The fate and function of the Arabidopsis Class I formin AtFH1 during central vacuole biogenesis in the rhizodermis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41195147
PubMed Central
PMC12583038
DOI
10.3389/fpls.2025.1685260
Knihovny.cz E-zdroje
- Klíčová slova
- At3g25500, cytoplasmic streaming, fluorescent protein pH sensitivity, formin, protein degradation, root tip, tonoplast, vacuole configuration,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: During plant cell differentiation, major restructuring of endomembranes takes place, resulting in the formation of the large central vacuole. We previously reported that the Arabidopsis Class I formin AtFH1 (At3g25500), a member of a plant-specific family of cytoskeletal organizers that are at the same time integral membrane proteins, transiently localizes to the tonoplast in the root transition zone around the time of central vacuole consolidation. METHODS: We used in vivo fluorescent protein expression in combination with pharmacological treatments and quantitative image analysis to examine the behavior and role of AtFH1 during central vacuole formation. RESULTS: The protein was found to enter the vacuole lumen in the root elongation zone and some shoot tissues, suggesting that its brief residence at the tonoplast in the transition zone is also an intermediate of a process leading to its vacuolar degradation. However, impairment of AtFH1 function by mutations or by the formin inhibitor SMIFH2 resulted in altered vacuole organization, while only the loss-of-function mutations affected rapid, cytoplasmic streaming-related tonoplast motility. DISCUSSION: These observations suggest that tonoplast-associated AtFH1 may act as an active cargo that affects tonoplast organization while on the way toward being degraded.
Zobrazit více v PubMed
Agbemafle W., Wong M. M., Bassham D. C. (2023). Transcriptional and post-translational regulation of plant autophagy. J. Exp. Bot. 74, 6006–6022. doi: 10.1093/jxb/erad211, PMID: PubMed DOI PMC
Avin-Wittenberg T., Bajdzienko K., Wittenberg G., Alseekh S., Tohge T., Bock R., et al. (2015). Global analysis of the role of autophagy in cellular metabolism and energy homeostasis in Arabidopsis seedlings under carbon starvation. Plant Cell 27, 306–322. doi: 10.1105/tpc.114.134205, PMID: PubMed DOI PMC
Bassil E., Tajima H., Liang Y. C., Ohto M. A., Ushijima K., Nakano R., et al. (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23, 3482–3497. doi: 10.1105/tpc.111.089581, PMID: PubMed DOI PMC
Bindels D. S., Haarbosch L., van Weeren L., Postma M., Wiese K. E., Mastop M., et al. (2017). mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Methods 14, 53–56. doi: 10.1038/nmeth.4074, PMID: PubMed DOI
Botman D., de Groot D. H., Schmidt P., Goedhart J., Teusink B. (2019). PubMed DOI PMC
Chinga G., Syverud K. (2007). Quantification of paper mass distributions within local picking areas. Nordic Pulp Paper Res. J. 22, 441–446. doi: 10.3183/npprj-2007-22-04-p441-446 DOI
Chinga Carrasco G. (2025). IJ plugins. Available online at: https://www.gcsca.net/IJPlugins.html (Accessed August 8, 2025).
Cifrová P., Oulehlová D., Kollárová E., Martinek J., Rosero A., Žárský V., et al. (2020). Division of labor between two actin nucleators-the formin FH1 and the ARP2/3 complex-in Arabidopsis epidermal cell morphogenesis. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00148, PMID: PubMed DOI PMC
Clough S. J., Bent A. F. (1998). ). Floral dip: a simplified method for Agrobacterium-mediated transformation of PubMed DOI
Cui Y., Cao W., He Y., Zhao Q., Wakazaki M., Zhuang X., et al. (2019). A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat. Plants 5, 95–105. doi: 10.1038/s41477-018-0328-1, PMID: PubMed DOI
Cvrčková F., Ghosh R., Kočová H. (2024). Transmembrane formins as active cargoes of membrane trafficking. J. Exp. Bot. 75, 3668–3684. doi: 10.1093/jxb/erae078, PMID: PubMed DOI PMC
Cvrčková F., Oulehlová D. (2017). A new kymogram-based method reveals unexpected effects of marker protein expression and spatial anisotropy of cytoskeletal dynamics in plant cell cortex. Plant Methods 13, 19. doi: 10.1186/s13007-017-0171-9, PMID: PubMed DOI PMC
Cvrčková F., Oulehlová D., Žárský V. (2016). On growth and formins. Plant Signal. Behav. 11, e1155017. doi: 10.1080/15592324.2016.1155017, PMID: PubMed DOI PMC
Dahhan D. A., Reynolds G. D., Cárdenas J. J., Eeckhout D., Johnson A., Yperman K., et al. (2022). Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. Plant Cell 34, 2150–2173. doi: 10.1093/plcell/koac071, PMID: PubMed DOI PMC
Deeks M. J., Calcutt J. R., Ingle E. K., Hawkins T. J., Chapman S., Richardson A. C., et al. (2012). A superfamily of actin-binding proteins at the actin-membrane nexus of higher plants. Curr. Biol. 22, 1595–1600. doi: 10.1016/j.cub.2012.06.041, PMID: PubMed DOI
Diao M., Ren S., Wang Q., Qian L., Shen J., Liu Y., et al. (2018). Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata. eLife 7, e36316. doi: 10.7554/eLife.36316, PMID: PubMed DOI PMC
Dünser K., Gupta S., Herger A., Feraru M. I., Ringli C., Kleine-Vehn J. (2019). Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J. 38, e100353. doi: 10.15252/embj.2018100353, PMID: PubMed DOI PMC
Dusek J., Plchova H., Cerovska N., Poborilova Z., Navratil O., Kratochvilova K., et al. (2020). Extended set of GoldenBraid compatible vectors for fast assembly of multigenic constructs and their use to create geminiviral expression vectors. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.522059, PMID: PubMed DOI PMC
Harris C. R., Millman K. J., van der Walt S. J., Gommers R., Virtanen P., Cournapeau D., et al. (2020). Array programming with numpy. Nature 585, 357–362. doi: 10.1038/s41586-020-2649-2, PMID: PubMed DOI PMC
Haupts U., Maiti S., Schwille P., Webb W. W. (1998). Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95, 13573–13578. doi: 10.1073/pnas.95.23.13573, PMID: PubMed DOI PMC
Hawkins T. J., Kopischke M., Duckney P. J., Rybak K., Mentlak D. A., Kroon J. T. M., et al. (2023). NET4 and RabG3 link actin to the tonoplast and facilitate cytoskeletal remodelling during stomatal immunity. Nat. Commun. 14, 5848. doi: 10.1038/s41467-023-41337-z, PMID: PubMed DOI PMC
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinf. 2008, 420747. doi: 10.1155/2008/420747, PMID: PubMed DOI PMC
Isono E., Kalinowska K. (2017). ESCRT-dependent degradation of ubiquitylated plasma membrane proteins in plants. Curr. Opin. Plant Biol. 40, 49–55. doi: 10.1016/j.pbi.2017.07.003, PMID: PubMed DOI
Isono E., Li J., Pulido P., Siao W., Spoel S. H., Wang Z., et al. (2024). Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. Plant Cell 36, 3074–3098. doi: 10.1093/plcell/koae141, PMID: PubMed DOI PMC
Ivanov R., Robinson D. G. (2018). Turnover of tonoplast proteins. Plant Physiol. 177, 10–11. doi: 10.1104/pp.18.00322, PMID: PubMed DOI PMC
Jaillais Y., Fobis-Loisy I., Miège C., Gaude T. (2008). Evidence for a sorting endosome in Arabidopsis root cells. Plant J. 53, 237–247. doi: 10.1111/j.1365-313X.2007.03338.x, PMID: PubMed DOI
Kagohashi Y., Sasaki M., May A. I., Kawamata T., Ohsumi Y. (2023). The mechanism of Atg15-mediated membrane disruption in autophagy. J. Cell Biol. 222, e202306120. doi: 10.1083/jcb.202306120, PMID: PubMed DOI PMC
Kaiser S., Eisa A., Kleine-Vehn J., Scheuring D. (2019). NET4 modulates the compactness of vacuoles in PubMed DOI PMC
Kaiser S., Scheuring D. (2020). To lead or to follow: contribution of the plant vacuole to cell growth. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00553, PMID: PubMed DOI PMC
Kleine-Vehn J., Leitner J., Zwiewka M., Sauer M., Abas L., Luschnig C., et al. (2008). Differential degradation of PIN2 auxin efflux carrier by retromer-dependent vacuolar targeting. Proc. Natl. Acad. Sci. U.S.A. 105, 17812–17817. doi: 10.1073/pnas.0808073105, PMID: PubMed DOI PMC
Kočová H., Caldarescu G. A., Bezvoda R., Cvrčková F. (2025). The Tonoplast Topology Index - a new metric for describing vacuole organization. biorXiv. doi: 10.1101/2025.08.06.668875 DOI
Kollárová E., Baquero Forero A., Cvrčková F. (2021). The PubMed DOI PMC
Kollárová E., Baquero Forero A., Yildiz A. B., Kočová H., Žárský V., Cvrčková F. (2025). The Arabidopsis Class I formin AtFH5 contributes to seedling resistance to salt stress. Plant Stress 15, 100770. doi: 10.1016/j.stress.2025.100770 DOI
Kriegel A., Andrés Z., Medzihradszky A., Krüger F., Scholl S., Delang S., et al. (2015). Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V-ATPase and V-PPase. Plant Cell 27, 3383–3396. doi: 10.1105/tpc.15.00733, PMID: PubMed DOI PMC
Kutsuna N., Kumagai F., Sato M. H., Hasezawa S. (2003). Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells. Plant Cell Physiol. 44, 1045–1054. doi: 10.1093/pcp/pcg124, PMID: PubMed DOI
Löfke C., Dünser K., Scheuring D., Kleine-Vehn J. (2015). Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 4, e05868. doi: 10.7554/eLife.05868, PMID: PubMed DOI PMC
Maîtrejean M., Vitale A. (2011). How are tonoplast proteins degraded? Plant Signal. Behav. 6, 1809–1812. doi: 10.4161/psb.6.11.17867, PMID: PubMed DOI PMC
Maîtrejean M., Wudick M. M., Voelker C., Prinsi B., Mueller-Roeber B., Czempinski K., et al. (2011). Assembly and sorting of the tonoplast potassium channel AtTPK1 and its turnover by internalization into the vacuole. Plant Physiol. 156, 1783–1796. doi: 10.1104/pp.111.177816, PMID: PubMed DOI PMC
Martinoia E., Massonneau A., Frangne N. (2000). Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol. 41, 1175–1186. doi: 10.1093/pcp/pcd059, PMID: PubMed DOI
McKinney W. (2010). Data structures for statistical computing in Python. (2010). SciPy Proc. 2010, 56–61. doi: 10.25080/Majora-92bf1922-00a DOI
Minamino N., Ueda T. (2019). RAB GTPases and their effectors in plant endosomal transport. Curr. Opin. Plant Biol. 52, 61–68. doi: 10.1016/j.pbi.2019.07.007, PMID: PubMed DOI
Nishimura Y., Shi S., Zhang F., Liu R., Takagi Y., Bershadsky A. D., et al. (2021). The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J. Cell Sci. 134, jcs253708. doi: 10.1242/jcs.253708, PMID: PubMed DOI PMC
Oda Y., Higaki T., Hasezawa S., Kutsuna N. (2009). Chapter 3. New insights into plant vacuolar structure and dynamics. Int. Rev. Cell Mol. Biol. 277, 103–135. doi: 10.1016/S1937-6448(09)77003-0, PMID: PubMed DOI
Osorio-Navarro C., Neira-Valenzuela G., Sierra P., Adamowski M., Toledo J., Norambuena L. (2025). The configuration of the vacuole is driven by clathrin-mediated trafficking in root cells of PubMed DOI
Oulehlová D., Kollárová E., Cifrová P., Pejchar P., Žárský V., Cvrčková F. (2019). Arabidopsis class I formin FH1 relocates between membrane compartments during root cell ontogeny and associates with plasmodesmata. Plant Cell Physiol. 60, 1855–1870. doi: 10.1093/pcp/pcz102, PMID: PubMed DOI
Paez Valencia J., Goodman K., Otegui M. S. (2016). Endocytosis and endosomal trafficking in plants. Annu. Rev. Plant Biol. 67, 309–335. doi: 10.1146/annurev-arplant-043015-112242, PMID: PubMed DOI
Pasin F., Bedoya L. C., Bernabé-Orts J. M., Gallo A., Simón-Mateo C., Orzaez D. (2017). Multiple T-DNA delivery to plants using novel mini binary vectors with compatible replication origins. ACS Synth. Biol. 6, 1962–1968. doi: 10.1021/acssynbio.6b00354, PMID: PubMed DOI
Paz M. M., Martinez J. C., Kalvig A. B., Fonger T. M., Wang K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25, 206–213. doi: 10.1007/s00299-005-0048-7, PMID: PubMed DOI
Pereira C., Pereira S., Pissarra J. (2014). Delivering of proteins to the plant vacuole–an update. Int. J. Mol. Sci. 15, 7611–7623. doi: 10.3390/ijms15057611, PMID: PubMed DOI PMC
Petrillo E., Godoy Herz M. A., Barta A., Kalyna M., Kornblihtt A. R. (2014). Let there be light: regulation of gene expression in plants. RNA Biol. 11, 1215–1220. doi: 10.4161/15476286.2014.972852, PMID: PubMed DOI PMC
Plotly Technologies Inc (2015). Collaborative data science. Available online at: https://plot.ly (Accessed August 11, 2025).
Radua J., Albajes-Eizagirre A., Fortea L. (2024). Seed-based d Mapping: Web utilities. Available online at: https://www.sdmproject.com/utilities/ (Accessed August 11, 2025).
Rizvi S. A., Neidt E. M., Cui J., Feiger Z., Skau C. T., Gardel M. L., et al. (2009). Identification and characterization of a small molecule inhibitor of formin-mediated actin assembly. Chem. Biol. 16, 1158–1168. doi: 10.1016/j.chembiol.2009.10.006, PMID: PubMed DOI PMC
Roberts T. M., Rudolf F., Meyer A., Pellaux R., Whitehead E., Panke S., et al. (2016). Identification and characterisation of a pH-stable GFP. Sci. Rep. 6, 28166. doi: 10.1038/srep28166, PMID: PubMed DOI PMC
Rosero A., Oulehlová D., Stillerová L., Schiebertová P., Grunt M., Žárský V., et al. (2016). Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant Cell Physiol. 57, 488–504. doi: 10.1093/pcp/pcv209, PMID: PubMed DOI
Rosero A., Žárský V., Cvrčková F. (2013). AtFH1 formin mutation affects actin filament and microtubule dynamics in PubMed DOI PMC
Sakai Y., Koller A., Rangell L. K., Keller G. A., Subramani S. (1998). Peroxisome degradation by microautophagy in Pichia pastoris: identification of specific steps and morphological intermediates. J. Cell Biol. 141, 625–636. doi: 10.1083/jcb.141.3.625, PMID: PubMed DOI PMC
Sarrion-Perdigones A., Falconi E. E., Zandalinas S. I., Juárez P., Fernández-del-Carmen A., Granell A., et al. (2011). GoldenBraid: an iterative cloning system for standardized assembly of reusable genetic modules. PloS One 6, e21622. doi: 10.1371/journal.pone.0021622, PMID: PubMed DOI PMC
Scheuring D., Löfke C., Krüger F., Kittelmann M., Eisa A., Hughes L., et al. (2016). Actin-dependent vacuolar occupancy of the cell determines auxin-induced growth repression. Proc. Natl. Acad. Sci. U.S.A. 113, 452–457. doi: 10.1073/pnas.1517445113, PMID: PubMed DOI PMC
Scheuring D., Minina E. A., Krueger F., Lupanga U., Krebs M., Schumacher K. (2024). Light at the end of the tunnel: FRAP assays combined with super resolution microscopy confirm the presence of a tubular vacuole network in meristematic plant cells. Plant Cell 36, 4683–4691. doi: 10.1093/plcell/koae243, PMID: PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. doi: 10.1038/nmeth.2019, PMID: PubMed DOI PMC
Segami S., Makino S., Miyake A., Asaoka M., Maeshima M. (2014). Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell 26, 3416–3434. doi: 10.1105/tpc.114.127571, PMID: PubMed DOI PMC
Shen J., Zeng Y., Zhuang X., Sun L., Yao X., Pimpl P., et al. (2013). Organelle pH in the Arabidopsis endomembrane system. Mol. Plant 6, 1419–1437. doi: 10.1093/mp/sst079, PMID: PubMed DOI
Sieńko K., Poormassalehgoo A., Yamada K., Goto-Yamada S. (2020). Microautophagy in plants: consideration of its molecular mechanism. Cells 9, 887. doi: 10.3390/cells9040887, PMID: PubMed DOI PMC
Spitzer M., Wildenhain J., Rappsilber J., Tyers M. (2014). BoxPlotR: a web tool for generation of box plots. Nat. Methods 11, 121–122. doi: 10.1038/nmeth.2811, PMID: PubMed DOI PMC
Subach O. M., Gundorov I. S., Yoshimura M., Subach F. V., Zhang J., Grüenwald D., et al. (2008). Conversion of red fluorescent protein into a bright blue probe. Chem. Biol. 15, 1116–1124. doi: 10.1016/j.chembiol.2008.08.006, PMID: PubMed DOI PMC
Takano J., Miwa K., Yuan L., von Wirén N., Fujiwara T. (2005). Endocytosis and degradation of BOR1, a boron transporter of PubMed DOI PMC
Tamura K., Shimada T., Ono E., Tanaka Y., Nagatani A., Higashi S. I., et al. (2003). Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant J. 35, 545–555. doi: 10.1046/j.1365-313x.2003.01822.x, PMID: PubMed DOI
The Pandas development team (2023). pandas-dev/pandas (Pandas; ). Available online at: https://zenodo.org/records/10304236 (Accessed October 8, 2025).
Thévenaz P., Ruttimann U. E., Unser M. (1998). A pyramid approach to subpixel registration based on intensity. IEEE Trans. 7, 27–41. doi: 10.1109/83.650848, PMID: PubMed DOI
Tse Y. C., Mo B., Hillmer S., Zhao M., Lo S. W., Robinson D. G., et al. (2004). Identification of multivesicular bodies as prevacuolar compartments in PubMed DOI PMC
Vasavada N. (2016). Online web statistical calculators. Available online at: https://astatsa.com/ (Accessed August 11, 2025).
Verbelen J. P., De Cnodder T., Le J., Vissenberg K., Baluška F. (2006). The root apex of PubMed DOI PMC
Vidali L., Burkart G. M., Augustine R. C., Kerdavid E., Tüzel E., Bezanilla M. (2010). Myosin XI is essential for tip growth in PubMed DOI PMC
Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2, PMID: PubMed DOI PMC
Wang J., Cai Y., Miao Y., Lam S. K., Jiang L. (2009). Wortmannin induces homotypic fusion of plant prevacuolar compartments. J. Exp. Bot. 60, 3075–3083. doi: 10.1093/jxb/erp136, PMID: PubMed DOI PMC
Xu L., Cao L., Li J., Staiger C. J. (2024). Cooperative actin filament nucleation by the Arp2/3 complex and formins maintains the homeostatic cortical array in Arabidopsis epidermal cells. Plant Cell 36, 764–789. doi: 10.1093/plcell/koad301, PMID: PubMed DOI PMC
Yagyu M., Yoshimoto K. (2024). New insights into plant autophagy: molecular mechanisms and roles in development and stress responses. J. Exp. Bot. 75, 1234–1251. doi: 10.1093/jxb/erad459, PMID: PubMed DOI
Yang Y., Xiang Y., Niu Y. (2021). An overview of the molecular mechanisms and functions of autophagic pathways in plants. Plant Signal. Behav. 16, 1977527. doi: 10.1080/15592324.2021.1977527, PMID: PubMed DOI PMC
Ye J., Zheng Y., Yan A., Chen N., Wang Z., Huang S., et al. (2009). Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21, 3868–3884. doi: 10.1105/tpc.109.068700, PMID: PubMed DOI PMC
Yoshimoto K., Ohsumi Y. (2018). Unveiling the molecular mechanisms of plant autophagy-from autophagosomes to vacuoles in plants. Plant Cell Physiol. 59, 1337–1344. doi: 10.1093/pcp/pcy112, PMID: PubMed DOI
Zhao J., Bui M. T., Ma J., Künzl F., Picchianti L., de la Concepcion J. C., et al. (2022). Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole. J. Cell Biol. 221, e202203139. doi: 10.1083/jcb.202203139, PMID: PubMed DOI PMC