Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus

. 2023 Aug ; 19 (8) : 3537-3554. [epub] 20230224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36825691

Grantová podpora
U01 U01AG061357 NIA NIH HHS - United States
P30 AG062429 NIA NIH HHS - United States
U01 AG061357 NIA NIH HHS - United States
P30 AGO62429 NIH HHS - United States
P30 CA033572 NCI NIH HHS - United States
6980382 NIA NIH HHS - United States
P30 AG066530 NIA NIH HHS - United States
LX22NPO5107 NIA NIH HHS - United States

The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.

1st Department of Neurology St Anne's University Hospital and Faculty of Medicine Masaryk University Brno Czech Republic

Center for Neurodegenerative Disease Emory University School of Medicine Atlanta Georgia USA

Center for Neurologic Study La Jolla California USA

Collaborative Center for Translational Mass Spectrometry Translational Genomics Research Institute Phoenix Arizona USA

Department of Cellular Pathology Imperial College Healthcare NHS Trust London UK

Department of Neurobiology Barrow Neurological Institute Phoenix Arizona USA

Department of Neurology Faculty of Medicine and Dentistry Palacky University Olomouc and Research and Science Department University Hospital Olomouc Olomouc Czech Republic

Department of Neurosciences University of California San Diego La Jolla California USA

Departments of Bioachemistry and Neurology Emory University School of Medicine Atlanta Georgia USA

Division of Neurology University Medical Centre Ljubljana Slovenia

FLENI Buenos Aires Argentina

Goizueta Alzheimer's Disease Research Center Emory University Atlanta Georgia USA

Icometrix Leuven Belgium

Imperial College London Faculty of Medicine London UK

Institute for Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University Olomouc Olomouc Czech Republic

Institute of Hematology and Blood Transfusion Prague Czech Republic

Institute of Mathematics and Statistics Masaryk University Brno Czech Republic

International Clinical Research Centre St Anne's University Hospital Brno Czech Republic

Mass Spectrometry and Proteomics Core Facility City of Hope Comprehensive Cancer Center Duarte California USA

Memory Clinic Department of Neurology 2nd Faculty of Medicine Charles University and Motol University Hospital Prague Czech Republic

RECETOX Centre Faculty of Sciences Masaryk University Brno Czech Republic

Translational Aging and Neuroscience Program Mayo Clinic Rochester Minnesota USA

Komentář v

PubMed

Zobrazit více v PubMed

Nathan C. Points of control in inflammation. Nature 2002; 420:846–852. doi:10.1038/nature01320. PubMed DOI

Cummings JL. Cognitive and behavioral heterogeneity in Alzheimer’s disease: seeking the neurobiological basis. Neurobiol Aging 2000; 21:845–861. doi:10.1016/s0197-4580(00)00183-4. PubMed DOI

Katzman R Editorial: The prevalence and malignancy of Alzheimer disease. A major killer. Arch Neurol 1976; 33:217–21. doi:10.1001/archneur.1976.00500040001001. PubMed DOI

Masliah E, Miller A & Terry RD. The synaptic organization of the neocortex in Alzheimer’s disease. Med Hypotheses 1993; 41:334–340. doi:10.1016/0306-9877(93)90078-5. PubMed DOI

Rodriguez-Arellano JJ, et al. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016; 323:170–182. doi:10.1016/j.neuroscience.2015.01.007. PubMed DOI

Escartin C, et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 2021; 24:312–325. doi:10.1038/s41593-020-00783-4. PubMed DOI PMC

Leng F & Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157–172. doi:10.1038/s41582-020-00435-y. PubMed DOI

Nieto-Sampedro M & Mora F. Active microglia, sick astroglia and Alzheimer type dementias. Neuroreport 1994; 5:375–380. doi:10.1097/00001756-199401120-00001. PubMed DOI

Terry RD, Gonatas NK & Weiss M. Ultrastructural Studies in Alzheimer’s Presenile Dementia. Am J Pathol 1964; 44:269–297. PubMed PMC

Braak H, et al. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960–969. doi:10.1097/NEN.0b013e318232a379. PubMed DOI

Katzman R, et al. Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 1988; 23:138–144. doi:10.1002/ana.410230206. PubMed DOI

Kovacs GG. Tauopathies. Handb Clin Neurol 2017; 145:355–368. doi:10.1016/B978-0-12-802395-2.00025-0. PubMed DOI

Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2022; 129:1–24. doi:10.1007/s00702-021-02449-2. PubMed DOI

Breitner JCS, et al. “Exceptions that prove the rule”-Why have clinical trials failed to show efficacy of risk factor interventions suggested by observational studies of the dementia-Alzheimer’s disease syndrome? Alzheimers Dement 2022; 18:389–392. doi:10.1002/alz.12633. PubMed DOI PMC

Grady CL, et al. Altered brain functional connectivity and impaired short-term memory in Alzheimer’s disease. Brain 2001; 124:739–75. doi:10.1093/brain/124.4.739. PubMed DOI

Sze CI, et al. Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 1997; 56:933–944. doi:10.1097/00005072-199708000-00011. PubMed DOI

Terry RD, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572–580. doi:10.1002/ana.410300410. PubMed DOI

Passamonti L, et al. Neuroinflammation and Functional Connectivity in Alzheimer’s Disease: Interactive Influences on Cognitive Performance. J Neurosci 2019; 39:7218–7226. doi:10.1523/JNEUROSCI.2574-18.2019. PubMed DOI PMC

Barthet G & Mulle C. Presynaptic failure in Alzheimer’s disease. Prog Neurobiol 2020; 194: 101801. doi:10.1016/j.pneurobio.2020.101801. PubMed DOI

Hong S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352:712–716. doi:10.1126/science.aad8373. PubMed DOI PMC

Schwartz M & Baruch K. The resolution of neuroinflammation in neurodegeneration: leukocyte recruitment via the choroid plexus. EMBO J 2014; 33:7–22. doi:10.1002/embj.201386609. PubMed DOI PMC

Ghersi-Egea JF, et al. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol 2018; 135:337–361. doi:10.1007/s00401-018-1807-1. PubMed DOI

Zhu L, et al. Klotho controls the brain-immune system interface in the choroid plexus. Proc Natl Acad Sci U S A 2018; 115:E11388–E11396. doi:10.1073/pnas.1808609115. PubMed DOI PMC

Bertram L & Tanzi RE. The genetics of Alzheimer’s disease. Prog Mol Biol Transl Sci 2012; 107: 79–100. doi:10.1016/B978-0-12-385883-2.00008-4. PubMed DOI

Masters CL & Selkoe DJ. Biochemistry of amyloid beta-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. doi:10.1101/cshperspect.a006262. PubMed DOI PMC

Selkoe DJ & Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8:595–608. doi:10.15252/emmm.201606210. PubMed DOI PMC

Kuller LH & Lopez OL. ENGAGE and EMERGE: Truth and consequences? Alzheimers Dement 2021; 17:692–695. doi:10.1002/alz.12286. PubMed DOI PMC

Lie PPY, et al. Axonal transport of late endosomes and amphisomes is selectively modulated by local Ca(2+) efflux and disrupted by PSEN1 loss of function. Sci Adv 2022; 8:eabj5716. doi:10.1126/sciadv.abj5716. PubMed DOI PMC

Stokin GB, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 2005; 307:1282–128. doi:10.1126/science.1105681. PubMed DOI

Brookmeyer R, et al. National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement 2011; 7:61–73. doi:10.1016/j.jalz.2010.11.007. PubMed DOI PMC

Gruver AL, Hudson LL & Sempowski GD. Immunosenescence of ageing. J Pathol 2007; 211:144–156. doi:10.1002/path.2104. PubMed DOI PMC

Lee CK, Weindruch R & Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25:294–297. doi:10.1038/77046. PubMed DOI

Lu T, et al. Gene regulation and DNA damage in the ageing human brain. Nature 2004; 429: 883–891. doi:10.1038/nature02661. PubMed DOI

Soscia SJ, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010; 5:e9505. doi:10.1371/journal.pone.0009505. PubMed DOI PMC

Jiang S, et al. Proteopathic tau primes and activates interleukin-1beta via myeloid-cell-specific MyD88- and NLRP3-ASC-inflammasome pathway. Cell Rep 2021; 36:109720. doi:10.1016/j.celrep.2021.109720. PubMed DOI PMC

Guo T, Noble W & Hanger DP. Roles of tau protein in health and disease. Acta Neuropathol 2017; 133:665–704. doi:10.1007/s00401-017-1707-9. PubMed DOI PMC

Terry RD. The Fine Structure of Neurofibrillary Tangles in Alzheimer’s Disease. J Neuropathol Exp Neurol 1963; 22:629–642. doi:10.1097/00005072-196310000-00005. PubMed DOI

Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 1963; 197:192–193. doi:10.1038/197192b0. PubMed DOI

Machlovi SI, et al. APOE4 confers transcriptomic and functional alterations to primary mouse microglia. Neurobiol Dis 2022; 164:105615. doi:10.1016/j.nbd.2022.105615. PubMed DOI PMC

Martens YA, et al. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron 2022; 110:1304–1317. doi:10.1016/j.neuron.2022.03.004. PubMed DOI PMC

Sayed FA, et al. AD-linked R47H-TREM2 mutation induces disease-enhancing microglial states via AKT hyperactivation. Sci Transl Med 2021; 13:eabe3947. doi:10.1126/scitranslmed.abe3947. PubMed DOI PMC

Zhou Y, et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat Med 2020; 26:131–142. doi:10.1038/s41591-019-0695-9. PubMed DOI PMC

Jonsson T & Stefansson K. TREM2 and neurodegenerative disease. N Engl J Med 2013; 369: 1568–1569. doi:10.1056/NEJMc1306509. PubMed DOI

Sweeney MD, Ayyadurai S & Zlokovic BV Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosc i 2016; 19:771–783. doi:10.1038/nn.4288. PubMed DOI PMC

Sweeney MD, et al. Vascular dysfunction-The disregarded partner of Alzheimer’s disease. Alzheimers Dement 2019; 15:158–167. doi:10.1016/j.jalz.2018.07.222. PubMed DOI PMC

Sekiya M, et al. Integrated biology approach reveals molecular and pathological interactions among Alzheimer’s Abeta42, Tau, TREM2, and TYROBP in Drosophila models. Genome Med 2018; 10:26. doi:10.1186/s13073-018-0530-9. PubMed DOI PMC

Sadick JS, et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron 2022; 11:1788–1805. doi: 10.1016/j.neuron.2022.03.008. PubMed DOI PMC

Darweesh SKL, et al. Inflammatory markers and the risk of dementia and Alzheimer’s disease: A meta-analysis. Alzheimers Dement 2018; 14:1450–1459. doi:10.1016/j.jalz.2018.02.014. PubMed DOI

Holmes C, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease. Neurology 2011; 77:212–218. doi:10.1212/WNL.0b013e318225ae07. PubMed DOI PMC

Wendeln AC, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature 2018; 556:332–338. doi:10.1038/s41586-018-0023-4. PubMed DOI PMC

Baruch K, et al. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science 2014; 346:89–93. doi:10.1126/science.1252945. PubMed DOI PMC

Baruch K, et al. CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 2013; 110:2264–2269. doi:10.1073/pnas.1211270110. PubMed DOI PMC

Baruc K, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun 2015; 6:7967. doi:10.1038/ncomms8967. PubMed DOI PMC

Salvesen O, et al. LPS-induced systemic inflammation reveals an immunomodulatory role for the prion protein at the blood-brain interface. J Neuroinflammation 2017; 14:106. doi:10.1186/s12974-017-0879-5. PubMed DOI PMC

Strominger I, et al. The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System. Front Immunol 2018; 9:1066. doi:10.3389/fimmu.2018.01066. PubMed DOI PMC

Yang AC, et al. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 595:565–571. doi: 10.1038/s41586-021-03710-0. PubMed DOI PMC

Balusu S, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 2016; 8:1162–1183. doi:10.15252/emmm.201606271. PubMed DOI PMC

Cushing H. Studies on the Cerebro-Spinal Fluid : I. Introduction. J Med Res 1914; 31:1–19. PubMed PMC

Damkier HH, Brown PD & Praetorius J. Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev 2013; 93:1847–1892. doi:10.1152/physrev.00004.2013. PubMed DOI

Silva-Vargas V, et al. Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell 2016; 19:643–652. doi:10.1016/j.stem.2016.06.013. PubMed DOI

Liu CB, et al. Lycopene mitigates beta-amyloid induced inflammatory response and inhibits NF-kappaB signaling at the choroid plexus in early stages of Alzheimer’s disease rats. J Nutr Biochem 2018; 53:66–71. doi:10.1016/j.jnutbio.2017.10.014. PubMed DOI

Xu Z, et al. A combination of lycopene and human amniotic epithelial cells can ameliorate cognitive deficits and suppress neuroinflammatory signaling by choroid plexus in Alzheimer’s disease rat. J Nutr Biochem 2020; 88:108558. doi:10.1016/j.jnutbio.2020.108558. PubMed DOI

Pearson A, et al. Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol 2020; 20: 317. doi:10.1186/s12883-020-01849-3. PubMed DOI PMC

Tahira A, et al. Are the 50’s, the transition decade, in choroid plexus aging? Geroscience 2021; 43:225–237. doi:10.1007/s11357-021-00329-x. PubMed DOI PMC

Serot JM, et al. Morphological alterations of the choroid plexus in late-onset Alzheimer’s disease. Acta Neuropathol 2000; 99:105–108. doi:10.1007/pl00007412. PubMed DOI

Alisch JSR, et al. Characterization of Age-Related Differences in the Human Choroid Plexus Volume, Microstructural Integrity, and Blood Perfusion Using Multiparameter Magnetic Resonance Imaging. Front Aging Neurosci 2021; 13:734992. doi:10.3389/fnagi.2021.734992. PubMed DOI PMC

Gonzalez-Marrero I, et al. Choroid plexus dysfunction impairs beta-amyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci 2015; 9:17. doi:10.3389/fncel.2015.00017. PubMed DOI PMC

Steeland S, et al. Counteracting the effects of TNF receptor-1 has therapeutic potential in Alzheimer’s disease. EMBO Mol Med 2018; 10:8300. doi: 10.15252/emmm.201708300. PubMed DOI PMC

Brkic M, et al. Amyloid beta Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci 2015; 35:12766–12778. doi:10.1523/JNEUROSCI.0006-15.2015. PubMed DOI PMC

Kant S, et al. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS 2018; 15:34. doi:10.1186/s12987-018-0120-7. PubMed DOI PMC

Tadayon E, Pascual-Leone A, Press D, Santarnecchi E & Alzheimer’s Disease Neuroimaging I. Choroid plexus volume is associated with levels of CSF proteins: relevance for Alzheimer’s and Parkinson’s disease. Neurobiol Aging 2020; 89:108–117. doi:10.1016/j.neurobiolaging.2020.01.005. PubMed DOI PMC

Choi JD, et al. Choroid Plexus Volume and Permeability at Brain MRI within the Alzheimer Disease Clinical Spectrum. Radiology 2022; 304:635–645. doi:10.1148/radiol.212400. PubMed DOI

Sala-Llonch R, et al. Inflammation, Amyloid, and Atrophy in The Aging Brain: Relationships with Longitudinal Changes in Cognition. J Alzheimers Dis 2017; 58:829–840. doi:10.3233/JAD-161146. PubMed DOI

Racine AM, et al. Association of longitudinal white matter degeneration and cerebrospinal fluid biomarkers of neurodegeneration, inflammation and Alzheimer’s disease in late-middle-aged adults. Brain Imaging Behav 2019; 13:41–52. doi:10.1007/s11682-017-9732-9. PubMed DOI PMC

Hu WT, et al. CSF Cytokines in Aging, Multiple Sclerosis, and Dementia. Front Immunol 2019; 10:480. doi:10.3389/fimmu.2019.00480. PubMed DOI PMC

Brosseron F, et al. Multicenter Alzheimer’s and Parkinson’s disease immune biomarker verification study. Alzheimers Dement 2020; 16:292–304. doi:10.1016/j.jalz.2019.07.018. PubMed DOI

Craig-Schapiro R, et al. YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 2010; 68:903–912. doi:10.1016/j.biopsych.2010.08.025. PubMed DOI PMC

Taipa R, et al. Proinflammatory and anti-inflammatory cytokines in the CSF of patients with Alzheimer’s disease and their correlation with cognitive decline. Neurobiol Aging 2019; 76: 125–132. doi:10.1016/j.neurobiolaging.2018.12.019. PubMed DOI

Rauchmann BS, Schneider-Axmann T, Alexopoulos P, Perneczky R & Alzheimer’s Disease Neuroimaging, I. CSF soluble TREM2 as a measure of immune response along the Alzheimer’s disease continuum. Neurobiol Aging 2019; 74:182–190. doi:10.1016/j.neurobiolaging.2018.10.022. PubMed DOI PMC

Rauchmann BS, Sadlon A, Perneczky R & Alzheimer’s Disease Neuroimaging, I. Soluble TREM2 and Inflammatory Proteins in Alzheimer’s Disease Cerebrospinal Fluid. J Alzheimers Dis 2020; 73:1615–1626. doi:10.3233/JAD-191120. PubMed DOI

Llorens F, et al. YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 2017; 12:83. doi:10.1186/s13024-017-0226-4. PubMed DOI PMC

Gate D, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020; 577:399–404. doi:10.1038/s41586-019-1895-7. PubMed DOI PMC

Higginbotham L, et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv 2020; 6: eaaz9360. doi:10.1126/sciadv.aaz9360. PubMed DOI PMC

Johnson ECB, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med 2020; 26:769–780. doi:10.1038/s41591-020-0815-6. PubMed DOI PMC

Chen CP, Chen RL & Preston JE. The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol 2012; 47:323–328. doi:10.1016/j.exger.2012.01.008. PubMed DOI

Hampel H, et al. Discriminant power of combined cerebrospinal fluid tau protein and of the soluble interleukin-6 receptor complex in the diagnosis of Alzheimer’s disease. Brain Res 1999; 823:104–112. doi:10.1016/s0006-8993(99)01146-4. PubMed DOI

Angel TE, et al. Cerebrospinal fluid proteome of patients with acute Lyme disease. J Proteome Res 2012; 11:4814–4822. doi:10.1021/pr300577p. PubMed DOI PMC

Collins MA, et al. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis. J Proteome Res 2015; 14:4486–4501. doi:10.1021/acs.jproteome.5b00804. PubMed DOI PMC

Costa J, et al. Cerebrospinal Fluid Chitinases as Biomarkers for Amyotrophic Lateral Sclerosis. Diagnostics (Basel) 2021; 11:1210. doi:10.3390/diagnostics11071210. PubMed DOI PMC

Jorm AF & Jolley D. The incidence of dementia: a meta-analysis. Neurology 1998; 51:728–733. doi:10.1212/wnl.51.3.728. PubMed DOI

Albrecht DS, et al. Early neuroinflammation is associated with lower amyloid and tau levels in cognitively normal older adults. Brain Behav Immun 2021; 94:299–307. doi:10.1016/j.bbi.2021.01.010. PubMed DOI PMC

Bettcher BM, et al. Cerebrospinal Fluid and Plasma Levels of Inflammation Differentially Relate to CNS Markers of Alzheimer’s Disease Pathology and Neuronal Damage. J Alzheimers Dis 2018; 62:385–397. doi:10.3233/JAD-170602. PubMed DOI PMC

Iram T, et al. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature 2022; 605:509–515. doi:10.1038/s41586-022-04722-0. PubMed DOI PMC

Gorbunova V, Seluanov A & Kennedy BK. The World Goes Bats: Living Longer and Tolerating Viruses. Cell Metab 2020; 32:31–43. doi:10.1016/j.cmet.2020.06.013. PubMed DOI PMC

Bergen AA, et al. Gene expression and functional annotation of human choroid plexus epithelium failure in Alzheimer’s disease. BMC Genomics 2015; 16:956. doi:10.1186/s12864-015-2159-z. PubMed DOI PMC

Fame RM & Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261–275. doi:10.1016/j.devcel.2020.01.027. PubMed DOI

May C, et al. Cerebrospinal fluid production is reduced in healthy aging. Neurology 1990; 40: 500–503. doi:10.1212/wnl.40.3_part_1.500. PubMed DOI

Silverberg GD, et al. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 2001; 57:1763–1766. doi:10.1212/wnl.57.10.1763. PubMed DOI

Silverberg GD, et al. Alzheimer’s disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2:506–511. doi:10.1016/s1474-4422(03)00487-3. PubMed DOI

Silverberg G, et al. Elevated cerebrospinal fluid pressure in patients with Alzheimer’s disease. Cerebrospinal Fluid Res 2006; 3:7. doi:10.1186/1743-8454-3-7. PubMed DOI PMC

Tarkowski E, et al. Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74:1200–1205. doi:10.1136/jnnp.74.9.1200. PubMed DOI PMC

Nathan C & Ding A. Nonresolving inflammation. Cell 2010; 140:871–882. doi:10.1016/j.cell.2010.02.029. PubMed DOI

Marques F, et al. The choroid plexus response to a repeated peripheral inflammatory stimulus. BMC Neurosci 2009; 10:135. doi:10.1186/1471-2202-10-135. PubMed DOI PMC

Carloni S, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 2021; 374:439–448. doi:10.1126/science.abc6108. PubMed DOI

Cui J, et al. Inflammation of the Embryonic Choroid Plexus Barrier following Maternal Immune Activation. Dev Cell 2020; 55:617–628. doi:10.1016/j.devcel.2020.09.020. PubMed DOI PMC

Hur JY. et al. The innate immunity protein IFITM3 modulates gamma-secretase in Alzheimer’s disease. Nature 2020; 586:735–740. doi:10.1038/s41586-020-2681-2. PubMed DOI PMC

Heneka MT, McManus RM & Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 2018; 19:610–621. doi:10.1038/s41583-018-0055-7. PubMed DOI

Wightman DP, et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet 2021; 53:1276–1282. doi:10.1038/s41588-021-00921-z. PubMed DOI PMC

Jack CR Jr, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018; 14:535–562. doi:10.1016/j.jalz.2018.02.018. PubMed DOI PMC

Braak H & Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82:239–259. doi:10.1007/BF00308809. PubMed DOI

Benson MD, et al. Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid 2010; 17:43–49. doi:10.3109/13506129.2010.483121. PubMed DOI

Smith R, et al. Amyotrophic lateral sclerosis: Is the spinal fluid pathway involved in seeding and spread? Med Hypotheses 2015; 85:576–583. doi:10.1016/j.mehy.2015.07.014. PubMed DOI

Dani N, et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 2021; 184:3056–3074. doi:10.1016/j.cell.2021.04.003. PubMed DOI PMC

Szmydynger-Chodobska J, Chodobski A & Johanson CE. Postnatal developmental changes in blood flow to choroid plexuses and cerebral cortex of the rat. Am J Physiol 1994; 266:R1488–1492. doi:10.1152/ajpregu.1994.266.5.R1488. PubMed DOI

Stopa EG, et al. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: implications for CSF homeostasis. Fluids Barriers CNS 2018; 15:18. doi:10.1186/s12987-018-0102-9. PubMed DOI PMC

Gonzalez-Marrero I, et al. High blood pressure effects on the blood to cerebrospinal fluid barrier and cerebrospinal fluid protein composition: a two-dimensional electrophoresis study in spontaneously hypertensive rats. Int J Hypertens 2013; 2013:164653. doi:10.1155/2013/164653. PubMed DOI PMC

Pellegrini L, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. doi:10.1126/science.aaz5626. PubMed DOI PMC

Sweeney MD, et al. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018; 21:1318–1331. doi:10.1038/s41593-018-0234-x. PubMed DOI PMC

Montagne A, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015; 85:296–302. doi:10.1016/j.neuron.2014.12.032. PubMed DOI PMC

Giao T, et al. Neuroprotection in early stages of Alzheimer’s disease is promoted by transthyretin angiogenic properties. Alzheimers Res Ther 2021; 13:143. doi:10.1186/s13195-021-00883-8. PubMed DOI PMC

Zhou S, et al. Endosomal/lysosomal processing of gangliosides affects neuronal cholesterol sequestration in Niemann-Pick disease type C. Am J Pathol 2011; 179:890–902. doi:10.1016/j.ajpath.2011.04.017. PubMed DOI PMC

Peake KB & Vance JE. Defective cholesterol trafficking in Niemann-Pick C-deficient cells. FEBS Lett 2010; 584:2731–2739. doi:10.1016/j.febslet.2010.04.047. PubMed DOI

Sheardova K, et al. Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open 2019; 9:e030379. doi:10.1136/bmjopen-2019-030379. PubMed DOI PMC

Russo MJ, et al. Creation of the Argentina-Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 2014; 10:S84–87. doi:10.1016/j.jalz.2013.09.015. PubMed DOI

Saul J, et al. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2020; 8:92. doi:10.1186/s40478-020-00968-9. PubMed DOI PMC

Ruffmann C, et al. Cortical Lewy bodies and Abeta burden are associated with prevalence and timing of dementia in Lewy body diseases. Neuropathol Appl Neurobiol 2016; 42:436–45. doi:10.1111/nan.12294. PubMed DOI

Vanderstichele H, et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 2012; 8:65–73. doi:10.1016/j.jalz.2011.07.004. PubMed DOI

Prokopenko I, et al. Alzheimer’s disease pathology explains association between dementia with Lewy bodies and APOE-epsilon4/TOMM40 long poly-T repeat allele variants. Alzheimers Dement (N Y) 2019; 5:814–824. doi:10.1016/j.trci.2019.08.005. PubMed DOI PMC

Shinohara RT, et al. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014; 6:9–19. doi:10.1016/j.nicl.2014.08.008. PubMed DOI PMC

Desikan RS, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31:968–980. doi:10.1016/j.neuroimage.2006.01.021. PubMed DOI

Fischl B, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33:341–355. doi:10.1016/s0896-6273(02)00569-x. PubMed DOI

Reuter M,et al. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 2012; 61:1402–1418. doi:10.1016/j.neuroimage.2012.02.084. PubMed DOI PMC

Nikolaeva S, et al. GM1 and GD1a gangliosides modulate toxic and inflammatory effects of E. coli lipopolysaccharide by preventing TLR4 translocation into lipid rafts. Biochim Biophys Acta 2015; 1851:239–247. doi:10.1016/j.bbalip.2014.12.004. PubMed DOI

Teipel SJ, et al. Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 2006; 253:794–800. doi:10.1007/s00415-006-0120-4. PubMed DOI

Seab JP, et al. Quantitative NMR measurements of hippocampal atrophy in Alzheimer’s disease. Magn Reson Med 1988; 8:200–208. doi:10.1002/mrm.1910080210. PubMed DOI

Zdanovskis N, et al. Cerebellar Cortex and Cerebellar White Matter Volume in Normal Cognition, Mild Cognitive Impairment, and Dementia. Brain Sci 2021; 11:1134. doi: 10.3390/brainsci11091134. PubMed DOI PMC

Monereo-Sanchez J, et al. Quality control strategies for brain MRI segmentation and parcellation: Practical approaches and recommendations - insights from the Maastricht study. Neuroimage 2021; 237:118174. doi:10.1016/j.neuroimage.2021.118174. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...