Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
U01 U01AG061357
NIA NIH HHS - United States
P30 AG062429
NIA NIH HHS - United States
U01 AG061357
NIA NIH HHS - United States
P30 AGO62429
NIH HHS - United States
P30 CA033572
NCI NIH HHS - United States
6980382
NIA NIH HHS - United States
P30 AG066530
NIA NIH HHS - United States
LX22NPO5107
NIA NIH HHS - United States
PubMed
36825691
PubMed Central
PMC10634590
DOI
10.1002/alz.12970
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer's disease, aging, cerebrospinal fluid, choroid plexus, pathology,
- MeSH
- Alzheimerova nemoc * patologie MeSH
- lidé MeSH
- plexus chorioideus metabolismus patologie MeSH
- proteomika MeSH
- stárnutí MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.
Center for Neurodegenerative Disease Emory University School of Medicine Atlanta Georgia USA
Center for Neurologic Study La Jolla California USA
Department of Cellular Pathology Imperial College Healthcare NHS Trust London UK
Department of Neurobiology Barrow Neurological Institute Phoenix Arizona USA
Department of Neurosciences University of California San Diego La Jolla California USA
Departments of Bioachemistry and Neurology Emory University School of Medicine Atlanta Georgia USA
Division of Neurology University Medical Centre Ljubljana Slovenia
Goizueta Alzheimer's Disease Research Center Emory University Atlanta Georgia USA
Imperial College London Faculty of Medicine London UK
Institute of Hematology and Blood Transfusion Prague Czech Republic
Institute of Mathematics and Statistics Masaryk University Brno Czech Republic
International Clinical Research Centre St Anne's University Hospital Brno Czech Republic
RECETOX Centre Faculty of Sciences Masaryk University Brno Czech Republic
Translational Aging and Neuroscience Program Mayo Clinic Rochester Minnesota USA
Zobrazit více v PubMed
Nathan C. Points of control in inflammation. Nature 2002; 420:846–852. doi:10.1038/nature01320. PubMed DOI
Cummings JL. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging 2000; 21:845–861. doi:10.1016/s0197-4580(00)00183-4. PubMed DOI
Katzman R Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Arch Neurol 1976; 33:217–21. doi:10.1001/archneur.1976.00500040001001. PubMed DOI
Masliah E, Miller A & Terry RD. The synaptic organization of the neocortex in Alzheimer’s disease. Med Hypotheses 1993; 41:334–340. doi:10.1016/0306-9877(93)90078-5. PubMed DOI
Rodriguez-Arellano JJ, et al. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170–182. doi:10.1016/j.neuroscience.2015.01.007. PubMed DOI
Escartin C, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24:312–325. doi:10.1038/s41593-020-00783-4. PubMed DOI PMC
Leng F & Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157–172. doi:10.1038/s41582-020-00435-y. PubMed DOI
Nieto-Sampedro M & Mora F. Active microglia, sick astroglia and Alzheimer type dementias. Neuroreport 1994; 5:375–380. doi:10.1097/00001756-199401120-00001. PubMed DOI
Terry RD, Gonatas NK & Weiss M. Ultrastructural Studies in Alzheimer’s Presenile Dementia. Am J Pathol 1964; 44:269–297. PubMed PMC
Braak H, et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960–969. doi:10.1097/NEN.0b013e318232a379. PubMed DOI
Katzman R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988; 23:138–144. doi:10.1002/ana.410230206. PubMed DOI
Kovacs GG. Tauopathies. Handb Clin Neurol 2017; 145:355–368. doi:10.1016/B978-0-12-802395-2.00025-0. PubMed DOI
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2022; 129:1–24. doi:10.1007/s00702-021-02449-2. PubMed DOI
Breitner JCS, et al. “Exceptions that prove the rule”-Why have clinical trials failed to show efficacy of risk factor interventions suggested by observational studies of the dementia-Alzheimer’s disease syndrome? Alzheimers Dement 2022; 18:389–392. doi:10.1002/alz.12633. PubMed DOI PMC
Grady CL, et al. Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain 2001; 124:739–75. doi:10.1093/brain/124.4.739. PubMed DOI
Sze CI, et al. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 1997; 56:933–944. doi:10.1097/00005072-199708000-00011. PubMed DOI
Terry RD, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572–580. doi:10.1002/ana.410300410. PubMed DOI
Passamonti L, et al. Neuroinflammation and Functional Connectivity in Alzheimer’s Disease: Interactive Influences on Cognitive Performance. J Neurosci 2019; 39:7218–7226. doi:10.1523/JNEUROSCI.2574-18.2019. PubMed DOI PMC
Barthet G & Mulle C. Presynaptic failure in Alzheimer’s disease. Prog Neurobiol 2020; 194: 101801. doi:10.1016/j.pneurobio.2020.101801. PubMed DOI
Hong S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352:712–716. doi:10.1126/science.aad8373. PubMed DOI PMC
Schwartz M & Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2014; 33:7–22. doi:10.1002/embj.201386609. PubMed DOI PMC
Ghersi-Egea JF, et al. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337–361. doi:10.1007/s00401-018-1807-1. PubMed DOI
Zhu L, et al. Klotho controls the brain-immune system interface in the choroid plexus. Proc Natl Acad Sci U S A 2018; 115:E11388–E11396. doi:10.1073/pnas.1808609115. PubMed DOI PMC
Bertram L & Tanzi RE. The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 2012; 107: 79–100. doi:10.1016/B978-0-12-385883-2.00008-4. PubMed DOI
Masters CL & Selkoe DJ. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. doi:10.1101/cshperspect.a006262. PubMed DOI PMC
Selkoe DJ & Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8:595–608. doi:10.15252/emmm.201606210. PubMed DOI PMC
Kuller LH & Lopez OL. ENGAGE and EMERGE: Truth and consequences? Alzheimers Dement 2021; 17:692–695. doi:10.1002/alz.12286. PubMed DOI PMC
Lie PPY, et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca(2+) efflux and disrupted by PSEN1 loss of function. Sci Adv 2022; 8:eabj5716. doi:10.1126/sciadv.abj5716. PubMed DOI PMC
Stokin GB, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307:1282–128. doi:10.1126/science.1105681. PubMed DOI
Brookmeyer R, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement 2011; 7:61–73. doi:10.1016/j.jalz.2010.11.007. PubMed DOI PMC
Gruver AL, Hudson LL & Sempowski GD. Immunosenescence of ageing. J Pathol 2007; 211:144–156. doi:10.1002/path.2104. PubMed DOI PMC
Lee CK, Weindruch R & Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25:294–297. doi:10.1038/77046. PubMed DOI
Lu T, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429: 883–891. doi:10.1038/nature02661. PubMed DOI
Soscia SJ, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5:e9505. doi:10.1371/journal.pone.0009505. PubMed DOI PMC
Jiang S, et al. Proteopathic tau primes and activates interleukin-1beta via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 2021; 36:109720. doi:10.1016/j.celrep.2021.109720. PubMed DOI PMC
Guo T, Noble W & Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665–704. doi:10.1007/s00401-017-1707-9. PubMed DOI PMC
Terry RD. The Fine Structure of Neurofibrillary Tangles in Alzheimer’s Disease. J Neuropathol Exp Neurol 1963; 22:629–642. doi:10.1097/00005072-196310000-00005. PubMed DOI
Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 1963; 197:192–193. doi:10.1038/197192b0. PubMed DOI
Machlovi SI, et al. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. doi:10.1016/j.nbd.2022.105615. PubMed DOI PMC
Martens YA, et al. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 2022; 110:1304–1317. doi:10.1016/j.neuron.2022.03.004. PubMed DOI PMC
Sayed FA, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med 2021; 13:eabe3947. doi:10.1126/scitranslmed.abe3947. PubMed DOI PMC
Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 2020; 26:131–142. doi:10.1038/s41591-019-0695-9. PubMed DOI PMC
Jonsson T & Stefansson K. TREM2 and neurodegenerative disease. N Engl J Med 2013; 369: 1568–1569. doi:10.1056/NEJMc1306509. PubMed DOI
Sweeney MD, Ayyadurai S & Zlokovic BV Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosc i 2016; 19:771–783. doi:10.1038/nn.4288. PubMed DOI PMC
Sweeney MD, et al. Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimers Dement 2019; 15:158–167. doi:10.1016/j.jalz.2018.07.222. PubMed DOI PMC
Sekiya M, et al. Integrated biology approach reveals molecular and pathological interactions among Alzheimer’s Abeta42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 2018; 10:26. doi:10.1186/s13073-018-0530-9. PubMed DOI PMC
Sadick JS, et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 2022; 11:1788–1805. doi: 10.1016/j.neuron.2022.03.008. PubMed DOI PMC
Darweesh SKL, et al. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta-analysis. Alzheimers Dement 2018; 14:1450–1459. doi:10.1016/j.jalz.2018.02.014. PubMed DOI
Holmes C, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 2011; 77:212–218. doi:10.1212/WNL.0b013e318225ae07. PubMed DOI PMC
Wendeln AC, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 2018; 556:332–338. doi:10.1038/s41586-018-0023-4. PubMed DOI PMC
Baruch K, et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 2014; 346:89–93. doi:10.1126/science.1252945. PubMed DOI PMC
Baruch K, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 2013; 110:2264–2269. doi:10.1073/pnas.1211270110. PubMed DOI PMC
Baruc K, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 2015; 6:7967. doi:10.1038/ncomms8967. PubMed DOI PMC
Salvesen O, et al. LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation 2017; 14:106. doi:10.1186/s12974-017-0879-5. PubMed DOI PMC
Strominger I, et al. The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System. Front Immunol 2018; 9:1066. doi:10.3389/fimmu.2018.01066. PubMed DOI PMC
Yang AC, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 595:565–571. doi: 10.1038/s41586-021-03710-0. PubMed DOI PMC
Balusu S, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 2016; 8:1162–1183. doi:10.15252/emmm.201606271. PubMed DOI PMC
Cushing H. Studies on the Cerebro-Spinal Fluid : I. Introduction. J Med Res 1914; 31:1–19. PubMed PMC
Damkier HH, Brown PD & Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013; 93:1847–1892. doi:10.1152/physrev.00004.2013. PubMed DOI
Silva-Vargas V, et al. Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell 2016; 19:643–652. doi:10.1016/j.stem.2016.06.013. PubMed DOI
Liu CB, et al. Lycopene mitigates beta-amyloid induced inflammatory response and inhibits NF-kappaB signaling at the choroid plexus in early stages of Alzheimer’s disease rats. J Nutr Biochem 2018; 53:66–71. doi:10.1016/j.jnutbio.2017.10.014. PubMed DOI
Xu Z, et al. A combination of lycopene and human amniotic epithelial cells can ameliorate cognitive deficits and suppress neuroinflammatory signaling by choroid plexus in Alzheimer’s disease rat. J Nutr Biochem 2020; 88:108558. doi:10.1016/j.jnutbio.2020.108558. PubMed DOI
Pearson A, et al. Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol 2020; 20: 317. doi:10.1186/s12883-020-01849-3. PubMed DOI PMC
Tahira A, et al. Are the 50’s, the transition decade, in choroid plexus aging? Geroscience 2021; 43:225–237. doi:10.1007/s11357-021-00329-x. PubMed DOI PMC
Serot JM, et al. Morphological alterations of the choroid plexus in late-onset Alzheimer’s disease. Acta Neuropathol 2000; 99:105–108. doi:10.1007/pl00007412. PubMed DOI
Alisch JSR, et al. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. doi:10.3389/fnagi.2021.734992. PubMed DOI PMC
Gonzalez-Marrero I, et al. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci 2015; 9:17. doi:10.3389/fncel.2015.00017. PubMed DOI PMC
Steeland S, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med 2018; 10:8300. doi: 10.15252/emmm.201708300. PubMed DOI PMC
Brkic M, et al. Amyloid beta Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci 2015; 35:12766–12778. doi:10.1523/JNEUROSCI.0006-15.2015. PubMed DOI PMC
Kant S, et al. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS 2018; 15:34. doi:10.1186/s12987-018-0120-7. PubMed DOI PMC
Tadayon E, Pascual-Leone A, Press D, Santarnecchi E & Alzheimer’s Disease Neuroimaging I. Choroid plexus volume is associated with levels of CSF proteins: relevance for Alzheimer’s and Parkinson’s disease. Neurobiol Aging 2020; 89:108–117. doi:10.1016/j.neurobiolaging.2020.01.005. PubMed DOI PMC
Choi JD, et al. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum. Radiology 2022; 304:635–645. doi:10.1148/radiol.212400. PubMed DOI
Sala-Llonch R, et al. Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition. J Alzheimers Dis 2017; 58:829–840. doi:10.3233/JAD-161146. PubMed DOI
Racine AM, et al. Association of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of neurodegeneration, inflammation and Alzheimer’s disease in late-middle-aged adults. Brain Imaging Behav 2019; 13:41–52. doi:10.1007/s11682-017-9732-9. PubMed DOI PMC
Hu WT, et al. CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Front Immunol 2019; 10:480. doi:10.3389/fimmu.2019.00480. PubMed DOI PMC
Brosseron F, et al. Multicenter Alzheimer’s and Parkinson’s disease immune biomarker verification study. Alzheimers Dement 2020; 16:292–304. doi:10.1016/j.jalz.2019.07.018. PubMed DOI
Craig-Schapiro R, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 2010; 68:903–912. doi:10.1016/j.biopsych.2010.08.025. PubMed DOI PMC
Taipa R, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol Aging 2019; 76: 125–132. doi:10.1016/j.neurobiolaging.2018.12.019. PubMed DOI
Rauchmann BS, Schneider-Axmann T, Alexopoulos P, Perneczky R & Alzheimer’s Disease Neuroimaging, I. CSF soluble TREM2 as a measure of immune response along the Alzheimer’s disease continuum. Neurobiol Aging 2019; 74:182–190. doi:10.1016/j.neurobiolaging.2018.10.022. PubMed DOI PMC
Rauchmann BS, Sadlon A, Perneczky R & Alzheimer’s Disease Neuroimaging, I. Soluble TREM2 and Inflammatory Proteins in Alzheimer’s Disease Cerebrospinal Fluid. J Alzheimers Dis 2020; 73:1615–1626. doi:10.3233/JAD-191120. PubMed DOI
Llorens F, et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. doi:10.1186/s13024-017-0226-4. PubMed DOI PMC
Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020; 577:399–404. doi:10.1038/s41586-019-1895-7. PubMed DOI PMC
Higginbotham L, et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv 2020; 6: eaaz9360. doi:10.1126/sciadv.aaz9360. PubMed DOI PMC
Johnson ECB, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26:769–780. doi:10.1038/s41591-020-0815-6. PubMed DOI PMC
Chen CP, Chen RL & Preston JE. The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol 2012; 47:323–328. doi:10.1016/j.exger.2012.01.008. PubMed DOI
Hampel H, et al. Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer’s disease. Brain Res 1999; 823:104–112. doi:10.1016/s0006-8993(99)01146-4. PubMed DOI
Angel TE, et al. Cerebrospinal fluid proteome of patients with acute Lyme disease. J Proteome Res 2012; 11:4814–4822. doi:10.1021/pr300577p. PubMed DOI PMC
Collins MA, et al. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis. J Proteome Res 2015; 14:4486–4501. doi:10.1021/acs.jproteome.5b00804. PubMed DOI PMC
Costa J, et al. Cerebrospinal Fluid Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis. Diagnostics (Basel) 2021; 11:1210. doi:10.3390/diagnostics11071210. PubMed DOI PMC
Jorm AF & Jolley D. The incidence of dementia: a meta-analysis. Neurology 1998; 51:728–733. doi:10.1212/wnl.51.3.728. PubMed DOI
Albrecht DS, et al. Early neuroinflammation is associated with lower amyloid and tau levels in cognitively normal older adults. Brain Behav Immun 2021; 94:299–307. doi:10.1016/j.bbi.2021.01.010. PubMed DOI PMC
Bettcher BM, et al. Cerebrospinal Fluid and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer’s Disease Pathology and Neuronal Damage. J Alzheimers Dis 2018; 62:385–397. doi:10.3233/JAD-170602. PubMed DOI PMC
Iram T, et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 2022; 605:509–515. doi:10.1038/s41586-022-04722-0. PubMed DOI PMC
Gorbunova V, Seluanov A & Kennedy BK. The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metab 2020; 32:31–43. doi:10.1016/j.cmet.2020.06.013. PubMed DOI PMC
Bergen AA, et al. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics 2015; 16:956. doi:10.1186/s12864-015-2159-z. PubMed DOI PMC
Fame RM & Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261–275. doi:10.1016/j.devcel.2020.01.027. PubMed DOI
May C, et al. Cerebrospinal fluid production is reduced in healthy aging. Neurology 1990; 40: 500–503. doi:10.1212/wnl.40.3_part_1.500. PubMed DOI
Silverberg GD, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 2001; 57:1763–1766. doi:10.1212/wnl.57.10.1763. PubMed DOI
Silverberg GD, et al. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2:506–511. doi:10.1016/s1474-4422(03)00487-3. PubMed DOI
Silverberg G, et al. Elevated cerebrospinal fluid pressure in patients with Alzheimer’s disease. Cerebrospinal Fluid Res 2006; 3:7. doi:10.1186/1743-8454-3-7. PubMed DOI PMC
Tarkowski E, et al. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74:1200–1205. doi:10.1136/jnnp.74.9.1200. PubMed DOI PMC
Nathan C & Ding A. Nonresolving inflammation. Cell 2010; 140:871–882. doi:10.1016/j.cell.2010.02.029. PubMed DOI
Marques F, et al. The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 2009; 10:135. doi:10.1186/1471-2202-10-135. PubMed DOI PMC
Carloni S, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 2021; 374:439–448. doi:10.1126/science.abc6108. PubMed DOI
Cui J, et al. Inflammation of the Embryonic Choroid Plexus Barrier following Maternal Immune Activation. Dev Cell 2020; 55:617–628. doi:10.1016/j.devcel.2020.09.020. PubMed DOI PMC
Hur JY. et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease. Nature 2020; 586:735–740. doi:10.1038/s41586-020-2681-2. PubMed DOI PMC
Heneka MT, McManus RM & Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 2018; 19:610–621. doi:10.1038/s41583-018-0055-7. PubMed DOI
Wightman DP, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet 2021; 53:1276–1282. doi:10.1038/s41588-021-00921-z. PubMed DOI PMC
Jack CR Jr, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14:535–562. doi:10.1016/j.jalz.2018.02.018. PubMed DOI PMC
Braak H & Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82:239–259. doi:10.1007/BF00308809. PubMed DOI
Benson MD, et al. Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid 2010; 17:43–49. doi:10.3109/13506129.2010.483121. PubMed DOI
Smith R, et al. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015; 85:576–583. doi:10.1016/j.mehy.2015.07.014. PubMed DOI
Dani N, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 2021; 184:3056–3074. doi:10.1016/j.cell.2021.04.003. PubMed DOI PMC
Szmydynger-Chodobska J, Chodobski A & Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 1994; 266:R1488–1492. doi:10.1152/ajpregu.1994.266.5.R1488. PubMed DOI
Stopa EG, et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS 2018; 15:18. doi:10.1186/s12987-018-0102-9. PubMed DOI PMC
Gonzalez-Marrero I, et al. High blood pressure effects on the blood to cerebrospinal fluid barrier and cerebrospinal fluid protein composition: a two-dimensional electrophoresis study in spontaneously hypertensive rats. Int J Hypertens 2013; 2013:164653. doi:10.1155/2013/164653. PubMed DOI PMC
Pellegrini L, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. doi:10.1126/science.aaz5626. PubMed DOI PMC
Sweeney MD, et al. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21:1318–1331. doi:10.1038/s41593-018-0234-x. PubMed DOI PMC
Montagne A, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85:296–302. doi:10.1016/j.neuron.2014.12.032. PubMed DOI PMC
Giao T, et al. Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties. Alzheimers Res Ther 2021; 13:143. doi:10.1186/s13195-021-00883-8. PubMed DOI PMC
Zhou S, et al. Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C. Am J Pathol 2011; 179:890–902. doi:10.1016/j.ajpath.2011.04.017. PubMed DOI PMC
Peake KB & Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett 2010; 584:2731–2739. doi:10.1016/j.febslet.2010.04.047. PubMed DOI
Sheardova K, et al. Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open 2019; 9:e030379. doi:10.1136/bmjopen-2019-030379. PubMed DOI PMC
Russo MJ, et al. Creation of the Argentina-Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 2014; 10:S84–87. doi:10.1016/j.jalz.2013.09.015. PubMed DOI
Saul J, et al. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2020; 8:92. doi:10.1186/s40478-020-00968-9. PubMed DOI PMC
Ruffmann C, et al. Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 2016; 42:436–45. doi:10.1111/nan.12294. PubMed DOI
Vanderstichele H, et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 2012; 8:65–73. doi:10.1016/j.jalz.2011.07.004. PubMed DOI
Prokopenko I, et al. Alzheimer’s disease pathology explains association between dementia with Lewy bodies and APOE-epsilon4/TOMM40 long poly-T repeat allele variants. Alzheimers Dement (N Y) 2019; 5:814–824. doi:10.1016/j.trci.2019.08.005. PubMed DOI PMC
Shinohara RT, et al. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014; 6:9–19. doi:10.1016/j.nicl.2014.08.008. PubMed DOI PMC
Desikan RS, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31:968–980. doi:10.1016/j.neuroimage.2006.01.021. PubMed DOI
Fischl B, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33:341–355. doi:10.1016/s0896-6273(02)00569-x. PubMed DOI
Reuter M,et al. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012; 61:1402–1418. doi:10.1016/j.neuroimage.2012.02.084. PubMed DOI PMC
Nikolaeva S, et al. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta 2015; 1851:239–247. doi:10.1016/j.bbalip.2014.12.004. PubMed DOI
Teipel SJ, et al. Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 2006; 253:794–800. doi:10.1007/s00415-006-0120-4. PubMed DOI
Seab JP, et al. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 1988; 8:200–208. doi:10.1002/mrm.1910080210. PubMed DOI
Zdanovskis N, et al. Cerebellar Cortex and Cerebellar White Matter Volume in Normal Cognition, Mild Cognitive Impairment, and Dementia. Brain Sci 2021; 11:1134. doi: 10.3390/brainsci11091134. PubMed DOI PMC
Monereo-Sanchez J, et al. Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study. Neuroimage 2021; 237:118174. doi:10.1016/j.neuroimage.2021.118174. PubMed DOI