• This record comes from PubMed

Carbon dots for virus detection and therapy

. 2021 Nov 25 ; 188 (12) : 430. [epub] 20211125

Language English Country Austria Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

Grant support
CZ.02.1.01/0.0/0.0/16_019/0000754 european regional development fund
IGA-PrF-2021-028 univerzita palackého v olomouci

Links

PubMed 34822008
PubMed Central PMC8613466
DOI 10.1007/s00604-021-05076-6
PII: 10.1007/s00604-021-05076-6
Knihovny.cz E-resources

Recent experience with the COVID-19 pandemic should be a lesson learnt with respect to the effort we have to invest in the development of new strategies for the treatment of viral diseases, along with their cheap, easy, sensitive, and selective detection. Since we live in a globalized world where just hours can play a crucial role in the spread of a virus, its detection must be as quick as possible. Thanks to their chemical stability, photostability, and superior biocompatibility, carbon dots are a kind of nanomaterial showing great potential in both the detection of various virus strains and a broad-spectrum antiviral therapy. The biosensing and antiviral properties of carbon dots can be tuned by the selection of synthesis precursors as well as by easy post-synthetic functionalization. In this review, we will first summarize current options of virus detection utilizing carbon dots by either electrochemical or optical biosensing approaches. Secondly, we will cover and share the up-to-date knowledge of carbon dots' antiviral properties, which showed promising activity against various types of viruses including SARS-CoV-2. The mechanisms of their antiviral actions will be further adressed as well. Finally, we will discuss the advantages and distadvantages of the use of carbon dots in the tangled battle against viral infections in order to provide valuable informations for further research and development of new virus biosensors and antiviral therapeutics.

See more in PubMed

Medawar PB, Medawar JS. Aristotle to zoos: a philosophical dictionary of biology. Cambridge, Massachusetts: Harvard University Press; 1983.

Baltimore D. Expression of animal virus genomes. Bacteriol Rev. 1971;35:235–241. doi: 10.1128/mmbr.35.3.235-241.1971. PubMed DOI PMC

Cagno V, Andreozzi P, D’Alicarnasso M, et al. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17:195–203. doi: 10.1038/NMAT5053. PubMed DOI

Jacobs SE, Lamson DM, Kirsten S, Walsh TJ. Human rhinoviruses. Clin Microbiol Rev. 2013;26:135–162. doi: 10.1128/CMR.00077-12. PubMed DOI PMC

Davis BM, Rall GF, Schnell MJ. Everything you always wanted to know about rabies virus (but were afraid to ask) Annu. Rev. Virol. 2015;2:451–471. doi: 10.1146/annurev-virology-100114-055157. PubMed DOI PMC

Holmes EC, Dudas G, Rambaut A, Andersen KG. The evolution of Ebola virus: Insights from the 2013-2016 epidemic. Nature. 2016;538:193–200. doi: 10.1038/nature19790. PubMed DOI PMC

Uversky VN. On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Arch. Virol. 2021;166:1283–1296. doi: 10.1007/s00705-021-04984-5. PubMed DOI PMC

Gorbalenya AE, Baker SC, Baric RS, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z. PubMed DOI PMC

Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci. 2020;11:6606–6622. doi: 10.1039/D0SC02658A. PubMed DOI PMC

Kotta S, Aldawsari HM, Badr-Eldin SM, et al. Exploring the potential of carbon dots to combat COVID-19. Front Mol Biosci. 2020;7:1–11. doi: 10.3389/fmolb.2020.616575. PubMed DOI PMC

Bakry R, Vallant RM, Najam-ul-Haq M, et al. Medicinal applications of fullerenes. Int. J. Nanomedicine. 2007;2:639–649. PubMed PMC

Geim AK, Novoselov KS (2009) The rise of graphene. In: Nanoscience and technology: a collection of reviews from Nature Journals. World Scientific Publishing Co., pp 11–19

Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes - the route toward applications. Science (80-. ). 297:787–792 PubMed

Wei Z, Wang D, Kim SSY, et al (2010) Nanoscale tunable reduction of graphene oxide for graphene electronics. Science (80- ) 328:1373–1376. doi: 10.1126/science.1188119 PubMed

Choudhary N, Hwang S, Choi W. Handbook of nanomaterials properties. Berlin Heidelberg: Springer; 2014. Carbon nanomaterials: a review; pp. 709–769.

Tonelli FM, Goulart VA, Gomes KN, et al. Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine. 2015;10:2423–2450. doi: 10.2217/nnm.15.65. PubMed DOI

Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI

Han B, Wang W, Wu H, et al. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surfaces B Biointerfaces. 2012;100:209–214. doi: 10.1016/j.colsurfb.2012.05.016. PubMed DOI

Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res. Lett. 2013;8:1–9. doi: 10.1186/1556-276X-8-1. PubMed DOI PMC

Hola K, Zhang Y, Wang Y, et al. Carbon dots - emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9:590–603. doi: 10.1016/j.nantod.2014.09.004. DOI

Li L, Wu G, Yang G, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5:4015–4039. doi: 10.1039/c3nr33849e. PubMed DOI

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chemie - Int Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Zhu S, Tang S, Zhang J, Yang B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun. 2012;48:4527–4539. doi: 10.1039/c2cc31201h. PubMed DOI

Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015;115:10816–10906. doi: 10.1021/acs.chemrev.5b00008. PubMed DOI

Bartelmess J, Quinn SJ, Giordani S. Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem. Soc. Rev. 2015;44:4672–4698. doi: 10.1039/C4CS00306C. PubMed DOI

Lim SY, Shen W, Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Langer M, Paloncýová M, Medveď M, et al. Progress and challenges in understanding of photoluminescence properties of carbon dots based on theoretical computations. Appl Mater Today. 2021;22:100924. doi: 10.1016/j.apmt.2020.100924. DOI

Yan F, Jiang Y, Sun X, et al. Surface modification and chemical functionalization of carbon dots: a review. Microchim. Acta. 2018;185:1–34. doi: 10.1007/s00604-017-2562-z. PubMed DOI

Kozák O, Sudolská M, Pramanik G, et al. Photoluminescent carbon nanostructures. Chem Mater. 2016;28:4085–4128. doi: 10.1021/acs.chemmater.6b01372. DOI

Hsu PC, Chen PC, Ou CM, et al. Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J Mater Chem B. 2013;1:1774–1781. doi: 10.1039/c3tb00545c. PubMed DOI

Lu W, Qin X, Liu S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem. 2012;84:5351–5357. doi: 10.1021/ac3007939. PubMed DOI

Zhou J, Sheng Z, Han H, et al. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett. 2012;66:222–224. doi: 10.1016/j.matlet.2011.08.081. DOI

Prasannan A, Imae T (2013) One-pot synthesis of fluorescent carbon dots from orange waste peels. In: Industrial and engineering chemistry research. American Chemical Society, pp 15673–15678

Wang J, Sahu S, Sonkar SK, et al. Versatility with carbon dots-from overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 2013;3:15604–15607. doi: 10.1039/c3ra42302f. DOI

Wang J, Wang CF, Chen S. Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chemie - Int Ed. 2012;51:9297–9301. doi: 10.1002/anie.201204381. PubMed DOI

Yeh TF, Huang WL, Chung CJ, et al. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence. J Phys Chem Lett. 2016;7:2087–2092. doi: 10.1021/acs.jpclett.6b00752. PubMed DOI

Ding H, Yu SB, Wei JS, Xiong HM. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano. 2016;10:484–491. doi: 10.1021/acsnano.5b05406. PubMed DOI

Kalytchuk S, Zdražil L, Scheibe M, Zbořil R. Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale. 2020;12:8379–8384. doi: 10.1039/d0nr00505c. PubMed DOI

Hola K, Bourlinos AB, Kozak O, et al. Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COO- induced red-shift emission. Carbon N Y. 2014;70:279–286. doi: 10.1016/j.carbon.2014.01.008. DOI

Holá K, Sudolská M, Kalytchuk S, et al. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano. 2017;11:12402–12410. doi: 10.1021/acsnano.7b06399. PubMed DOI

Wang S, Cole IS, Zhao D, Li Q. The dual roles of functional groups in the photoluminescence of graphene quantum dots. Nanoscale. 2016;8:7449–7458. doi: 10.1039/c5nr07042b. PubMed DOI

Miao X, Yan X, Qu D, et al. Red emissive sulfur, nitrogen codoped carbon dots and their application in ion detection and theraonostics. ACS Appl Mater Interfaces. 2017;9:18549–18556. doi: 10.1021/acsami.7b04514. PubMed DOI

Lu S, Cong R, Zhu S, et al. PH-dependent synthesis of novel structure-controllable polymer-carbon nanodots with high acidophilic luminescence and super carbon dots assembly for white light-emitting diodes. ACS Appl Mater Interfaces. 2016;8:4062–4068. doi: 10.1021/acsami.5b11579. PubMed DOI

Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C. 2016;4:6927–6945. doi: 10.1039/C6TC02055K. DOI

Kalytchuk S, Zdražil L, Bad’ura Z, et al. Carbon dots detect water-to-ice phase transition and act as alcohol sensors via fluorescence turn-off/on mechanism. ACS Nano. 2021;15:6582–6593. doi: 10.1021/acsnano.0c09781. PubMed DOI

Kalytchuk S, Wang Y, Poláková K, Zbořil R. Carbon dot fluorescence-lifetime-encoded anti-counterfeiting. ACS Appl Mater Interfaces. 2018;10:29902–29908. doi: 10.1021/acsami.8b11663. PubMed DOI

Feng T, Tao S, Yue D, et al. Recent advances in energy conversion applications of carbon dots: from optoelectronic devices to electrocatalysis. Small. 2020;16:2001295. doi: 10.1002/smll.202001295. PubMed DOI

Zdražil L, Kalytchuk S, Holá K, et al. A carbon dot-based tandem luminescent solar concentrator. Nanoscale. 2020;12:6664–6672. doi: 10.1039/c9nr10029f. PubMed DOI

Kalytchuk S, Poláková K, Wang Y, et al. Carbon dot nanothermometry: intracellular photoluminescence lifetime thermal sensing. ACS Nano. 2017;11:1432–1442. doi: 10.1021/acsnano.6b06670. PubMed DOI

Peng Z, Han X, Li S, et al. Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev. 2017;343:256–277. doi: 10.1016/j.ccr.2017.06.001. DOI

Luo PG, Sahu S, Yang ST, et al. Carbon “quantum” dots for optical bioimaging. J Mater Chem B. 2013;1:2116–2127. doi: 10.1039/c3tb00018d. PubMed DOI

Bourlinos AB, Bakandritsos A, Kouloumpis A, et al. Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J Mater Chem. 2012;22:23327–23330. doi: 10.1039/c2jm35592b. DOI

Malina T, Poláková K, Skopalík J, et al. Carbon dots for in vivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon N Y. 2019;152:434–443. doi: 10.1016/j.carbon.2019.05.061. DOI

Gao G, Jiang YW, Sun W, Wu FG. Fluorescent quantum dots for microbial imaging. Chinese Chem Lett. 2018;29:1475–1485. doi: 10.1016/j.cclet.2018.07.004. DOI

Liu YY, Yu NY, Di Fang W, et al. Photodegradation of carbon dots cause cytotoxicity. Nat Commun. 2021;12:1–12. doi: 10.1038/s41467-021-21080-z. PubMed DOI PMC

Liang X, Li N, Zhang R, et al. Carbon-based SERS biosensor: from substrate design to sensing and bioapplication. NPG Asia Mater. 2021;13:1–36. doi: 10.1038/s41427-020-00278-5. DOI

Havrdova M, Hola K, Skopalik J, et al. Toxicity of carbon dots-effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon N Y. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI

Yang ST, Wang X, Wang H, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C. 2009;113:18110–18114. doi: 10.1021/jp9085969. PubMed DOI PMC

Tao H, Yang K, Ma Z, et al. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite. Small. 2012;8:281–290. doi: 10.1002/smll.201101706. PubMed DOI

Sima M, Vrbova K, Zavodna T, et al. The differential effect of carbon dots on gene expression and dna methylation of human embryonic lung fibroblasts as a function of surface charge and dose. Int J Mol Sci. 2020;21:1–23. doi: 10.3390/ijms21134763. PubMed DOI PMC

Chung CY, Chen YJ, Kang CH, et al. Toxic or not toxic, that is the carbon quantum dot’s question: a comprehensive evaluation with zebrafish embryo, eleutheroembryo, and adult models. Polymers (Basel) 2021;13:1598. doi: 10.3390/polym13101598. PubMed DOI PMC

Holá K, Pavliuk MV, Németh B, et al. Carbon dots and [FeFe] hydrogenase biohybrid assemblies for efficient light-driven hydrogen evolution. ACS Catal. 2020;10:9943–9952. doi: 10.1021/acscatal.0c02474. DOI

Derakhshan MA, Amani A, Faridi-Majidi R. State-of-the-art of nanodiagnostics and nanotherapeutics against SARS-CoV-2. ACS Appl Mater Interfaces. 2021;13:14816–14843. doi: 10.1021/acsami.0c22381. PubMed DOI

Markwalter CF, Kantor AG, Moore CP, et al. Inorganic complexes and metal-based nanomaterials for infectious disease diagnostics. Chem Rev. 2019;119:1456–1518. doi: 10.1021/acs.chemrev.8b00136. PubMed DOI PMC

Altintas Z, Fakanya WM, Tothill IE. Cardiovascular disease detection using bio-sensing techniques. Talanta. 2014;128:177–186. doi: 10.1016/j.talanta.2014.04.060. PubMed DOI

Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chemie Int Ed. 2010;49:6726–6744. doi: 10.1002/anie.200906623. PubMed DOI

Yang S-T, Cao L, Luo PG, et al. Carbon dots for optical imaging in vivo. J Am Chem Soc. 2009;131:11308–11309. doi: 10.1021/ja904843x. PubMed DOI PMC

Sun Y-P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128:7756–7757. doi: 10.1021/ja062677d. PubMed DOI

Mehrotra P. Biosensors and their applications – a review. J Oral Biol Craniofacial Res. 2016;6:153–159. doi: 10.1016/j.jobcr.2015.12.002. PubMed DOI PMC

Xiang Q, Huang J, Huang H, et al. A label-free electrochemical platform for the highly sensitive detection of hepatitis B virus DNA using graphene quantum dots. RSC Adv. 2018;8:1820–1825. doi: 10.1039/C7RA11945C. PubMed DOI PMC

Dong Y, Shao J, Chen C, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon N Y. 2012;50:4738–4743. doi: 10.1016/j.carbon.2012.06.002. DOI

Valipour A, Roushani M. Using silver nanoparticle and thiol graphene quantum dots nanocomposite as a substratum to load antibody for detection of hepatitis C virus core antigen: electrochemical oxidation of riboflavin was used as redox probe. Biosens Bioelectron. 2017;89:946–951. doi: 10.1016/j.bios.2016.09.086. PubMed DOI

Wang X, Chen L, Su X, Ai S. Electrochemical immunosensor with graphene quantum dots and apoferritin-encapsulated Cu nanoparticles double-assisted signal amplification for detection of avian leukosis virus subgroup J. Biosens Bioelectron. 2013;47:171–177. doi: 10.1016/j.bios.2013.03.021. PubMed DOI

Li L-L, Ji J, Fei R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22:2971–2979. doi: 10.1002/adfm.201200166. DOI

Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med. Microbiol. Immunol. 2020;209:343–362. doi: 10.1007/s00430-020-00668-0. PubMed DOI PMC

Chowdhury AD, Takemura K, Li T-C, et al. Electrical pulse-induced electrochemical biosensor for hepatitis E virus detection. Nat Commun. 2019;10:3737. doi: 10.1038/s41467-019-11644-5. PubMed DOI PMC

van den Kieboom CH, van der Beek SL, Mészáros T, et al. Aptasensors for viral diagnostics. TrAC Trends Anal Chem. 2015;74:58–67. doi: 10.1016/j.trac.2015.05.012. PubMed DOI PMC

Ghanbari K, Roushani M, Azadbakht A. Ultra-sensitive aptasensor based on a GQD nanocomposite for detection of hepatitis C virus core antigen. Anal Biochem. 2017;534:64–69. doi: 10.1016/j.ab.2017.07.016. PubMed DOI

Mahato K, Srivastava A, Chandra P. Paper based diagnostics for personalized health care: emerging technologies and commercial aspects. Biosens Bioelectron. 2017;96:246–259. doi: 10.1016/j.bios.2017.05.001. PubMed DOI

Quesada-González D, Merkoçi A. Nanoparticle-based lateral flow biosensors. Biosens Bioelectron. 2015;73:47–63. doi: 10.1016/j.bios.2015.05.050. PubMed DOI

Toubanaki DK, Margaroni M, Prapas A, Karagouni E. Development of a nanoparticle-based lateral flow strip biosensor for visual detection of whole nervous necrosis virus particles. Sci Rep. 2020;10:6529. doi: 10.1038/s41598-020-63553-z. PubMed DOI PMC

Lee S, Mehta S, Erickson D. Two-color lateral flow assay for multiplex detection of causative agents behind acute febrile illnesses. Anal Chem. 2016;88:8359–8363. doi: 10.1021/acs.analchem.6b01828. PubMed DOI PMC

Li X, Lu D, Sheng Z, et al. A fast and sensitive immunoassay of avian influenza virus based on label-free quantum dot probe and lateral flow test strip. Talanta. 2012;100:1–6. doi: 10.1016/j.talanta.2012.08.041. PubMed DOI

Di Xu L, Zhang Q, Ding SN, et al. Ultrasensitive detection of severe fever with thrombocytopenia syndrome virus based on immunofluorescent carbon dots/SiO2 nanosphere-based lateral flow assay. ACS Omega. 2019;4:21431–21438. doi: 10.1021/acsomega.9b03130. PubMed DOI PMC

Xu L-D, Du F-L, Zhu J, Ding S-N. Luminous silica colloids with carbon dot incorporation for sensitive immunochromatographic assay of Zika virus. Analyst. 2021;146:706–713. doi: 10.1039/D0AN02017F. PubMed DOI

Di Xu L, Zhu J, Ding SN. Immunoassay of SARS-CoV-2 nucleocapsid proteins using novel red emission-enhanced carbon dot-based silica spheres. Analyst. 2021;146:5055–5060. doi: 10.1039/d1an01010g. PubMed DOI

Sun B, Dong J, Cui L, et al. A dual signal-on photoelectrochemical immunosensor for sensitively detecting target avian viruses based on AuNPs/g-C3N4 coupling with CdTe quantum dots and in situ enzymatic generation of electron donor. Biosens Bioelectron. 2019;124–125:1–7. doi: 10.1016/j.bios.2018.09.100. PubMed DOI

Victorious A, Saha S, Pandey R, et al. Affinity-based detection of biomolecules using photo-electrochemical readout. Front Chem. 2019;7:1–24. doi: 10.3389/fchem.2019.00617. PubMed DOI PMC

Sun B, Qiao F, Chen L, et al. Effective signal-on photoelectrochemical immunoassay of subgroup J avian leukosis virus based on Bi2S3 nanorods as photosensitizer and in situ generated ascorbic acid for electron donating. Biosens Bioelectron. 2014;54:237–243. doi: 10.1016/j.bios.2013.11.021. PubMed DOI

Zang Y, Lei J, Ju H. Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron. 2017;96:8–16. doi: 10.1016/j.bios.2017.04.030. PubMed DOI

Li Z, Zhang J, Li Y, et al. Carbon dots based photoelectrochemical sensors for ultrasensitive detection of glutathione and its applications in probing of myocardial infarction. Biosens Bioelectron. 2018;99:251–258. doi: 10.1016/j.bios.2017.07.065. PubMed DOI

Ahmed SR, Mogus J, Chand R, et al. Optoelectronic fowl adenovirus detection based on local electric field enhancement on graphene quantum dots and gold nanobundle hybrid. Biosens Bioelectron. 2018;103:45–53. doi: 10.1016/j.bios.2017.12.028. PubMed DOI

Li RS, Gao PF, Zhang HZ, et al. Chiral nanoprobes for targeting and long-term imaging of the Golgi apparatus. Chem Sci. 2017;8:6829–6835. doi: 10.1039/C7SC01316G. PubMed DOI PMC

Yan Q, Yang Y, Tan Z, et al. A label-free electrochemical immunosensor based on the novel signal amplification system of AuPdCu ternary nanoparticles functionalized polymer nanospheres. Biosens Bioelectron. 2018;103:151–157. doi: 10.1016/j.bios.2017.12.040. PubMed DOI

Picchio GR, Gulizia RJ, Wehrly K, et al. The cell tropism of human immunodeficiency virus type 1 determines the kinetics of plasma viremia in SCID mice reconstituted with human peripheral blood leukocytes. J Virol. 1998;72:2002–2009. doi: 10.1128/jvi.72.3.2002-2009.1998. PubMed DOI PMC

Fahmi MZ, Sukmayani W, Khairunisa SQ, et al. Design of boronic acid-attributed carbon dots on inhibits HIV-1 entry. RSC Adv. 2016;6:92996–93002. doi: 10.1039/c6ra21062g. DOI

Iannazzo D, Pistone A, Ferro S, et al. Graphene quantum dots based systems as HIV inhibitors. Bioconjug Chem. 2018;29:3084–3093. doi: 10.1021/acs.bioconjchem.8b00448. PubMed DOI

Ju E, Li T, Liu Z, et al. Specific inhibition of viral microRNAs by carbon dots-mediated delivery of locked nucleic acids for therapy of virus-induced cancer. ACS Nano. 2020;14:476–487. doi: 10.1021/acsnano.9b06333. PubMed DOI PMC

Du T, Liang J, Dong N, et al. Carbon dots as inhibitors of virus by activation of type I interferon response. Carbon N Y. 2016;110:278–285. doi: 10.1016/j.carbon.2016.09.032. DOI

Liu H, Bai Y, Zhou Y, et al. Blue and cyan fluorescent carbon dots: one-pot synthesis, selective cell imaging and their antiviral activity. RSC Adv. 2017;7:28016–28023. doi: 10.1039/c7ra03167j. DOI

Barras A, Pagneux Q, Sane F, et al. High efficiency of functional carbon nanodots as entry inhibitors of herpes simplex virus type 1. ACS Appl Mater Interfaces. 2016;8:9004–9013. doi: 10.1021/acsami.6b01681. PubMed DOI

Dong X, Moyer MM, Yang F et al (2017) Carbon dots’ antiviral functions against noroviruses. Sci Rep 7. 10.1038/s41598-017-00675-x PubMed PMC

Ting D, Dong N, Fang L, et al. Multisite inhibitors for enteric coronavirus: antiviral cationic carbon dots based on curcumin. ACS Appl Nano Mater. 2018;1:5451–5459. doi: 10.1021/acsanm.8b00779. PubMed DOI

Łoczechin A, Séron K, Barras A, et al. Functional carbon quantum dots as medical countermeasures to human coronavirus. ACS Appl Mater Interfaces. 2019;11:42964–42974. doi: 10.1021/acsami.9b15032. PubMed DOI PMC

Garg P, Sangam S, Kochhar D, et al. Exploring the role of triazole functionalized heteroatom co-doped carbon quantum dots against human coronaviruses. Nano Today. 2020;35:101001. doi: 10.1016/j.nantod.2020.101001. PubMed DOI PMC

Lin CJ, Chang L, Chu HW et al (2019) High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. Small 15. 10.1002/smll.201902641 PubMed

Huang S, Gu J, Ye J, et al. Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. J Colloid Interface Sci. 2019;542:198–206. doi: 10.1016/j.jcis.2019.02.010. PubMed DOI

Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005;48:1256–1259. doi: 10.1021/jm0493008. PubMed DOI

Tong T, Hu H, Zhou J et al (2020) Glycyrrhizic-acid-based carbon dots with high antiviral activity by multisite inhibition mechanisms. Small:16. 10.1002/smll.201906206 PubMed PMC

Dong X, Edmondson R, Yang F, et al. Carbon dots for effective photodynamic inactivation of virus. RSC Adv. 2020;10:33944–33954. doi: 10.1039/D0RA05849A. PubMed DOI PMC

Emam HE, Ahmed HB. Antitumor/antiviral carbon quantum dots based on carrageenan and pullulan. Int J Biol Macromol. 2021;170:688–700. doi: 10.1016/j.ijbiomac.2020.12.151. PubMed DOI

Huang HT, Lin HJ, Huang HJ et al (2020) Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Sci Rep 10. 10.1038/s41598-020-64325-5 PubMed PMC

Cheng J, Xu Y, Zhou D, et al. Novel carbon quantum dots can serve as an excellent adjuvant for the gp85 protein vaccine against avian leukosis virus subgroup J in chickens. Poult Sci. 2019;98:5315–5320. doi: 10.3382/ps/pez313. PubMed DOI

Jian HJ, Wu RS, Lin TY, et al. Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano. 2017;11:6703–6716. doi: 10.1021/acsnano.7b01023. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...