Improving oxidative stress resilience in plants
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34519111
DOI
10.1111/tpj.15493
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidants, oxidative stress, reactive oxygen species, stress resilience,
- MeSH
- antioxidancia metabolismus MeSH
- fyziologický stres * MeSH
- fyziologie rostlin MeSH
- období sucha MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny genetika metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- reaktivní formy kyslíku MeSH
Originally conceived as harmful metabolic byproducts, reactive oxygen species (ROS) are now recognized as an integral part of numerous cellular programs. Thanks to their diverse physicochemical properties, compartmentalized production, and tight control exerted by the antioxidant machinery they activate signaling pathways that govern plant growth, development, and defense. Excessive ROS levels are often driven by adverse changes in environmental conditions, ultimately causing oxidative stress. The associated negative impact on cellular constituents have been a major focus of decade-long research efforts to improve the oxidative stress resilience by boosting the antioxidant machinery in model and crop species. We highlight the role of enzymatic and non-enzymatic antioxidants as integral factors of multiple signaling cascades beyond their mere function to prevent oxidative damage under adverse abiotic stress conditions.
Center for Plant Systems Biology VIB 9052 Gent Belgium
Department of Plant Biotechnology and Bioinformatics Ghent University 9052 Gent Belgium
Zobrazit více v PubMed
Ahmad, R., Kim, Y.-H., Kim, M.-D., Kwon, S.-Y., Cho, K., Lee, H.-S. et al. (2010) Simultaneous expression of choline oxidase, superoxide dismutase and ascorbate peroxidase in potato plant chloroplasts provides synergistically enhanced protection against various abiotic stresses. Physiologia Plantarum, 138, 520-533.
Alscher, R.G., Erturk, N. & Heath, L.S. (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331-1341.
Apel, K. & Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399.
Babbar, R., Karpinska, B., Grover, A. & Foyer, C.H. (2021) Heat-induced oxidation of the nuclei and cytosol. Frontiers in Plant Science, 11, 617779.
Bae, M.-J., Kim, Y.-S., Kim, I.-S., Choe, Y.-H., Lee, E.-J., Kim, Y.-H. et al. (2013) Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions. Molecular Breeding, 31, 931-945.
Bartoli, C.G., Gómez, F., Martínez, D.E. & Guiamet, J.J. (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). Journal of Experimental Botany, 55, 1663-1669.
Begcy, K., Mariano, E.D., Mattiello, L., Nunes, A.V., Mazzafera, P., Maia, I.G. et al. (2011) An Arabidopsis mitochondrial uncoupling protein confers tolerance to drought and salt stress in transgenic tobacco plants. PLoS One, 6, e23776.
Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M. et al. (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology, 147, 446-455.
Castro, B., Citterico, M., Kimura, S., Stevens, D.M., Wrzaczek, M. & Coaker, G. (2021) Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants, 7, 403-412.
Cha, J.-Y., Kim, J.Y., Jung, I.J., Kim, M.R., Melencion, A., Alam, S.S. et al. (2014) NADPH-dependent thioredoxin reductase A (NTRA) confers elevated tolerance to oxidative stress and drought. Plant Physiology and Biochemistry, 80, 184-191.
Cha, J.-Y., Kim, M.R., Jung, I.J., Kang, S.B., Park, H.J., Kim, M.G. et al. (2016) The thiol reductase activity of YUCCA6 mediates delayed leaf senescence by regulating genes involved in auxin redistribution. Frontiers in Plant Science, 7, 626.
Chae, H.B., Moon, J.C., Shin, M.R., Chi, Y.H., Jung, Y.J., Lee, S.Y. et al. (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Molecular Plant, 6, 323-336.
Chan, R.L., Trucco, F. & Otegui, M.E. (2020) Why are second-generation transgenic crops not yet available in the market? Journal of Experimental Botany, 71, 6876-6880.
Chen, J.-H., Jiang, H.-W., Hsieh, E.-J., Chen, H.-Y., Chien, C.-T., Hsieh, H.-L. et al. (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiology, 158, 340-351.
Chen, T. & Fluhr, R. (2018) Singlet oxygen plays an essential role in the root's response to osmotic stress. Plant Physiology, 177, 1717-1727.
Chin, D.-C., Senthil Kumar, R., Suen, C.-S., Chien, C.-Y., Hwang, M.-J., Hsu, C.-H. et al. (2019) Plant cytosolic ascorbate peroxidase with dual catalytic activity modulates abiotic stress tolerances. iScience, 16, 31-49.
Cohen, I., Zandalinas, S.I., Huck, C., Fritschi, F.B. & Mittler, R. (2021) Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiologia Plantarum, 171, 66-76.
Creissen, G., Firmin, J., Fryer, M., Kular, B., Leyland, N., Reynolds, H. et al. (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. The Plant Cell, 11, 1277-1292.
Cunha, J.R., Carvalho, F.E.L., Lima-Neto, M.C., Jardim-Messeder, D., Cerqueira, J.V.A., Martins, M.O. et al. (2019) Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidal APX in response to drought stress. Journal of Proteomics, 192, 125-136.
Dahal, K., Wang, J., Martyn, G.D., Rahimy, F. & Vanlerberghe, G.C. (2014) Mitochondrial alternative oxidase maintains respiration and preserves photosynthetic capacity during moderate drought in Nicotiana tabacum. Plant Physiology, 166, 1560-1574.
D'Alessandro, S., Beaugelin, I. & Havaux, M. (2020) Tanned or sunburned: how excessive light triggers plant cell death. Molecular Plant, 13, 1545-1555.
D'Alessandro, S., Mizokami, Y., Légeret, B. & Havaux, M. (2019) The apocarotenoid β-cyclocitric acid elicits drought tolerance in plants. iScience, 19, 461-473.
Dat, J., Vandenabeele, S., Vranová, E., Van Montagu, M., Inzé, D. & Van Breusegem, F. (2000) Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences, 57, 779-795.
Delaunay, A., Pflieger, D., Barrault, M.B., Vinh, J. & Toledano, M.B. (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell, 111, 471-481.
Deslous, P., Bournonville, C., Decros, G., Okabe, Y., Mauxion, J.-P., Jorly, J. et al. (2021) Overproduction of ascorbic acid impairs pollen fertility in tomato. Journal of Experimental Botany, 72, 3091-3107.
Devireddy, A.R., Zandalinas, S.I., Fichman, Y. & Mittler, R. (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal, 105, 459-476.
Diaz-Vivancos, P., Faize, L., Nicolás, E., Clemente-Moreno, M.J., Bru-Martinez, R., Burgos, L. et al. (2016) Transformation of plum plants with a cytosolic ascorbate peroxidase transgene leads to enhanced water stress tolerance. Annals of Botany, 117, 1121-1131.
Ding, P., Fang, L., Wang, G., Li, X., Huang, S., Gao, Y. et al. (2019) Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress. Plant Molecular Biology, 101, 203-220.
Dismukes, G.C., Klimov, V.V., Baranov, S.V., Kozlov, Y.N., DasGupta, J. & Tyryshkin, A. (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 98, 2170-2175.
Dmitrieva, V.A., Tyutereva, E.V. & Voitsekhovskaja, O.V. (2020) Singlet oxygen in plants: generation, detection, and signaling roles. International Journal of Molecular Sciences, 21, 3237.
Du, H., Wang, N., Cui, F., Li, X., Xiao, J. & Xiong, L. (2010) Characterization of the β-carotene hydroxylase gene DSM2 conferring drought and oxidative stress resistance by increasing xanthophylls and abscisic acid synthesis in rice. Plant Physiology, 154, 1304-1318.
Dvořák, P., Krasylenko, Y., Ovečka, M., Basheer, J., Zapletalová, V., Šamaj, J. et al. (2021) FSD1: developmentally-regulated plastidial, nuclear and cytoplasmic enzyme with anti-oxidative and osmoprotective role. Plant, Cell & Environment. in press. https://doi.org/10.1111/pce.13773
Elasad, M., Ahmad, A., Wang, H., Ma, L., Yu, S. & Wei, H. (2020) Overexpression of CDSP32 (GhTRX134) cotton gene enhances drought, salt, and oxidative stress tolerance in Arabidopsis. Plants, 9, 1388.
Eltayeb, A.E., Yamamoto, S., Habora, M.E.E., Yin, L.N., Tsujimoto, H. & Tanaka, K. (2011) Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. Breeding Science, 61, 3-10.
Feki, K., Kamoun, Y., Ben Mahmoud, R., Farhat-Khemakhem, A., Gargouri, A. & Brini, F. (2015) Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase. Plant Physiology and Biochemistry, 97, 420-431.
Fichman, Y. & Mittler, R. (2020) Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? The Plant Journal, 102, 887-896.
Fichman, Y., Myers, R.J., Grant, D.G. & Mittler, R. (2021) Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis. Science Signaling, 14, eabf0322.
Foyer, C.H., Baker, A., Wright, M., Sparkes, I.A., Mhamdi, A., Schippers, J.H.M. et al. (2020a) On the move: redox-dependent protein relocation in plants. Journal of Experimental Botany, 71, 620-631.
Foyer, C.H., Kyndt, T. & Hancock, R.D. (2020b) Vitamin C in plants: novel concepts, new perspectives, and outstanding issues. Antioxidants & Redox Signaling, 32, 463-485.
Foyer, C.H. & Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiology, 155, 2-18.
Ghosh, S., Kamble, N.U., Verma, P., Salvi, P., Petla, B.P., Roy, S. et al. (2020) Arabidopsis protein L-ISOASPARTYL METHYLTRANSFERASE repairs isoaspartyl damage to antioxidant enzymes and increases heat and oxidative stress tolerance. Journal of Biological Chemistry, 295, 783-799.
Giesguth, M., Sahm, A., Simon, S. & Dietz, K.-J. (2015) Redox-dependent translocation of the heat shock transcription factor AtHSFA8 from the cytosol to the nucleus in Arabidopsis thaliana. FEBS Letters, 589, 718-725.
Gómez, R., Vicino, P., Carrillo, N. & Lodeyro, A.F. (2019) Manipulation of oxidative stress responses as a strategy to generate stress-tolerant crops. From damage to signaling to tolerance. Critical Reviews in Biotechnology, 39, 693-708.
Grondin, A., Rodrigues, O., Verdoucq, L., Merlot, S., Leonhardt, N. & Maurel, C. (2015) Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. The Plant Cell, 27, 1945-1954.
Guo, Y., Huang, C., Xie, Y., Song, F. & Zhou, X. (2010) A tomato glutaredoxin gene SlGRX1 regulates plant responses to oxidative, drought and salt stresses. Planta, 232, 1499-1509.
Gustavsson, N., Kokke, B.P.A., Härndahl, U., Silow, M., Bechtold, U., Poghosyan, Z. et al. (2002) A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein. The Plant Journal, 29, 545-553.
Hajheidari, M., Eivazi, A., Buchanan, B.B., Wong, J.H., Majidi, I. & Salekdeh, G.H. (2007) Proteomics uncovers a role for redox in drought tolerance in wheat. Journal of Proteome Research, 6, 1451-1460.
Halliwell, B. (2006) Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312-322.
He, H., Van Breusegem, F. & Mhamdi, A. (2018) Redox-dependent control of nuclear transcription in plants. Journal of Experimental Botany, 69, 3359-3372.
Hernández, I., Alegre, L., Van Breusegem, F. & Munné-Bosch, S. (2009) How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125-132.
Hieno, A., Naznin, H.A., Inaba-Hasegawa, K., Yokogawa, T., Hayami, N., Nomoto, M. et al. (2019) Transcriptome analysis and identification of a transcriptional regulatory network in the response to H2O2. Plant Physiology, 180, 1629-1646.
Hirooka, S., Misumi, O., Yoshida, M., Mori, T., Nishida, K., Yagisawa, F. et al. (2009) Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance. Plant Cell Reports, 28, 1881-1893.
Hoang, M.T.T., Doan, M.T.A., Nguyen, T., Tra, D.-P., Chu, T.N., Dang, T.P.T. et al. (2021) Phenotypic characterization of Arabidopsis ascorbate and glutathione deficient mutants under abiotic stresses. Agronomy, 11, 764.
Hong, S.H., Tripathi, B.N., Chung, M.-S., Cho, C., Lee, S., Kim, J.-H. et al. (2018) Functional switching of ascorbate peroxidase 2 of rice (OsAPX2) between peroxidase and molecular chaperone. Scientific Reports, 8, 9171.
Huang, D., Huo, J. & Liao, W. (2021) Hydrogen sulfide: roles in plant abiotic stress response and crosstalk with other signals. Plant Science, 302, 110733.
Islam, T., Manna, M. & Reddy, M.K. (2015) Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS One, 10, e0143344.
Jacques, S., Ghesquière, B., De Bock, P.-J., Demol, H., Wahni, K., Willems, P. et al. (2015) Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress. Molecular & Cellular Proteomics, 14, 1217-1229.
Jacques, S., Ghesquière, B., Van Breusegem, F. & Gevaert, K. (2013) Plant proteins under oxidative attack. Proteomics, 13, 932-940.
Johansson, E., Olsson, O. & Nyström, T. (2004) Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. Journal of Biological Chemistry, 279, 22204-22208.
Jubany-Marí, T., Munné-Bosch, S. & Alegre, L. (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry, 48, 351-358.
Kang, C., Zhai, H., Xue, L., Zhao, N., He, S. & Liu, Q. (2018) A lycopene β-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Science, 272, 243-254.
Kerchev, P., De Smet, B., Waszczak, C., Messens, J. & Van Breusegem, F. (2015) Redox strategies for crop improvement. Antioxidants & Redox Signaling, 23, 1186-1205.
Kim, J.S., Park, H.-M., Chae, S., Lee, T.-H., Hwang, D.-J., Oh, S.-D. et al. (2014) A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes. PLoS One, 9, e90588.
Kim, M.D., Kim, Y.-H., Kwon, S.-Y., Yun, D.-J., Kwak, S.-S. & Lee, H.-S. (2010) Enhanced tolerance to methyl viologen-induced oxidative stress and high temperature in transgenic potato plants overexpressing the CuZnSOD, APX and NDPK2 genes. Physiologia Plantarum, 140, 153-162.
Koffler, B.E., Luschin-Ebengreuth, N., Stabentheiner, E., Müller, M. & Zechmann, B. (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Science, 227, 133-144.
Krieger-Liszkay, A., Fufezan, C. & Trebst, A. (2008) Singlet oxygen production in photosystem II and related protection mechanism. Photosynthesis Research, 98, 551-564.
Kumar, A., Dubey, A.K., Kumar, V., Ansari, M.A., Narayan, S., Meenakshi, et al. (2020) Overexpression of rice glutaredoxin genes LOC_Os02g40500 and LOC_Os01g27140 regulate plant responses to drought stress. Ecotoxicology and Environmental Safety, 200, 110721.
Kwak, J.M., Mori, I.C., Pei, Z.-M., Leonhardt, N., Torres, M.A., Dangl, J.L. et al. (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal, 22, 2623-2633.
Lane, N. (2002) Oxygen: The Molecule That Made the World. Oxford (UK): Oxford University Press.
Lee, S.H., Li, C.W., Koh, K.W., Chuang, H.Y., Chen, Y.R., Lin, C.S. et al. (2014) MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. Journal of Experimental Botany, 65, 5049-5062.
Lesk, C., Rowhani, P. & Ramankutty, N. (2016) Influence of extreme weather disasters on global crop production. Nature, 529, 84-87.
Levesque-Tremblay, G., Havaux, M. & Ouellet, F. (2009) The chloroplastic lipocalin AtCHL prevents lipid peroxidation and protects Arabidopsis against oxidative stress. The Plant Journal, 60, 691-702.
Li, C.-W., Lee, S.-H., Chieh, P.-S., Lin, C.-S., Wang, Y.-C. & Chan, M.-T. (2012) Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress. Plant and Cell Physiology, 53, 1707-1719.
Li, Z., Yuan, S., Jia, H., Gao, F., Zhou, M., Yuan, N. et al. (2017) Ectopic expression of a cyanobacterial flavodoxin in creeping bentgrass impacts plant development and confers broad abiotic stress tolerance. Plant Biotechnology Journal, 15(4), 433-446.
Liedschulte, V., Wachter, A., Zhigang, A. & Rausch, T. (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnology Journal, 8, 807-820.
Lisko, K.A., Torres, R., Harris, R.S., Belisle, M., Vaughan, M.M., Jullian, B. et al. (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cellular & Developmental Biology - Plant, 49, 643-655.
Liu, M., Yu, H., Ouyang, B., Shi, C., Demidchik, V., Hao, Z. et al. (2020) NADPH oxidases and the evolution of plant salinity tolerance. Plant, Cell and Environment, 43, 2957-2968.
Liu, Y., Zhang, C., Chen, J., Guo, L., Li, X., Li, W. et al. (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiology and Biochemistry, 64, 92-98.
Luo, G., Ono, S., Beukes, N.J., Wang, D.T., Xie, S. & Summons, R.E. (2016) Rapid oxygenation of Earth's atmosphere 2.33 billion years ago. Science Advances, 2, e1600134.
Ma, J., Qiu, D., Gao, H., Wen, H., Wu, Y., Pang, Y. et al. (2020) Over-expression of a γ-tocopherol methyltransferase gene in vitamin E pathway confers PEG-simulated drought tolerance in alfalfa. BMC Plant Biology, 20, 226.
Macknight, R.C., Laing, W.A., Bulley, S.M., Broad, R.C., Johnson, A.A.T. & Hellens, R.P. (2017) Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Current Opinion in Biotechnology, 44, 153-160.
Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S.A., Marchand, C.H. et al. (2020) Redox modification of the iron-sulfur glutaredoxin GRXS17 activates holdase activity and protects plants from heat stress. Plant Physiology, 184, 676-692.
Maurino, V.G. (2019) Using energy-efficient synthetic biochemical pathways to bypass photorespiration. Biochemical Society Transactions, 47, 1805-1813.
McKersie, B.D., Bowley, S.R., Harjanto, E. & Leprince, O. (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiology, 111, 1177-1181.
Meyer, Y., Buchanan, B.B., Vignols, F. & Reichheld, J.-P. (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annual Review of Genetics, 43, 335-367.
Mhamdi, A., Noctor, G. & Baker, A. (2012) Plant catalases: peroxisomal redox guardians. Archives of Biochemistry and Biophysics, 525, 181-194.
Miao, Y., Lv, D., Wang, P., Wang, X.-C., Chen, J., Miao, C. et al. (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. The Plant Cell, 18, 2749-2766.
Miller, G. & Mittler, R. (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annals of Botany, 98, 279-288.
Mittler, R. (2017) ROS are good. Trends in Plant Science, 22, 11-19.
Montrichard, F., Alkhalfioui, F., Yano, H., Vensel, W.H., Hurkman, W.J. & Buchanan, B.B. (2009) Thioredoxin targets in plants: the first 30 years. Journal of Proteomics, 72, 452-474.
Mullineaux, P.M., Exposito-Rodriguez, M., Laissue, P.P., Smirnoff, N. & Park, E. (2020) Spatial chloroplast-to-nucleus signalling involving plastid-nuclear complexes and stromules. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 375, 20190405.
Nahar, K., Hasanuzzaman, M., Alam, M.M. & Fujita, M. (2015) Glutathione-induced drought stress tolerance in mung bean: coordinated roles of the antioxidant defence and methylglyoxal detoxification systems. AoB Plants, 7, plv069.
Nakabayashi, R., Yonekura-Sakakibara, K., Urano, K., Suzuki, M., Yamada, Y., Nishizawa, T. et al. (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 77, 367-379.
Negi, N.P., Shrivastava, D.C., Sharma, V. & Sarin, N.B. (2015) Overexpression of CuZnSOD from Arachis hypogaea alleviates salinity and drought stress in tobacco. Plant Cell Reports, 34, 1109-1126.
Noctor, G., Arisi, A.-C.M., Jouanin, L. & Foyer, C.H. (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiology, 118, 471-482.
Noctor, G., Mhamdi, A. & Foyer, C.H. (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology, 164, 1636-1648.
Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer & C.H. (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany, 89(7), 841-850.
Nuccio, M.L., Paul, M., Bate, N.J., Cohn, J. & Cutler, S.R. (2018) Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 273, 110-119.
Oberschall, A., Deák, M., Török, K., Sass, L., Vass, I., Kovács, I. et al. (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. The Plant Journal, 24, 437-446.
Ono, M., Isono, K., Sakata, Y. & Taji, T. (2021) CATALASE2 plays a crucial role in long-term heat tolerance of Arabidopsis thaliana. Biochemical and Biophysical Research Communications, 534, 747-751.
Park, S.-I., Kim, Y.-S., Kim, J.-J., Mok, J.-E., Kim, Y.-H., Park, H.-M. et al. (2017) Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. Journal of Plant Physiology, 215, 39-47.
Passaia, G. & Margis-Pinheiro, M. (2015) Glutathione peroxidases as redox sensor proteins in plant cells. Plant Science, 234, 22-26.
Paul, M.J., Nuccio, M.L. & Basu, S.S. (2018) Are GM crops for yield and resilience possible? Trends in Plant Science, 23, 10-16.
Phua, S.Y., De Smet, B., Remacle, C., Chan, K.X. & Van Breusegem, F. (2021) Reactive oxygen species and organellar signaling. Journal of Experimental Botany, 72, 5807-5824.
Pnueli, L., Liang, H., Rozenberg, M. & Mittler, R. (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. The Plant Journal, 34, 187-203.
Postiglione, A.E. & Muday, G.K. (2020) The role of ROS homeostasis in ABA-induced guard cell signaling. Frontiers in Plant Science, 11, 968.
Prashanth, S.R., Sadhasivam, V. & Parida, A. (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Research, 17, 281-291.
Rizhsky, L., Hallak-Herr, E., Van Breusegem, F., Rachmilevitch, S., Barr, J.E., Rodermel, S. et al. (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. The Plant Journal, 32, 329-342.
Rodrigues, O., Reshetnyak, G., Grondin, A., Saijo, Y., Leonhardt, N., Maurel, C. et al. (2017) Aquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure. Proceedings of the National Academy of Sciences of the United States of America, 114, 9200-9205.
Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D. et al. (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62-93.
Roell, M.-S., Schada von Borzykowski, L., Westhoff, P., Plett, A., Paczia, N., Claus, P. et al. (2021) A synthetic C4 shuttle via the β-hydroxyaspartate cycle in C3 plants. Proceedings of the National Academy of Sciences of the United States of America, 118, e2022307118.
Romero, H.M., Berlett, B.S., Jensen, P.J., Pell, E.J. & Tien, M. (2004) Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis. Plant Physiology, 136, 3784-3794.
Roos, G. & Messens, J. (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radical Biology and Medicine, 51, 314-326.
Rouhier, N., Vieira Dos Santos, C., Tarrago, L. & Rey, P. (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynthesis Research, 89, 247-262.
Shi, Y., Chang, Y.-L., Wu, H.-T., Shalmani, A., Liu, W.-T., Li, W.-Q. et al. (2020) OsRbohB-mediated ROS production plays a crucial role in drought stress tolerance of rice. Plant Cell Reports, 39, 1767-1784.
Simmons, C.R., Lafitte, H.R., Reimann, K.S., Brugière, N., Roesler, K., Albertsen, M.C. et al. (2021) Successes and insights of an industry biotech program to enhance maize agronomic traits. Plant Science, 307, 110899.
Smirnoff, N. (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine, 122, 116-129.
Song, W., Xin, S., He, M., Pfeiffer, S., Cao, A., Li, H. et al. (2021) Evolutionary and functional analyses demonstrate conserved ferroptosis protection by Arabidopsis GPXs in mammalian cells. The FASEB Journal, 35, e21550.
Song, Y., Miao, Y. & Song, C.-P. (2014) Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist, 201, 1121-1140.
Sousa, R.H.V., Carvalho, F.E.L., Lima-Melo, Y., Alencar, V.T.C.B., Daloso, D.M., Margis-Pinheiro, M. et al. (2019) Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 70, 627-639.
South, P.F., Cavanagh, A.P., Liu, H.W. & Ort, D.R. (2019) Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 363, eaat9077. [Erratum Science, 365, eaay8818].
Suzuki, N., Miller, G., Sejima, H., Harper, J. & Mittler, R. (2013) Enhanced seed production under prolonged heat stress conditions in Arabidopsis thaliana plants deficient in cytosolic ascorbate peroxidase 2. Journal of Experimental Botany, 64, 253-263.
Sweetman, C., Waterman, C.D., Rainbird, B.M., Smith, P.M.C., Jenkins, C.D., Day, D.A. et al. (2019) AtNDB2 is the main external NADH dehydrogenase in mitochondria and is important for tolerance to environmental stress. Plant Physiology, 181, 774-788.
Tian, S., Wang, X., Li, P., Wang, H., Ji, H., Xie, J. et al. (2016) Plant aquaporin AtPIP1;4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiology, 171, 1635-1650.
Tognetti, V.B., Palatnik, J.F., Fillat, M.F., Melzer, M., Hajirezaei, M.-R., Valle, E.M. et al. (2006) Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance. The Plant Cell, 18, 2035-2050.
Tossounian, M.-A., Wahni, K., Van Molle, I., Vertommen, D., Astolfi Rosado, L. & Messens, J. (2019) Redox-regulated methionine oxidation of Arabidopsis thaliana glutathione transferase Phi9 induces H-site flexibility. Protein Science, 28, 56-67.
Umbach, A.L., Fiorani, F. & Siedow, J.N. (2005) Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiology, 139, 1806-1820.
Van Aken, O. (2021) Mitochondrial redox systems as central hubs in plant metabolism and signalling. Plant Physiology, 186, 36-52.
Van Breusegem, F., Van Montagu, M. & Inzé, D. (1998) Engineering stress tolerance in maize. Outlook on Agriculture, 27, 115-124.
Vanderauwera, S., Suzuki, N., Miller, G., van de Cotte, B., Morsa, S., Ravanat, J.-L. et al. (2011) Extranuclear protection of chromosomal DNA from oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 108, 1711-1716.
Volkov, R.A., Panchuk, I.I., Mullineaux, P.M. & Schöffl, F. (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Molecular Biology, 61, 733-746.
Voss, I., Sunil, B., Scheibe, R. & Raghavendra, A.S. (2013) Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15, 713-722.
Vu, L.D., Gevaert, K. & De Smet, I. (2019) Feeling the heat: searching for plant thermosensors. Trends in Plant Science, 24, 210-219.
Waltz, E. (2014) Beating the heat. Nature Biotechnology, 32, 610-613.
Wang, F.-Z., Wang, Q.-B., Kwon, S.-Y., Kwak, S.-S. & Su, W.-A. (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. Journal of Plant Physiology, 162, 465-472.
Wang, J. & Vanlerberghe, G.C. (2013) A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiologia Plantarum, 149, 461-473.
Wang, L.-M., Shen, B.-R., Li, B.-D., Zhang, C.-L., Lin, M., Tong, P.-P. et al. (2020) A synthetic photorespiratory shortcut enhances photosynthesis to boost biomass and grain yield in rice. Molecular Plant, 13, 1802-1815.
Wang, M., Zhao, X., Xiao, Z., Yin, X., Xing, T. & Xia, G. (2016b) A wheat superoxide dismutase gene TaSOD2 enhances salt resistance through modulating redox homeostasis by promoting NADPH oxidase activity. Plant Molecular Biology, 91, 115-130.
Wang, X., Zhang, M.-M., Wang, Y.-J., Gao, Y.-T., Li, R., Wang, G.-F. et al. (2016a) The plasma membrane NADPH oxidase OsRbohA plays a crucial role in developmental regulation and drought-stress response in rice. Physiologia Plantarum, 156, 421-443.
Wang, Z., Xiao, Y., Chen, W., Tang, K. & Zhang, L. (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. Journal of Integrative Plant Biology, 52, 400-409.
Wang, Z., Xu, W., Kang, J., Li, M., Huang, J., Ke, Q. et al. (2018) Overexpression of alfalfa Orange gene in tobacco enhances carotenoid accumulation and tolerance to multiple abiotic stresses. Plant Physiology and Biochemistry, 130, 613-622.
Waszczak, C., Carmody, M. & Kangasjärvi, J. (2018) Reactive oxygen species in plant signaling. Annual Review of Plant Biology, 69, 209-236.
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M. et al. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal, 16, 4806-4816.
Willems, P., Mhamdi, A., Stael, S., Storme, V., Kerchev, P., Noctor, G. et al. (2016) The ROS wheel: refining ROS transcriptional footprints. Plant Physiology, 171, 1720-1733.
Willems, P., Van Breusegem, F. & Huang, J. (2021) Contemporary proteomic strategies for cysteine redoxome profiling. Plant Physiology, 186, 110-124.
Wu, F., Chi, Y., Jiang, Z., Xu, Y., Xie, L., Huang, F. et al. (2020) Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis. Nature, 578, 577-581.
Wu, Q., Hu, Y., Sprague, S.A., Kakeshpour, T., Park, J., Nakata, P.A. et al. (2017) Expression of a monothiol glutaredoxin, AtGRXS17, in tomato (Solanum lycopersicum) enhances drought tolerance. Biochemical and Biophysical Research Communications, 491, 1034-1039.
Wu, Q., Lin, J., Liu, J.-Z., Wang, X., Lim, W., Oh, M. et al. (2012) Ectopic expression of Arabidopsis glutaredoxin AtGRXS17 enhances thermotolerance in tomato. Plant Biotechnology Journal, 10, 945-955.
Xu, J., Duan, X., Yang, J., Beeching, J.R. & Zhang, P. (2013) Coupled expression of Cu/Zn-superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses. Plant Signaling & Behavior, 8, e24525.
Yang, H., Zhang, D., Li, H., Dong, L. & Lan, H. (2015) Ectopic overexpression of the aldehyde dehydrogenase ALDH21 from Syntrichia caninervis in tobacco confers salt and drought stress tolerance. Plant Physiology and Biochemistry, 95, 83-91.
Zandalinas, S.I., Fritschi, F.B. & Mittler, R. (2021a) Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26, 588-599.
Zandalinas, S.I., Sengupta, S., Fritschi, F.B., Azad, R.K., Nechushtai, R. & Mittler, R. (2021b) The impact of multifactorial stress combination on plant growth and survival. New Phytologist, 230, 1034-1048.
Zhang, L., Wu, M., Teng, Y., Jia, S., Yu, D., Wei, T. et al. (2019) Overexpression of the glutathione peroxidase 5 (RcGPX5) gene from Rhodiola crenulata increases drought tolerance in Salvia miltiorrhiza. Frontiers in Plant Science, 9, 1950.
Zidenga, T., Leyva-Guerrero, E., Moon, H., Siritunga, D. & Sayre, R. (2012) Extending cassava root shelf life via reduction of reactive oxygen species production. Plant Physiology, 159, 1396-1407.
Zurbriggen, M.D., Tognetti, V.B., Fillat, M.F., Hajirezaei, M.-R., Valle, E.M. & Carrillo, N. (2008) Combating stress with flavodoxin: a promising route for crop improvement. Trends in Biotechnology, 26, 531-537.
Hydrogen peroxide-induced stress acclimation in plants