMed DOI PMC
Barberon, M. et al. Polarization of IRON-REGULATED TRANSPORTER 1 (IRT1) to the plant–soil interface plays crucial role in metal homeostasis. Proc. Natl Acad. Sci. USA 111, 8293–8298 (2014). PubMed DOI PMC
Rodriguez-Furlan, C., Emami, A. & Van Norman, J. M. Distinct ADP–ribosylation factor–GTP exchange factors govern the opposite polarity of 2 receptor kinases. Plant Physiol. 194, 673–683 (2024). PubMed DOI
Denninger, P. et al. Distinct RopGEFs successively drive polarization and outgrowth of root hairs. Curr. Biol. 29, 1854–1865 (2019). PubMed DOI
Elliott, L. & Kirchhelle, C. The importance of being edgy: cell geometric edges as an emerging polar domain in plant cells. J. Microsc. 278, 123–131 (2020). PubMed DOI
Lace, B. et al. RPG acts as a central determinant for infectosome formation and cellular polarization during intracellular rhizobial infections. eLife 12, e80741 (2023). PubMed DOI PMC
Scholz, P., Anstatt, J., Krawczyk, H. E. & Ischebeck, T. Signalling pinpointed to the tip: the complex regulatory network that allows pollen tube growth. Plants 9, 1098 (2020). PubMed DOI PMC
Müller, S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. Plant Physiol. 193, 26–41 (2023). PubMed DOI
Oda, Y. & Fukuda, H. Initiation of cell wall pattern by a Rho- and microtubule-driven symmetry breaking. Science 337, 1333–1336 (2012). PubMed DOI
Smokvarska, M., Jaillais, Y. & Martinière, A. Function of membrane domains in Rho-of-Plant signaling. Plant Physiol. 185, 663–681 (2021). PubMed DOI PMC
Lin, W. & Yang, Z. Unlocking the mechanisms behind the formation of interlocking pavement cells. Curr. Opin. Plant Biol. 57, 142–154 (2020). PubMed DOI
Kost, B. et al. Rac homologues and compartmentalized phosphatidylinositol 4,5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 145, 317–330 (1999). PubMed DOI PMC
Noack, L. C. & Jaillais, Y. Precision targeting by phosphoinositides: how PIs direct endomembrane trafficking in plants. Curr. Opin. Plant Biol. 40, 22–33 (2017). PubMed DOI
Sternberg, H. et al. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. Plant Physiol. 187, 2485–2508 (2021). PubMed DOI PMC
Bozkurt, T. O. et al. The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol. 165, 1005–1018 (2014). PubMed DOI PMC
Qin, L. et al. Specific recruitment of phosphoinositide species to the plant–pathogen interfacial membrane underlies Arabidopsis susceptibility to fungal infection. Plant Cell 32, 1665–1688 (2020). PubMed DOI PMC
Kolbeck, A. et al. CASP microdomain formation requires cross cell wall stabilization of domains and non-cell autonomous action of LOTR1. eLife 11, e69602 (2022). PubMed DOI PMC
Barbosa, I. C. R. et al. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat. Commun. 14, 1626 (2023). PubMed DOI PMC
Yoshida, S. et al. A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis. Nat. Plants 5, 160–166 (2019). PubMed DOI PMC
van Dop, M. et al. DIX domain polymerization drives assembly of plant cell polarity complexes. Cell 180, 427–439 (2020). PubMed DOI PMC
Ramalho, J. J., Jones, V. A. S., Mutte, S. & Weijers, D. Pole position: how plant cells polarize along the axes. Plant Cell 34, 174–192 (2022). PubMed DOI
Lee, Y., Rubio, M. C., Alassimone, J. & Geldner, N. A mechanism for localized lignin deposition in the endodermis. Cell 153, 402–412 (2013). PubMed DOI
Hosmani, P. S. et al. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc. Natl Acad. Sci. USA 110, 14498–14503 (2013). PubMed DOI PMC
Pan, X., Pérez-Henríquez, P., Van Norman, J. M. & Yang, Z. Membrane nanodomains: dynamic nanobuilding blocks of polarized cell growth. Plant Physiol. 93, 83–97 (2023). DOI
Sugiyama, Y., Wakazaki, M., Toyooka, K., Fukuda, H. & Oda, Y. A novel plasma membrane-anchored protein regulates xylem cell-wall deposition through microtubule-dependent lateral inhibition of Rho GTPase domains. Curr. Biol. 27, 2522–2528 (2017). PubMed DOI
Alassimone, J., Naseer, S. & Geldner, N. A developmental framework for endodermal differentiation and polarity. Proc. Natl Acad. Sci. USA 107, 5214–5219 (2010). PubMed DOI PMC
Aliaga Fandino, A. C., Jelínková, A., Marhava, P., Petrášek, J. & Hardtke, C. S. Ectopic assembly of an auxin efflux control machinery shifts developmental trajectories. Plant Cell 36, 1791–1805 (2024). PubMed DOI
Bloch, D. et al. Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol. 172, 980–1002 (2016). PubMed PMC
Vukašinović, N. et al. Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. N. Phytol. 213, 1052–1067 (2016). DOI
Kusumaatmaja, H. et al. Wetting of phase-separated droplets on plant vacuole membranes leads to a competition between tonoplast budding and nanotube formation. Proc. Natl Acad. Sci. USA 118, e2024109118 (2021). PubMed DOI PMC
Dragwidge, J. M. et al. Biomolecular condensation orchestrates clathrin-mediated endocytosis in plants. Nat. Cell Biol. 26, 438–449 (2024). PubMed DOI
Liu, C. et al. SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis. PLoS Biol. 21, e3002305 (2023). PubMed DOI PMC
Noack, L. C. et al. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. Plant Cell 34, 302–332 (2022). PubMed DOI
Gomez, R. E. et al. Phosphatidylinositol-4-phosphate controls autophagosome formation in Arabidopsis thaliana. Nat. Commun. 13, 4385 (2022). PubMed DOI PMC
Chambaud, C., Cookson, S. J., Ollat, N., Bayer, E. & Brocard, L. A correlative light electron microscopy approach reveals plasmodesmata ultrastructure at the graft interface. Plant Physiol. 188, 44–55 (2021). DOI PMC
Li, Z. P. et al. Plant plasmodesmata bridges form through ER-driven incomplete cytokinesis. Science adn4630 https://doi.org/10.1101/2023.12.12.571296 (2024 in press).
Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011). PubMed DOI
Fu, Z. et al. mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat. Methods 17, 55–58 (2020). PubMed DOI
Brown, D. A. & Rose, J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533–544 (1992). PubMed DOI
Renne, M. F. & Ernst, R. Membrane homeostasis beyond fluidity: control of membrane compressibility. Trends Biochem. Sci. 48, 963–977 (2023). PubMed DOI PMC
Marsh, D. Handbook of Lipid Bilayers (CRC, 2013).
Mair, A., Xu, S.-L., Branon, T. C., Ting, A. Y. & Bergmann, D. C. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife 8, e47864 (2019). PubMed DOI PMC
Arora, D. et al. Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell 32, 3388–3407 (2020). PubMed DOI PMC
Wallner, E.-S. et al. Spatially resolved proteomics of the Arabidopsis stomatal lineage identifies polarity complexes for cell divisions and stomatal pores. Dev. Cell 59, 1096–1109 (2024). PubMed DOI
Liu, C. et al. An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome. EMBO J. 42, e111885 (2023). PubMed DOI PMC
Laganowsky, A. et al. Membrane proteins bind lipids selectively to modulate their structure and function. Nature 510, 172–175 (2014). PubMed DOI PMC
Laganowsky, A., Reading, E., Hopper, J. T. S. & Robinson, C. V. Mass spectrometry of intact membrane protein complexes. Nat. Protoc. 8, 639–651 (2013). PubMed DOI PMC
Liu, P. et al. Mechanism of sphingolipid homeostasis revealed by structural analysis of Arabidopsis SPT–ORM1 complex. Sci. Adv. 9, eadg0728 (2023). PubMed DOI PMC
Sarewicz, M. et al. High-resolution cryo-EM structures of plant cytochrome b PubMed DOI PMC
Mandala, V. S., Loftis, A. R., Shcherbakov, A. A., Pentelute, B. L. & Hong, M. Atomic structures of closed and open influenza B M2 proton channel reveal the conduction mechanism. Nat. Struct. Mol. Biol. 27, 160–167 (2020). PubMed DOI PMC
Xie, H. et al. Solid-state NMR structure determination of a membrane protein in E. coli cellular inner membrane. Sci. Adv. 9, eadh4168 (2023). PubMed DOI PMC
Marrink, S. J. et al. Computational modeling of realistic cell membranes. Chem. Rev. 119, 6184–6226 (2019). PubMed DOI PMC
Lee, E. H., Hsin, J., Sotomayor, M., Comellas, G. & Schulten, K. Discovery through the computational microscope. Structure 17, 1295–1306 (2009). PubMed DOI PMC
Sych, T., Levental, K. R. & Sezgin, E. Lipid–protein interactions in plasma membrane organization and function. Annu. Rev. Biophys. 51, 135–156 (2022). PubMed DOI
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed DOI PMC
König, S., Mosblech, A. & Heilmann, I. Stress-inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB J. 21, 1958–1967 (2007). PubMed DOI
Boutté, Y. & Jaillais, Y. Metabolic cellular communications: feedback mechanisms between membrane lipid homeostasis and plant development. Dev. Cell 54, 171–182 (2020). PubMed DOI
Cassim, A. M. et al. Plant lipids: key players of plasma membrane organization and function. Prog. Lipid Res. 73, 1–27 (2019). DOI
Colin, L. A. & Jaillais, Y. Phospholipids across scales: lipid patterns and plant development. Curr. Opin. Plant Biol. 53, 1–9 (2019). PubMed DOI
Martinière, A. et al. Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl Acad. Sci. USA 109, 12805–12810 (2012). PubMed DOI PMC
Liu, Z., Persson, S. & Sanchez-Rodriguez, C. At the border: the plasma membrane–cell wall continuum. J. Exp. Bot. 66, 1553–1563 (2015). PubMed DOI
Kirchhelle, C. & Hamant, O. Discretizing the cellular bases of plant morphogenesis: emerging properties from subcellular and noisy patterning. Curr. Opin. Cell Biol. 81, 102159 (2023). PubMed DOI
Elliott, L. et al. A self-regulatory cell-wall-sensing module at cell edges controls plant growth. Nat. Plants 10, 483–493 (2024). PubMed DOI PMC
Wallner, E.-S., Dolan, L. & Bergmann, D. C. Arabidopsis stomatal lineage cells establish bipolarity and segregate differential signaling capacity to regulate stem cell potential. Dev. Cell 58, 1643–1656 (2023). PubMed DOI
Minami, A. et al. Arabidopsis dynamin-related protein 1E in sphingolipid-enriched plasma membrane domains is associated with the development of freezing tolerance. Plant J. 83, 501–514 (2015). PubMed DOI
Laine, R. F. et al. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation. Nat. Methods 20, 1949–1956 (2023). PubMed DOI PMC
Levet, F. et al. A tessellation-based colocalization analysis approach for single-molecule localization microscopy. Nat. Commun. 10, 2379 (2019). PubMed DOI PMC
Wallis, T. P. et al. Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing. Nat. Commun. 14, 3353 (2023). PubMed DOI PMC