Cell wall contributes to the stability of plasma membrane nanodomain organization of Arabidopsis thaliana FLOTILLIN2 and HYPERSENSITIVE INDUCED REACTION1 proteins
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31610051
DOI
10.1111/tpj.14566
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, cell wall, cytoskeleton, flotillin, hypersensitive induced reaction protein, lateral mobility, membrane nanodomains, plasma membrane, tonoplast,
- MeSH
- aktiny metabolismus MeSH
- Arabidopsis genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- buněčná stěna metabolismus MeSH
- cytoskelet metabolismus MeSH
- konfokální mikroskopie MeSH
- membránové mikrodomény metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- mikrotubuly metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- flotillins MeSH Prohlížeč
- membránové proteiny MeSH
- proteiny huseníčku MeSH
Current models of plasma membrane (PM) postulate its organization in various nano- and micro-domains with distinct protein and lipid composition. While metazoan PM nanodomains usually display high lateral mobility, the dynamics of plant nanodomains is often highly spatially restricted. Here we have focused on the determination of the PM distribution in nanodomains for Arabidopsis thaliana flotillin (AtFLOT) and hypersensitive induced reaction proteins (AtHIR), previously shown to be involved in response to extracellular stimuli. Using in vivo laser scanning and spinning disc confocal microscopy in Arabidopsis thaliana we present here their nanodomain localization in various epidermal cell types. Fluorescence recovery after photobleaching (FRAP) and kymographic analysis revealed that PM-associated AtFLOTs contain significantly higher immobile fraction than AtHIRs. In addition, much lower immobile fractions have been found in tonoplast pool of AtHIR3. Although members of both groups of proteins were spatially restricted in their PM distribution by corrals co-aligning with microtubules (MTs), pharmacological treatments showed no or very low role of actin and microtubular cytoskeleton for clustering of AtFLOT and AtHIR into nanodomains. Finally, pharmacological alteration of cell wall (CW) synthesis and structure resulted in changes in lateral mobility of AtFLOT2 and AtHIR1. Accordingly, partial enzymatic CW removal increased the overall dynamics as well as individual nanodomain mobility of these two proteins. Such structural links to CW could play an important role in their correct positioning during PM communication with extracellular environment.
Zobrazit více v PubMed
Abel, S., Burstenbinder, K. and Muller, J. (2013) The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking. Plant Signal. Behav. 8, e24369.
Affentranger, S., Martinelli, S., Hahn, J., Rossy, J. and Niggli, V. (2011) Dynamic reorganization of flotillins in chemokine-stimulated human T-lymphocytes. BMC Cell Biol. 12, 28.
Angelini, J., Vosolsobě, S., Skůpa, P., Ho, A.Y.Y., Bellinvia, E., Valentová, O. and Marc, J. (2018) Phospholipase Dδ assists to cortical microtubule recovery after salt stress. Protoplasma, 255, 1195-1204.
Babuke, T. and Tikkanen, R. (2007) Dissecting the molecular function of reggie/flotillin proteins. Eur. J. Cell Biol. 86, 525-532.
Barbosa, I.C.R., Shikata, H., Zourelidou, M., Heilmann, M., Heilmann, I. and Schwechheimer, C. (2016) Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses. Development, 143, 4687-4700.
Batoko, H., Zheng, H.-Q., Hawes, C. and Moore, I. (2000) A Rab1 GTPase is required for transport between the endoplasmic reticulum and golgi apparatus and for normal golgi movement in plants. Plant Cell, 12, 2201-2217.
Baumann, C.A., Ribon, V., Kanzaki, M., Thurmond, D.C., Mora, S., Shigematsu, S., Bickel, P.E., Pessin, J.E. and Saltiel, A.R. (2000) CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature, 407, 202-207.
Bernardino de la Serna, J., Schütz, G.J., Eggeling, C. and Cebecauer, M. (2016) There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 4, 106.
Bischoff, V., Nita, S., Neumetzler, L., Schindelasch, D., Urbain, A., Eshed, R., Persson, S., Delmer, D. and Scheible, W.-R. (2010) TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 153, 590-602.
Boursiac, Y., Chen, S., Luu, D.T., Sorieul, M., van den Dries, N. and Maurel, C. (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol. 139, 790-805.
Brzeska, H., Guag, J., Remmert, K., Chacko, S. and Korn, E.D. (2010) An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. J. Biol. Chem. 285, 5738-5747.
Bücherl, C.A., Jarsch, I.K., Schudoma, C., Segonzac, C., Mbengue, M., Robatzek, S., Maclean, D., Ott, T. and Zipfel, C. (2017) Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains. eLife, 6, e25114.
Burstenbinder, K., Mitra, D. and Quegwer, J. (2017a) Functions of IQD proteins as hubs in cellular calcium and auxin signaling: a toolbox for shape formation and tissue-specification in plants? Plant Signal. Behav. 12, e1331198.
Burstenbinder, K., Moller, B., Plotner, R., Stamm, G., Hause, G., Mitra, D. and Abel, S. (2017b) The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus. Plant Physiol. 173, 1692-1708.
Cacas, J.L., Bure, C., Grosjean, K. et al. (2016) Revisiting plant plasma membrane lipids in tobacco: a focus on sphingolipids. Plant Physiol. 170, 367-384.
Chen, F., Yuan, Y.X., Li, Q. and He, Z.H. (2007) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics, 7, 1529-1539.
Cheng, X., Lang, I., Adeniji, O.S. and Griffing, L. (2017) Plasmolysis-deplasmolysis causes changes in endoplasmic reticulum form, movement, flow, and cytoskeletal association. J. Exp. Bot. 68, 4075-4087.
Choi, H.W., Kim, Y.J. and Hwang, B.K. (2011) The hypersensitive induced reaction and leucine-rich repeat proteins regulate plant cell death associated with disease and plant immunity. Mol. Plant Microbe Interact. 24, 68-78.
Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735-43.
Cui, Y., Li, X., Yu, M., Li, R., Fan, L., Zhu, Y. and Lin, J. (2018) Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development, 145, 19.
Daněk, M., Valentová, O. and Martinec, J. (2016) Flotillins, Erlins, and HIRs: From animal base camp to plant new horizons. Crit. Rev. Plant Sci. 35, 191-214.
Desprez, T., Vernhettes, S., Fagard, M., Refrégier, G., Desnos, T., Aletti, E., Py, N., Pelletier, S. and Höfte, H. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482-490.
Di, C., Xu, W.Y., Su, Z. and Yuan, J.S. (2010) Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function. BMC Bioinformatics, 11, S22.
Duan, Y.H., Guo, J., Shi, X.X., Guan, X.N., Liu, F.R., Bai, P.F., Huang, L.L. and Kang, Z.S. (2013) Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses. Plant Cell Rep. 32, 273-283.
Faulkner, C. (2013) Receptor-mediated signaling at plasmodesmata. Front. Plant Sci., 4, 521.
Feraru, E., Feraru, M.I., Kleine-Vehn, J., Martiniere, A., Mouille, G., Vanneste, S., Vernhettes, S., Runions, J. and Friml, J. (2011) PIN polarity maintenance by the cell wall in Arabidopsis. Curr. Biol. 21, 338-343.
Geldner, N., Denervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.D. and Chory, J. (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169-178.
Grebe, M., Xu, J., Mobius, W., Ueda, T., Nakano, A., Geuze, H.J., Rook, M.B. and Scheres, B. (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr. Biol. 13, 1378-1387.
Gronnier, J., Gerbeau-Pissot, P., Germain, V., Mongrand, S. and Simon-Plas, F. (2018) Divide and rule: plant plasma membrane organization. Trends Plant Sci. 23, 899-917.
Haney, C.H. and Long, S.R. (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc. Natl Acad. Sci. USA, 107, 478-483.
Haney, C.H., Riely, B.K., Tricoli, D.M., Cook, D.R., Ehrhardt, D.W. and Long, S.R. (2011) Symbiotic Rhizobia bacteria trigger a change in localization and dynamics of the Medicago truncatula Receptor Kinase LYK3. Plant Cell, 23, 2774-2787.
Hao, H.Q., Fan, L.S., Chen, T., Li, R.L., Li, X.J., He, Q.H., Botella, M.A. and Lin, J.X. (2014) Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell, 26, 1729-1745.
Hellens, R.P., Edwards, E.A., Leyland, N.R., Bean, S. and Mullineaux, P.M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819-832.
Hemsley, P.A., Weimar, T., Lilley, K.S., Dupree, P. and Grierson, C.S. (2013) A proteomic approach identifies many novel palmitoylated proteins in Arabidopsis. New Phytol. 197, 805-814.
Ho, A.Y.Y., Day, D.A., Brown, M.H. and Marc, J. (2009) Arabidopsis phospholipase D delta as an initiator of cytoskeleton-mediated signalling to fundamental cellular processes. Funct. Plant Biol. 36, 190-198.
Hosy, E., Martiniere, A., Choquet, D., Maurel, C. and Luu, D.T. (2014) Super-resolved and dynamic imaging of membrane proteins in plant cells reveal contrasting kinetic profiles and multiple confinement mechanisms. Mol. Plant, 8, 339-342.
Ishikawa, T., Aki, T., Yanagisawa, S., Uchimiya, H. and Kawai-Yamada, M. (2015) Overexpression of BAX INHIBITOR-1 links plasma membrane microdomain proteins to stress. Plant Physiol. 169, 1333-1343.
Jarsch, I.K., Konrad, S.S.A., Stratil, T.F., Urbanus, S.L., Szymanski, W., Braun, P., Braun, K.H. and Ott, T. (2014) Plasma membranes are subcompartmentalized into a plethora of coexisting and diverse microdomains in Arabidopsis and Nicotiana benthamiana. Plant Cell, 26, 1698-1711.
Jones, A.M., Xuan, Y., Xu, M. et al. (2014) Border Control-A membrane-linked interactome of Arabidopsis. Science, 344, 711-716.
Jung, H.W. and Hwang, B.K. (2007) The leucine-rich repeat (LRR) protein, CaLRR1, interacts with the hypersensitive induced reaction (HIR) protein, CaHIR1, and suppresses cell death induced by the CaHIR1 protein. Mol. Plant Pathol. 8, 503-514.
Junková, P., Daněk, M., Kocourková, D., Brouzdová, J., Kroumanová, K., Zelazny, E., Janda, M., Hynek, R., Martinec, J. and Valentová, O. (2018) Mapping of plasma membrane proteins interacting with Arabidopsis thaliana Flotillin 2. Front. Plant Sci., 9, 991.
Konrad, S.S.A. and Ott, T. (2015) Molecular principles of membrane microdomain targeting in plants. Trends Plant Sci. 20, 351-361.
Konrad, S.S., Popp, C., Stratil, T.F., Jarsch, I.K., Thallmair, V., Folgmann, J., Marin, M. and Ott, T. (2014) S-acylation anchors remorin proteins to the plasma membrane but does not primarily determine their localization in membrane microdomains. New Phytol. 203, 758-769.
Krckova, Z., Kocourkova, D., Danek, M., Brouzdova, J., Pejchar, P., Janda, M., Pokotylo, I., Ott, P.G., Valentova, O. and Martinec, J. (2018) The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to Pseudomonas syringae attack. Ann. Bot. 121, 297-310.
Kroumanová, K., Kocourková, D., Daněk, M. et al. (2019) Characterisation of Arabidopsis flotillins in response to stresses. Biol. Plant. 63, 144-152.
Kusumi, A. and Sako, Y. (1996) Cell surface organization by the membrane skeleton. Curr. Opin. Cell Biol. 8, 566-574.
Langhorst, M.F., Solis, G.P., Hannbeck, S., Plattner, H. and Stuermer, C.A.O. (2007) Linking membrane microdomains to the cytoskeleton: regulation of the lateral mobility of reggie-1/flotillin-2 by interaction with actin. FEBS Lett. 581, 4697-4703.
Langhorst, M.F., Reuter, A., Jaeger, F.A., Wippich, F.M., Luxenhofer, G., Plattner, H. and Stuermer, C.A.O. (2008) Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur. J. Cell Biol. 87, 211-226.
Lankova, M., Humpolickova, J., Vosolsobe, S., Cit, Z., Lacek, J., Covan, M., Covanova, M., Hof, M. and Petrasek, J. (2016) Determination of dynamics of plant plasma membrane proteins with fluorescence recovery and raster image correlation spectroscopy. Microsc. Microanal. 22, 290-299.
Laroche, C., Beney, L., Marechal, P.A. and Gervais, P. (2001) The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl. Microbiol. Biotechnol. 56, 249-254.
Lewis, K.C., Selzer, T., Shahar, C., Udi, Y., Tworowski, D. and Sagi, I. (2008) Inhibition of pectin methyl esterase activity by green tea catechins. Phytochemistry, 69, 2586-2592.
Li, J.F., Park, E., von Arnim, A.G. and Nebenfuhr, A. (2009) The FAST technique: a simplified Agrobacterium-based transformation method for transient gene expression analysis in seedlings of Arabidopsis and other plant species. Plant Methods, 5, 6.
Li, X.J., Wang, X.H., Yang, Y., Li, R.L., He, Q.H., Fang, X.H., Luu, D.T., Maurel, C. and Lin, J.X. (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell, 23, 3780-3797.
Li, R.L., Liu, P., Wan, Y.L. et al. (2012) A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell, 24, 2105-2122.
Li, S., Zhao, J., Zhai, Y. et al. (2019) The hypersensitive induced reaction 3 (HIR3) gene contributes to plant basal resistance via an EDS1 and salicylic acid-dependent pathway. Plant J. 98, 783-797.
Liang, P., Stratil, T.F., Popp, C., Marín, M., Folgmann, J., Mysore, K.S., Wen, J. and Ott, T. (2018) Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc. Natl Acad. Sci. USA, 115, 5289-5294.
Liu, Z., Persson, S. and Sanchez-Rodriguez, C. (2015) At the border: the plasma membrane-cell wall continuum. J. Exp. Bot. 66, 1553-1563.
Luu, D.T., Martiniere, A., Sorieul, M., Runions, J. and Maurel, C. (2012) Fluorescence recovery after photobleaching reveals high cycling dynamics of plasma membrane aquaporins in Arabidopsis roots under salt stress. Plant J. 69, 894-905.
Lv, X., Jing, Y., Wu, H. and Lin, J. (2017a) Tracking tonoplast Protein behaviors in intact vacuoles isolated from Arabidopsis leaves. Mol. Plant, 10, 349-352.
Lv, X., Jing, Y., Xiao, J., Zhang, Y., Zhu, Y., Julian, R. and Lin, J. (2017b) Membrane microdomains and the cytoskeleton constrain AtHIR1 dynamics and facilitate the formation of an AtHIR1-associated immune complex. Plant J. 90, 3-16.
Majeran, W., le Caer, J.-P., Ponnala, L., Meinnel, T. and Giglione, C. (2018) Targeted profiling of A. thaliana sub-proteomes illuminates new co- and post-translationally N-terminal Myristoylated proteins. Plant Cell, 30, 543-562.
Malakshah, S.N., Rezaei, M.H., Heidari, M. and Salekdeh, G.H. (2007) Proteomics reveals new salt responsive proteins associated with rice plasma membrane. Biosci. Biotechnol. Biochem. 71, 2144-2154.
Mamode Cassim, A., Gouguet, P., Gronnier, J., Laurent, N., Germain, V., Grison, M., Boutte, Y., Gerbeau-Pissot, P., Simon-Plas, F. and Mongrand, S. (2019) Plant lipids: key players of plasma membrane organization and function. Prog. Lipid Res. 73, 1-27.
Martinez, D., Legrand, A., Gronnier, J. et al. (2018) Coiled-coil oligomerization controls localization of the plasma membrane REMORINs. J. Struct. Biol. 206, 12-19.
Martiniere, A. and Runions, J. (2013) Protein diffusion in plant cell plasma membranes: the cell-wall corral. Front. Plant Sci., 4, 515.
Martiniere, A., Gayral, P., Hawes, C. and Runions, J. (2011) Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton. Plant J. 66, 354-365.
Martiniere, A., Lavagi, I., Nageswaran, G. et al. (2012) Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc. Natl Acad. Sci. USA, 109, 12805-12810.
Martinière, A., Fiche, J.B., Smokvarska, M., Mari, S., Alcon, C., Dumont, X., Hematy, K., Jaillais, Y., Nollmann, M. and Maurel, C. (2019) Osmotic stress activates two reactive oxygen species pathways with distinct effects on protein nanodomains and diffusion. Plant Physiol. 179, 1581-1593.
McKenna, J.F., Tolmie, A.F. and Runions, J. (2014) Across the great divide: the plant cell surface continuum. Curr. Opin. Plant Biol. 22, 132-140.
McKenna, J.F., Rolfe, D.J., Webb, S.E.D., Tolmie, A.F., Botchway, S.W., Martin-Fernandez, M.L., Hawes, C. and Runions, J. (2019) The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis. Proc. Natl Acad. Sci. USA, 116, 12857-12862.
Morrow, I.C., Rea, S., Martin, S., Prior, I.A., Prohaska, R., Hancock, J.F., James, D.E. and Parton, R.G. (2002) Flotillin-1/Reggie-2 traffics to surface raft domains via a novel Golgi-independent pathway - Identification of a novel membrane targeting domain and a role for palmitoylation. J. Biol. Chem. 277, 48834-48841.
Neumann-Giesen, C., Falkenbach, B., Beicht, P., Claasen, S., Luers, G., Stuermer, C.A.O., Herzog, V. and Tikkanen, R. (2004) Membrane and raft association of reggie-1/flotillin-2: role of myristoylation, palmitoylation and oligomerization and induction of filopodia by overexpression. Biochemical J. 378, 509-518.
Platre, M.P., Bayle, V., Armengot, L. et al. (2019) Developmental control of plant Rho GTPase nano-organization by the lipid phosphatidylserine. Science, 364, 57-62.
Qi, Y.P. and Katagiri, F. (2009) Purification of low-abundance Arabidopsis plasma-membrane protein complexes and identification of candidate components. Plant J., 57, 932-944.
Qi, Y.P., Tsuda, K., Nguyen, L.V., Wang, X., Lin, J.S., Murphy, A.S., Glazebrook, J., Thordal-Christensen, H. and Katagiri, F. (2011) Physical asssociation of Arabidopsis hypersensitive induced reaction proteins (HIRs) with the immune receptor RPS2. J. Biol. Chem. 286, 31297-31307.
Raghupathy, R., Anilkumar, A.A., Polley, A. et al. (2015) Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell, 161, 581-594.
Retzer, K., Lacek, J., Skokan, R. et al. (2017) Evolutionary conserved cysteines function as cis-acting regulators of Arabidopsis PIN-FORMED 2 distribution. Int. J. Mol. Sci. 18, 2274.
Ritchie, K., Iino, R., Fujiwara, T., Murase, K. and Kusumi, A. (2003) The fence and picket structure of the plasma membrane of live cells as revealed by single molecule techniques (Review). Mol. Membr. Biol. 20, 13-18.
Rivera-Milla, E., Stuermer, C.A.O. and Malaga-Trillo, E. (2006) Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell. Mol. Life Sci. 63, 343-357.
Sampathkumar, A., Lindeboom, J.J., Debolt, S., Gutierrez, R., Ehrhardt, D.W., Ketelaar, T. and Persson, S. (2011) Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell, 23, 2302-13.
Scheible, W.-R., Eshed, R., Richmond, T., Delmer, D. and Somerville, C. (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc. Natl Acad. Sci. USA, 98, 10079-10084.
Schindelin, J., Arganda-Carreras, I., Frise, E. et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat. Methods, 9, 676-682.
Solis, G.P., Hoegg, M., Munderloh, C., Schrock, Y., Malaga-Trillo, E., Rivera-Milla, E. and Stuerivier, C.A.O. (2007) Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochemical J. 403, 313-322.
Sorieul, M., Santoni, V., Maurel, C. and Luu, D.T. (2011) Mechanisms and effects of retention of over-expressed aquaporin AtPIP2;1 in the endoplasmic reticulum. Traffic, 12, 473-482.
Stuermer, C.A.O., Lang, D.M., Kirsch, F., Wiechers, M., Deininger, S.O. and Plattner, H. (2001) Glycosylphosphatidyl inositol-anchored proteins and fyn kinase assemble in noncaveolar plasma membrane microdomains defined by reggie-1 and-2. Mol. Biol. Cell, 12, 3031-3045.
Szymanski, W.G., Zauber, H., Erban, A., Gorka, M., Wu, X.N. and Schulze, W.X. (2015) Cytoskeletal components define protein location to membrane microdomains. Mol. Cell. Proteomics, 14, 2493-2509.
Tanz, S.K., Castleden, I., Hooper, C.M., Vacher, M., Small, I. and Millar, H.A. (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res. 41, 1185-1191.
Tapken, W. and Murphy, A.S. (2015) Membrane nanodomains in plants: capturing form, function, and movement. J. Exp. Bot. 66, 1573-1586.
Tinevez, J.-Y., Perry, N., Schindelin, J., Hoopes, G.M., Reynolds, G.D., Laplantine, E., Bednarek, S.Y., Shorte, S.L. and Eliceiri, K.W. (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods, 115, 80-90.
Tolmie, F., Poulet, A., McKenna, J., Sassmann, S., Graumann, K., Deeks, M. and Runions, J. (2017) The cell wall of Arabidopsis thaliana influences actin network dynamics. J. Exp. Bot. 68, 4517-4527.
Traverso, J.A., Micalella, C., Martinez, A., Brown, S.C., Satiat-Jeunemaître, B., Meinnel, T. and Giglione, C. (2013) Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study. Plant Cell, 25, 1056-1077.
Wang, X.H., Li, X.J., Deng, X., Luu, D.T., Maurel, C. and Lin, J.X. (2015) Single-molecule fluorescence imaging to quantify membrane protein dynamics and oligomerization in living plant cells. Nat. Protoc. 10, 2054-2063.
Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T. and Lin, C.S. (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods, 5, 16.
Xue, Y., Xing, J., Wan, Y. et al. (2018) Arabidopsis blue light receptor Phototropin 1 undergoes blue light-induced activation in membrane microdomains. Mol. Plant, 11, 846-859.
Yamazaki, M., Ohnishi, S. and Ito, T. (1989) Osmoelastic coupling in biological structures: decrease in membrane fluidity and osmophobic association of phospholipid vesicles in response to osmotic stress. Biochemistry, 28, 3710-3715.
Yu, M., Liu, H., Dong, Z., Xiao, J., Su, B., Fan, L., Komis, G., Šamaj, J., Lin, J. and Li, R. (2017) The dynamics and endocytosis of Flot1 protein in response to flg22 in Arabidopsis. J. Plant Physiol. 215, 73-84.
Yu, Q., Ren, J.J., Kong, L.J. and Wang, X.L. (2018) Actin filaments regulate the adhesion between the plasma membrane and the cell wall of tobacco guard cells. Protoplasma, 255, 235-245.
Zhou, L., Cheung, M.Y., Zhang, Q., Lei, C.L., Zhang, S.H., Sun, S.S. and Lam, H.M. (2009) A novel simple extracellular leucine-rich repeat (eLRR) domain protein from rice (OsLRR1) enters the endosomal pathway and interacts with the hypersensitive-induced reaction protein 1 (OsHIR1). Plant Cell Environ. 32, 1804-1820.