Ectopic assembly of an auxin efflux control machinery shifts developmental trajectories
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Swiss National Science Foundation - Switzerland
PubMed
38267818
PubMed Central
PMC11062438
DOI
10.1093/plcell/koae023
PII: 7588747
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * metabolismus genetika růst a vývoj MeSH
- biologický transport MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus genetika MeSH
- kořeny rostlin metabolismus růst a vývoj genetika MeSH
- kyseliny indoloctové * metabolismus MeSH
- membránové transportní proteiny metabolismus genetika MeSH
- protein-serin-threoninkinasy * MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- regulace genové exprese u rostlin MeSH
- xylém metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AT1G66150 protein, Arabidopsis MeSH Prohlížeč
- BREVIS RADIX protein, Arabidopsis MeSH Prohlížeč
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- kyseliny indoloctové * MeSH
- membránové transportní proteiny MeSH
- protein-serin-threoninkinasy * MeSH
- proteiny huseníčku * MeSH
Polar auxin transport in the Arabidopsis (Arabidopsis thaliana) root tip maintains high auxin levels around the stem cell niche that gradually decrease in dividing cells but increase again once they transition toward differentiation. Protophloem differentiates earlier than other proximal tissues and employs a unique auxin "canalization" machinery that is thought to balance auxin efflux with retention. It consists of a proposed activator of PIN-FORMED (PIN) auxin efflux carriers, the cAMP-, cGMP- and Calcium-dependent (AGC) kinase PROTEIN KINASE ASSOCIATED WITH BRX (PAX); its inhibitor, BREVIS RADIX (BRX); and PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K) enzymes, which promote polar PAX and BRX localization. Because of a dynamic PAX-BRX-PIP5K interplay, the net cellular output of this machinery remains unclear. In this study, we deciphered the dosage-sensitive regulatory interactions among PAX, BRX, and PIP5K by their ectopic expression in developing xylem vessels. The data suggest that the dominant collective output of the PAX-BRX-PIP5K module is a localized reduction in PIN abundance. This requires PAX-stimulated clathrin-mediated PIN endocytosis upon site-specific phosphorylation, which distinguishes PAX from other AGC kinases. An ectopic assembly of the PAX-BRX-PIP5K module is sufficient to cause cellular auxin retention and affects root growth vigor by accelerating the trajectory of xylem vessel development. Our data thus provide direct evidence that local manipulation of auxin efflux alters the timing of cellular differentiation in the root.
Department of Plant Molecular Biology University of Lausanne Lausanne CH 1015 Switzerland
Institute of Experimental Botany Czech Academy of Sciences Prague 165 02 Czech Republic
Zobrazit více v PubMed
Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell. 2015:27(1):20–32. 10.1105/tpc.114.134874 PubMed DOI PMC
Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J. A functional study of AUXILIN-LIKE1 and 2, two putative clathrin uncoating factors in Arabidopsis. Plant Cell. 2018:30(3):700–716. 10.1105/tpc.17.00785 PubMed DOI PMC
Aliaga Fandino AC, Hardtke CS. Auxin transport in developing protophloem: a case study in canalization. J Plant Physiol. 2022:269:153594. 10.1016/j.jplph.2021.153594 PubMed DOI
Anne P, Hardtke CS. Phloem function and development-biophysics meets genetics. Curr Opin Plant Biol. 2018:43:22–28. 10.1016/j.pbi.2017.12.005 PubMed DOI
Barbosa IC, Shikata H, Zourelidou M, Heilmann M, Heilmann I, Schwechheimer C. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development. 2016:143(24):4687–4700. 10.1242/dev.137117 PubMed DOI
Barbosa IC, Zourelidou M, Willige BC, Weller B, Schwechheimer C. D6 PROTEIN KINASE activates auxin transport-dependent growth and PIN-FORMED phosphorylation at the plasma membrane. Dev Cell. 2014:29(6):674–685. 10.1016/j.devcel.2014.05.006 PubMed DOI
Barbosa ICR, Hammes UZ, Schwechheimer C. Activation and polarity control of PIN-FORMED auxin transporters by phosphorylation. Trends Plant Sci. 2018:23(6):523–538. 10.1016/j.tplants.2018.03.009 PubMed DOI
Bassukas AEL, Xiao Y, Schwechheimer C. Phosphorylation control of PIN auxin transporters. Curr Opin Plant Biol. 2022:65:102146. 10.1016/j.pbi.2021.102146 PubMed DOI
Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benkova E, Mahonen AP, Helariutta Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol. 2011:21(11):917–926. 10.1016/j.cub.2011.04.017 PubMed DOI
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature. 2005:433(7021):39–44. 10.1038/nature03184 PubMed DOI
Breda AS, Hazak O, Schultz P, Anne P, Graeff M, Simon R, Hardtke CS. A cellular insulator against CLE45 peptide signaling. Curr Biol. 2019:29(15):2501–2508.e3. 10.1016/j.cub.2019.06.037 PubMed DOI
Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, et al. . A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature. 2012:482(7383):103–106. 10.1038/nature10791 PubMed DOI
Dettmer J, Ursache R, Campilho A, Miyashima S, Belevich I, O’Regan S, Mullendore DL, Yadav SR, Lanz C, Beverina L, et al. . CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat Commun. 2014:5(1):4276. 10.1038/ncomms5276 PubMed DOI
Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J. Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol. 2007:17(6):520–527. 10.1016/j.cub.2007.01.052 PubMed DOI
Dhonukshe P, Huang F, Galvan-Ampudia CS, Mahonen AP, Kleine-Vehn J, Xu J, Quint A, Prasad K, Friml J, Scheres B, et al. . Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling. Development. 2010:137(19):3245–3255. 10.1242/dev.052456 PubMed DOI
Diaz-Ardila HN, Gujas B, Wang Q, Moret B, Hardtke CS. pH-dependent CLE peptide perception permits phloem differentiation in Arabidopsis roots. Curr Biol. 2023:33(3):597–605.e3. 10.1016/j.cub.2022.12.056 PubMed DOI
Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, et al. . A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science. 2004:306(5697):862–865. 10.1126/science.1100618 PubMed DOI
Fujimoto M, Arimura S, Ueda T, Takanashi H, Hayashi Y, Nakano A, Tsutsumi N. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc Natl Acad Sci U S A. 2010:107(13):6094–6099. 10.1073/pnas.0913562107 PubMed DOI PMC
Galván-Ampudia CS, Offringa R. Plant evolution: AGC kinases tell the auxin tale. Trends Plant Sci. 2007:12(12):541–547. 10.1016/j.tplants.2007.10.004 PubMed DOI
Gerth K, Lin F, Daamen F, Menzel W, Heinrich F, Heilmann M. Arabidopsis phosphatidylinositol 4-phosphate 5-kinase 2 contains a functional nuclear localization sequence and interacts with alpha-importins. Plant J. 2017:92(5):862–878. 10.1111/tpj.13724 PubMed DOI
Graeff M, Hardtke CS. Metaphloem development in the Arabidopsis root tip. Development. 2021:148(18):dev199766. 10.1242/dev.199766 PubMed DOI
Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature. 2007:449(7165):1008–1013. 10.1038/nature06215 PubMed DOI
Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol. 2005:15(21):1899–1911. 10.1016/j.cub.2005.09.052 PubMed DOI
Hirai R, Higaki T, Takenaka Y, Sakamoto Y, Hasegawa J, Matsunaga S, Demura T, Ohtani M. The progression of xylem vessel cell differentiation is dependent on the activity level of VND7 in Arabidopsis thaliana. Plants (Basel). 2019:9(1):39. 10.3390/plants9010039 PubMed DOI PMC
Huang F, Zago MK, Abas L, van Marion A, Galvan-Ampudia CS, Offringa R. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell. 2010:22(4):1129–1142. 10.1105/tpc.109.072678 PubMed DOI PMC
Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijon M, Stenzel I, Lofke C, Wiessner T, Im YJ, Perera IY, et al. . Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell. 2013:25(12):4894–4911. 10.1105/tpc.113.116582 PubMed DOI PMC
Kang YH, Hardtke CS. Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling. EMBO Rep. 2016:17(8):1145–1154. 10.15252/embr.201642450 PubMed DOI PMC
Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, Tanaka H, Friml J. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell. 2011:23(5):1920–1931. 10.1105/tpc.111.083030 PubMed DOI PMC
Kleine-Vehn J, Huang F, Naramoto S, Zhang J, Michniewicz M, Offringa R, Friml J. PIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis. Plant Cell. 2009:21(12):3839–3849. 10.1105/tpc.109.071639 PubMed DOI PMC
Kleine-Vehn J, Wabnik K, Martiniere A, Langowski L, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, et al. . Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol. 2011:7(1):540. 10.1038/msb.2011.72 PubMed DOI PMC
Koh SWH, Marhava P, Rana S, Graf A, Moret B, Bassukas AEL, Zourelidou M, Kolb M, Hammes UZ, Schwechheimer C, et al. . Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins. Plant Cell. 2021:33(6):1945–1960. 10.1093/plcell/koab076 PubMed DOI PMC
Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 2005:19(16):1855–1860. 10.1101/gad.1331305 PubMed DOI PMC
Lavy M, Estelle M. Mechanisms of auxin signaling. Development. 2016:143(18):3226–3229. 10.1242/dev.131870 PubMed DOI PMC
Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science. 2006:311(5757):94–98. 10.1126/science.1118875 PubMed DOI
Mahonen AP, Ten Tusscher K, Siligato R, Smetana O, Diaz-Trivino S, Salojarvi J, Wachsman G, Prasad K, Heidstra R, Scheres B. PLETHORA gradient formation mechanism separates auxin responses. Nature. 2014:515(7525):125–129. 10.1038/nature13663 PubMed DOI PMC
Marhava P, Aliaga Fandino AC, Koh SWH, Jelinkova A, Kolb M, Janacek DP, Breda AS, Cattaneo P, Hammes UZ, Petrasek J, et al. . Plasma membrane domain patterning and self-reinforcing polarity in Arabidopsis. Dev Cell. 2020:52(2):223–235.e5. 10.1016/j.devcel.2019.11.015 PubMed DOI
Marhava P, Bassukas AEL, Zourelidou M, Kolb M, Moret B, Fastner A, Schulze WX, Cattaneo P, Hammes UZ, Schwechheimer C, et al. . A molecular rheostat adjusts auxin flux to promote root protophloem differentiation. Nature. 2018:558(7709):297–300. 10.1038/s41586-018-0186-z PubMed DOI
Moreira S, Bishopp A, Carvalho H, Campilho A. AHP6 inhibits cytokinin signaling to regulate the orientation of pericycle cell division during lateral root initiation. PLoS One. 2013:8(2):e56370. 10.1371/journal.pone.0056370 PubMed DOI PMC
Moret B, Marhava P, Aliaga Fandino AC, Hardtke CS, Ten Tusscher KHW. Local auxin competition explains fragmented differentiation patterns. Nat Commun. 2020:11(1):2965. 10.1038/s41467-020-16803-7 PubMed DOI PMC
Morris DA, Kadir GO. Pathways of auxin transport in the intact pea seedling (Pisum sativum L.). Planta. 1972:107(2):171–182. 10.1007/BF00387722 PubMed DOI
Muto H, Watahiki MK, Nakamoto D, Kinjo M, Yamamoto KT. Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol. 2007:144(1):187–196. 10.1104/pp.107.096628 PubMed DOI PMC
Ramachandran P, Augstein F, Mazumdar S, Nguyen TV, Minina EA, Melnyk CW, Carlsbecker A. Abscisic acid signaling activates distinct VND transcription factors to promote xylem differentiation in Arabidopsis. Curr Biol. 2021:31(14):3153–3161.e5. 10.1016/j.cub.2021.04.057 PubMed DOI
Rodrigues A, Santiago J, Rubio S, Saez A, Osmont KS, Gadea J, Hardtke CS, Rodriguez PL. The short-rooted phenotype of the brevis radix mutant partly reflects root abscisic acid hypersensitivity. Plant Physiol. 2009:149(4):1917–1928. 10.1104/pp.108.133819 PubMed DOI PMC
Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, Depuydt S, Hardtke CS. Molecular genetic framework for protophloem formation. Proc Natl Acad Sci U S A. 2014:111(31):11551–11556. 10.1073/pnas.1407337111 PubMed DOI PMC
Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, et al. . An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell. 1999:99(5):463–472. 10.1016/S0092-8674(00)81535-4 PubMed DOI
Santuari L, Scacchi E, Rodriguez-Villalon A, Salinas P, Dohmann EM, Brunoud G, Vernoux T, Smith RS, Hardtke CS. Positional information by differential endocytosis splits auxin response to drive Arabidopsis root meristem growth. Curr Biol. 2011:21(22):1918–1923. 10.1016/j.cub.2011.10.002 PubMed DOI
Teale WD, Paponov IA, Palme K. Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol. 2006:7(11):847–859. 10.1038/nrm2020 PubMed DOI
Tejos R, Sauer M, Vanneste S, Palacios-Gomez M, Li H, Heilmann M, van Wijk R, Vermeer JE, Heilmann I, Munnik T, et al. . Bipolar plasma membrane distribution of phosphoinositides and their requirement for auxin-mediated cell polarity and patterning in Arabidopsis. Plant Cell. 2014:26(5):2114–2128. 10.1105/tpc.114.126185 PubMed DOI PMC
Vaughan-Hirsch J, Goodall B, Bishopp A. North, east, south, west: mapping vascular tissues onto the Arabidopsis root. Curr Opin Plant Biol. 2018:41:16–22. 10.1016/j.pbi.2017.07.011 PubMed DOI
von der Mark C, Cruz TMD, Blanco-Tourinan N, Rodriguez-Villalon A. Bipartite phosphoinositide-dependent modulation of auxin signaling during xylem differentiation in Arabidopsis thaliana roots. New Phytol. 2022:236(5):1734–1747. 10.1111/nph.18448 PubMed DOI PMC
Wang Q, Aliaga Fandino AC, Graeff M, DeFalco TA, Zipfel C, Hardtke CS. A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation. Nat Commun. 2023:14(1):423. 10.1038/s41467-023-36200-0 PubMed DOI PMC
Watari M, Kato M, Blanc-Mathieu R, Tsuge T, Ogata H, Aoyama T. Functional differentiation among the Arabidopsis phosphatidylinositol 4-phosphate 5-kinase genes PIP5K1, PIP5K2 and PIP5K3. Plant Cell Physiol. 2022:63(5):635–648. 10.1093/pcp/pcac025 PubMed DOI
Weller B, Zourelidou M, Frank L, Barbosa IC, Fastner A, Richter S, Jürgens G, Hammes UZ, Schwechheimer C. Dynamic PIN-FORMED auxin efflux carrier phosphorylation at the plasma membrane controls auxin efflux-dependent growth. Proc Natl Acad Sci U S A. 2017:114(5):E887–E896. 10.1073/pnas.1614380114 PubMed DOI PMC
Willige BC, Ahlers S, Zourelidou M, Barbosa IC, Demarsy E, Trevisan M, Davis PA, Roelfsema MR, Hangarter R, Fankhauser C, et al. . D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell. 2013:25(5):1674–1688. 10.1105/tpc.113.111484 PubMed DOI PMC
Xiao Y, Offringa R. PDK1 regulates auxin transport and Arabidopsis vascular development through AGC1 kinase PAX. Nat Plants. 2020:6(5):544–555. 10.1038/s41477-020-0650-2 PubMed DOI
Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a broad range of genes for xylem vessel formation. Plant J. 2011:66(4):579–590. 10.1111/j.1365-313X.2011.04514.x PubMed DOI
Zhao Y. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol. 2018:69(1):417–435. 10.1146/annurev-arplant-042817-040226 PubMed DOI
Zourelidou M, Absmanner B, Weller B, Barbosa IC, Willige BC, Fastner A, Streit V, Port SA, Colcombet J, de la Fuente van Bentem S, et al. . Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife. 2014:3:e02860. 10.7554/eLife.02860 PubMed DOI PMC