Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety

. 2020 ; 11 () : 599228. [epub] 20201210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33362831

Drought and salinity reduce seed germination, seedling emergence, and early seedling establishment, affect plant metabolism, and hence, reduce crop yield. Development of technologies that can increase plant tolerance of these challenging growth conditions is a major current interest among plant scientists and breeders. Seed priming has become established as one of the practical approaches that can alleviate the negative impact of many environmental stresses and improve the germination and overall performance of crops. Hormopriming using different plant growth regulators has been widely demonstrated as effective, but information about using cytokinins (CKs) as priming agents is limited to only a few studies using kinetin or 6-benzylaminopurine (BAP). Moreover, the mode of action of these compounds in improving seed and plant fitness through priming has not yet been studied. For many years, BAP has been one of the CKs most commonly applied exogenously to plants to delay senescence and reduce the impact of stress. However, rapid endogenous N 9-glucosylation of BAP can result in negative effects. This can be suppressed by hydroxylation of the benzyl ring or by appropriate N 9 purine substitution. Replacement of the 2' or 3' hydroxyl groups of a nucleoside with a fluorine atom has shown promising results in drug research and biochemistry as a means of enhancing biological activity and increasing chemical or metabolic stability. Here, we show that the application of this chemical modification in four new N 9-substituted CK derivatives with a fluorinated carbohydrate moiety improved the antisenescence properties of CKs. Besides, detailed phenotypical analysis of the growth and development of Arabidopsis plants primed with the new CK analogs over a broad concentration range and under various environmental conditions revealed that they improve growth regulation and antistress activity. Seed priming with, for example, 6-(3-hydroxybenzylamino)-2'-deoxy-2'-fluoro-9-(β)-D-arabinofuranosylpurine promoted plant growth under control conditions and alleviated the negative effects of the salt and osmotic stress. The mode of action of this hormopriming and its effect on plant metabolism were further analyzed through quantification of the endogenous levels of phytohormones such as CKs, auxins and abscisic acid, and the results are discussed.

Zobrazit více v PubMed

Bagheri A., Bagherifard A., Saborifard H., Ahmadi M., Safarpoor M. (2014). Effects drought, cytokinins and GA3 on seedling growth of Basil (Ocimum basilicum). Int. J. Adv. Biol. Biomed. Res. 2 489–493. 10.1017/CBO9781107415324.004 DOI

Bairu M. W., Jain N., Stirk W. A., Doležal K., Van Staden J. (2009). Solving the problem of shoot-tip necrosis in Harpagophytum procumbens by changing the cytokinin types, calcium and boron concentrations in the medium. South Afr. J. Bot. 75 122–127. 10.1016/j.sajb.2008.08.006 DOI

Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. Int. J. Mol. Sci. 18:1427. 10.3390/ijms18071427 PubMed DOI PMC

Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J. (1993). Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262, 1051–1054. 10.1126/science.8235622 PubMed DOI

Chen K., Arora R. (2013). Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 94 33–45. 10.1016/j.envexpbot.2012.03.005 DOI

Chu C. K., Matulic-Adamic J., Huang J.-T., Chou T.-C., Burchanal J. H., Fox J. J., et al. (1989). Nucleotides. CXXXV. Synthesis of some 9-(2-Deoxy-2-fluoro-(β-D-arabinofuranosyl)-9H-purines and their biological activities. Chem. Pharm. Bull. 37 336–339. PubMed

Clemenceau D., Cousseau J., Martin V., Molines H., Wakselman C., Mornet R., et al. (1996). Synthesis and cytokinin activity of two fluoro derivatives of N6-isopentenyladenine. J. Agric. Food Chem. 44 320–323. 10.1021/jf9501148 DOI

Conrath U. (2011). Molecular aspects of defence priming. Trends Plant Sci. 16 524–531. 10.1016/J.TPLANTS.2011.06.004 PubMed DOI

Criado M. V., Caputo C., Roberts I. N., Castro M. A., Barneix A. J. (2009). Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol. 166 1775–1785. 10.1016/j.jplph.2009.05.007 PubMed DOI

De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front. Plant Sci. 8:1702. 10.3389/fpls.2017.01702 PubMed DOI PMC

De Diego N., Saiz-Fernández I., Rodríguez J. L., Pérez-Alfocea P., Sampedro M. C., Barrio R. J., et al. (2015). Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. J. Plant Physiol. 188 64–71. 10.1016/j.jplph.2015.08.006 PubMed DOI

De Diego N., Spíchal L. (2020). “Use of plant metabolites to mitigate stress effects in crops,” in The Chemical Biology of Plant Biostimulants, eds Geelen D., Xu L. (Hoboken, NJ: Wiley; ), 261–300. 10.1002/9781119357254.ch11 DOI

Doležal K., Popa I., Hauserová E., Spíchal L., Chakrabarty K., Novák O., et al. (2007). Preparation, biological activity and endogenous occurrence of N6-benzyladenosines. Bioorganic Med. Chem. 15 3737–3747. 10.1016/j.bmc.2007.03.038 PubMed DOI

Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 2431–2452. 10.1093/jxb/err004 PubMed DOI

Gamir J., Sánchez-Bel P., Flors V. (2014). Molecular and physiological stages of priming: how plants prepare for environmental challenges. Plant Cell Rep. 33 1935–1949. 10.1007/s00299-014-1665-9 PubMed DOI

Gao J., Li W., Niu L., Cao R., Yin W. (2015). Isolation and structural elucidation of novel antimicrobial compounds from maggots of Chrysomyis megacephala Fabricius. Nat. Prod. Res. 29 239–246. 10.1080/14786419.2014.948875 PubMed DOI

George E. F., Hall M. A., De Klerk G. J. (2008). “Plant growth regulators II: cytokinins, their analogues and antagonists,” in Plant Propagation by Tissue Culture, 3rd Edn, eds George E. F., Hall M. A., Klerk G. J. D. (Dordrecht: Springer; ). 10.1007/978-1-4020-5005-3_6 DOI

Gitelson A. A., Kaufman Y. J., Stark R., Rundquist D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 80 76–87. 10.1016/S0034-4257(01)00289-9 DOI

Hagmann W. K. (2008). The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51 4359–4369. 10.1021/jm800219f PubMed DOI

Holub J., Hanuš J., Hanke D. E., Strnad M. (1998). Biological activity of cytokinins derived from Ortho–and Meta-Hydroxybenzyladenine. Plant Growth Regul. 26 109–115.

Hönig M., Plíhalová L., Husičková A., Nisler J., Doležal K. (2018). Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 19 1–23. 10.3390/ijms19124045 PubMed DOI PMC

Hošek P., Hoyerová K., Kiran N. S., Dobrev P. I., Zahajská L., Filepová R., et al. (2020). Distinct metabolism of N−glucosides of isopentenyladenine and trans−zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 225 2423–2438. 10.1111/nph.16310 PubMed DOI

Hoyerová K., Hošek P. (2020). New insights into the metabolism and role of cytokinin N-glucosides in plants. Front. Plant Sci. 11:741. 10.3389/fpls.2020.00741 PubMed DOI PMC

Hunt E. R., Doraiswamy P. C., McMurtrey J. E., Daughtry C. S. T., Perry E. M., Akhmedov B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21 103–112. 10.1016/J.JAG.2012.07.020 DOI

Hussain S., Khan F., Cao W., Wu L., Geng M. (2016). Seed priming alters the production and detoxification of reactive oxygen intermediates in rice seedlings grown under sub-optimal temperature and nutrient supply. Front. Plant Sci. 7:439. 10.3389/fpls.2016.00439 PubMed DOI PMC

Ibrahim E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 192 38–46. 10.1016/j.jplph.2015.12.011 PubMed DOI

Iqbal M., Ashraf M. (2005). Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J. Integr. Plant Biol. 47 1315–1325. 10.1111/j.1744-7909.2005.00163.x DOI

Iqbal M., Ashraf M., Jamil A. (2006). Seed enhancement with cytokinins: changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 50 29–39. 10.1007/s10725-006-9123-5 DOI

Jisha K. C., Vijayakumari K., Puthur J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35 1381–1396. 10.1007/s11738-012-1186-5 DOI

Jordi W., Schapendonk A., Davelaar E., Stoopen G. M., Pot C. S., De Visser R., et al. (2000). Increased cytokinin levels in transgenic P(SAG12)-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ. 23 279–289. 10.1046/j.1365-3040.2000.00544.x DOI

Kirk K. L. (2008). Fiuorination in medical chemistry: methods, strategies, and recent development. Org. Process Res. Dev. 12:305 10.1021/op700134j DOI

Lacuesta M., Saiz-Fernández I., Podlešáková K., Miranda-Apodaca J., Novák O., Doležal K., et al. (2018). The trans and cis zeatin isomers play different roles in regulating growth inhibition induced by high nitrate concentrations in maize. Plant Growth Regul. 85 199–209. 10.1007/s10725-018-0383-7 DOI

Lutts S., Benincasa P., Wojtyla L., Kubala S., Pace R., Lechowska K., et al. (2016). “Seed priming: new comprehensive approaches for an old empirical technique,” in New Challenges in Seed Biology–Basic and Translational Research Driving Seed Technology, eds S. Araujo, and A. Balestrazzi (London: InTech; ). Available online at: https://www.intechopen.com/books/new-challenges-in-seed-biology-basic-and-translational-research-driving-seed-technology/seed-priming-new-comprehensive-approaches-for-an-old-empirical-technique. 10.5772/64420 DOI

Man D., Bao Y. X., Han L. B., Zhang X. (2011). Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars. HortScience 46 1027–1032. 10.21273/hortsci.46.7.1027 DOI

Marchetti C. F., Škrabišová M., Galuszka P., Novák O., Causin H. F. (2018). Blue light suppression alters cytokinin homeostasis in wheat leaves senescing under shading stress. Plant Physiol. Biochem. 130 647–657. 10.1016/j.plaphy.2018.08.005 PubMed DOI

Marquez V. E., Tseng C. K. H., Kelley J. A., Ford H., Roth J. S., Driscoll J. S., et al. (1990). Acid-stable 2′-fluoro purine dideoxynucleosides as active agents against HIV. J. Med. Chem. 33 978–985. 10.1021/jm00165a015 PubMed DOI

Maruyama T., Takamatsu S., Kozai S., Satoh Y., Izawa K. (1999). Synthesis of 9-(2-deoxy-2-fluoro-β-D-arabinofuranosyl)adenine bearing a selectively removable protecting group. Chem. Pharm. Bull. 47 966–970. 10.1248/cpb.47.966 DOI

Meng W.-D., Qing F.-L. (2006). Fluorinated nucleosides as antiviral and antitumor agents. Curr. Top. Med. Chem. 6 1499–1528. 10.2174/156802606777951082 PubMed DOI

Mik V., Szüčová L., Šmehilová M., Zatloukal M., Doležal K., Nisler J., et al. (2011a). N9-substituted derivatives of kinetin: effective anti-senescence agents. Phytochemistry 72 821–831. 10.1016/j.phytochem.2011.02.002 PubMed DOI

Mik V., Szüčová L., Spíchal L., Plíhal O., Nisler J., Zahajská L., et al. (2011b). N9-Substituted N6-[(3-methylbut-2-en-1-yl)amino]purine derivatives and their biological activity in selected cytokinin bioassays. Bioorganic Med. Chem. 19 7244–7251. 10.1016/j.bmc.2011.09.052 PubMed DOI

Miller C. O., Skoog F., Von Saltza M. H., Strong F. M. (1955). Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77:1392 10.1021/ja01610a105 DOI

Miyoshi K., Sato T. (1997). The effects of kinetin and gibberellin on the germination of dehusked seeds of indica and japonica rice (Oryza sativa L.) under anaerobic and aerobic conditions. Ann. Bot. 80 479–483. 10.1006/anbo.1997.0470 DOI

Mok D., Mok M. (2001). Cytokinin metabolism and action. Annu. Rev. Plant Biol. 52 89–118. PubMed

Montgomery J. A., Shortnacy-Fowler A. T., Clayton S. D., Riordan J. M., Secrist J. A. (1992). Synthesis and biological activity of 2’-fluoro-2-halo derivatives of 9-β-D-Arabinofuranosyladenine. J. Med. Chem. 35 397–401. 10.1021/jm00080a029 PubMed DOI

Pankiewicz K. W., Krzeminski J., Ciszewski L. A., Ren W. Y., Watanabe K. A. (1992). A synthesis of 9-(2-Deoxy-2-fluoro-β-D-arabinofuranosyl)adenine and hypoxanthine. An Effect of C3′-endo to C2′-endo conformational shift on the reaction course of 2′-hydroxyl group with DAST. J. Org. Chem. 57 553–559. 10.1021/jo00028a030 DOI

Paparella S., Araújo S. S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Rep. 34 1281–1293. 10.1007/s00299-015-1784-y PubMed DOI

Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. (2018). Cytokinin at the crossroads of abiotic stress signalling pathways. Int. J. Mol. Sci. 19 1–36. 10.3390/ijms19082450 PubMed DOI PMC

Pênčík A., Casanova-Sáez R., Pilaøová V., Žukauskaite A., Pinto R., Micol J. L., et al. (2018). Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 69 2569–2579. 10.1093/jxb/ery084 PubMed DOI PMC

Perry E. M., Roberts D. A. (2008). Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. Agron. J. 100:1211 10.2134/agronj2007.0306 DOI

Pitzer K. S. (1960). The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. J. Am. Chem. Soc. 82:4121 10.1021/ja01500a088 DOI

Plíhal O., Szüčová L., Galuszka P. (2013). N9-substituted aromatic cytokinins with negligible side effects on root development are an emerging tool for in vitro culturing. Plant Signal. Behav. 8:e24392. 10.4161/psb.24392 PubMed DOI PMC

Podlešáková K., Zalabák D., Čudejková M., Plíhal O., Szüčová L., Doležal K., et al. (2012). Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS One 7:e39293. 10.1371/journal.pone.0039293 PubMed DOI PMC

Ranjbarian F., Vodnala M., Alzahrani K. J. H., Ebiloma G. U., De Koning H. P., Hofer A. (2017). 9-(2’-Deoxy-2-Fluoro-β-D-Arabinofuranosyl) adenine is a potent antitrypanosomal adenosine analogue that circumvents transport-related drug resistance. Antimicrob. Agents Chemother. 61:e02719-16. 10.1128/AAC.02719-16 PubMed DOI PMC

Reichman U., Watanabe K. A., Fox J. J. (1975). A practical synthesis of 2-deoxy-2-fluoro-D-arabinofuranose derivates. Carbohydr. Res. 42 233–240. PubMed

Rittenberg D., Foster G. L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. R. Soc. Open Sci. 5:181322.

Roitsch T., Ehneß R. (2000). Regulation of source / sink relations by cytokinins. Plant Growth Regul. 32 359–367. 10.1023/A:1010781500705 DOI

Rouphael Y., Spíchal L., Panzarová K., Casa R., Colla G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9:1197. 10.3389/fpls.2018.01197 PubMed DOI PMC

Sakakibara H. (2006). CYTOKININS: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI

Savvides A., Ali S., Tester M., Fotopoulos V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci. 21 329–340. 10.1016/j.tplants.2015.11.003 PubMed DOI

Schäfer M., Brütting C., Meza-Canales I. D., Großkinsky D. K., Vankova R., Baldwin I. T., et al. (2015). The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 66 4873–4884. 10.1093/jxb/erv214 PubMed DOI PMC

Shokar A., Au A., An S. H., Tong E., Garza G., Zayas J., et al. (2012). S-Adenosylhomocysteine hydrolase of the protozoan parasite Trichomonas vaginalis: potent inhibitory activity of 9-(2-deoxy-2-fluoro-β,d- arabinofuranosyl)adenine. Bioorganic Med. Chem. Lett. 22 4203–4205. 10.1016/j.bmcl.2012.03.087 PubMed DOI

Sneideris L. C., Gavassi M. A., Campos M. L., D’amico-Damião V., Carvalho R. F. (2015). Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. An. Acad. Bras. Cienc. 87 1847–1852. 10.1590/0001-3765201520140332 PubMed DOI

Stepanova A. N., Alonso J. M. (2016). Auxin catabolism unplugged: role of IAA oxidation in auxin homeostasis. Proc. Natl. Acad. Sci. U.S.A. 113 10742–10744. 10.1073/pnas.1613506113 PubMed DOI PMC

Strnad M. (1997). The aromatic cytokinins. Physiol. Plant 101 674–688. 10.1111/j.1399-3054.1997.tb01052.x DOI

Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8:17. 10.1186/1746-4811-8-17 PubMed DOI PMC

Thibaudeau C., Plavec J., Chattopadhyaya J. (1998). A new generalized Karplus-type equation relating vicinal proton-fluorine coupling constants to H-C-C-F Torsion Angles. J. Org. Chem. 63:4967 10.1021/jo980144k DOI

Uddin M. N., Hossain M. A., Burritt D. (2016). “Salinity and drought stress: similarities and differences in oxidative responses and cellular redox regulation,” in Water Stress and Crop Plants: A Sustainable Approach, ed. Ahmad P. (Hoboken, NJ: Wiley; ), 86–101. 10.1002/9781119054450.ch7 DOI

Ugena L., Hýlová A., Podlešáková K., Humplík J. F., Doležal K., De Diego N., et al. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette Growth. Front. Plant Sci. 9:1327. 10.3389/fpls.2018.01327 PubMed DOI PMC

Van Hulten M., Pelser M., Van Loon L. C., Pieterse C. M. J., Ton J. (2006). Costs and benefits of priming for defense in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 103 5602–5607. 10.1073/pnas.0510213103 PubMed DOI PMC

Veerasamy M., He Y., Huang B. (2007). Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. J. Am. Soc. Hortic. Sci. 132 467–472. 10.21273/jashs.132.4.467 DOI

Wan Z. K., Binnun E., Wilson D. P., Lee J. (2005). A highly facile and efficient one-step synthesis of N6-adenosine and N6-2′-deoxyadenosine derivatives. Org. Lett. 7 5877–5880. 10.1021/ol052424+ PubMed DOI

Werbrouck S. P. O., van der Jeugt B., Dewitte W., Prinsen E., Van Onckelen H. A., Debergh P. C. (1995). The metabolism of benzyladenine in Spathiphyllum floribundum “Schott Petite” in relation to acclimatisation problems. Plant Cell Rep. 14 662–665. 10.1007/BF00232734 PubMed DOI

Werner T., Holst K., Pörs Y., Guivarc’h A., Mustroph A., Chriqui D., et al. (2008). Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 59 2659–2672. 10.1093/jxb/ern134 PubMed DOI PMC

Willams F. S. B., Fábio S., Leandro C. M., de O., Paulo H., Menezes C. (2016). Comparison of seed priming techniques with regards to germination and growth of watermelon seedlings in laboratory condition. African J. Biotechnol. 15 2596–2602. 10.5897/ajb2016.15279 DOI

Wright J. A., Taylor N. F., Fox J. J. (1969). Nucleosides. LX. Fluorocarbohydrates. XXII. Synthesis of 2-Deoxy-2-fluoro-D-arabinose and 9-(2-Deoxy-2-fluoro-α- and -β-D-arabinofuranosyl)adenines. J. Org. Chem. 34 2632–2636. 10.1021/jo01261a031 PubMed DOI

Zalabák D., Galuszka P., Mrízová K., Podlešáková K., Gu R., Frébortová J. (2014). Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol. Biochem. 74 283–293. 10.1016/j.plaphy.2013.11.020 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...