Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis

. 2020 ; 11 () : 87. [epub] 20200218

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32133021

In order to pinpoint phytohormone changes associated with enhanced heat stress tolerance, the complex phytohormone profiles [cytokinins, auxin, abscisic acid (ABA), jasmonic acid (JA), salicylic acid and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were compared in Arabidopsis thaliana after direct heat shock (45°C, 3 h) and in heat-stressed pre-acclimated plants (1 h at 37°C followed by 2 h at optimal temperature 20°C). Organ-specific responses were followed in shoot apices, leaves, and roots immediately after heat shock and after 24-h recovery at 20°C. The stress strength was evaluated via membrane ion leakage and the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and antioxidant enzymes [superoxide dismutases, guaiacol peroxidases (POD), catalases, ascorbate peroxidases (APX)]. Heat acclimation diminished negative effects of heat stress, especially in apices and roots, no significant differences being observed in leaves. Low NOX1-3 activities indicated diminished production of reactive oxygen species. Higher activity of APX, POD1, and the occurrence of POD3-4 reflected acclimation-stimulated readiness of the antioxidant system. Acclimation diminished heat shock-induced changes of ABA, JA, cytokinin, and auxin levels in apices. Excess of ABA catabolites suggested an early stress response. The strong up-regulation of ABA and ACC in roots indicated defense boost in roots of acclimated plants compared to the non-acclimated ones. To evaluate the possibility to enhance stress tolerance by cytokinin pool modulation, INCYDE-F, an inhibitor of cytokinin oxidase/dehydrogenase, was applied. As cytokinin effects on stress tolerance may depend on timing of their regulation, INCYDE was applied at several time-points. In combination with acclimation, INCYDE treatment had a slight positive effect on heat stress tolerance, mainly when applied after 2-h period of the optimal temperature. INCYDE increased contents of cytokinins trans-zeatin and cis-zeatin in roots and auxin in all tissues after heat shock. INCYDE also helped to suppress the content of ABA in leaves, and ethylene in apices and roots. INCYDE application to non-acclimated plants (applied before or after heat shock) strengthened negative stress effects, probably by delaying of the repair processes. In conclusion, pre-treatment with moderately elevated temperature enhanced heat stress tolerance and accelerated recovery after stress. Inhibition of cytokinin degradation by INCYDE slightly improved recovery of acclimated plants.

Zobrazit více v PubMed

Aremu A. O., Masondo N. A., Sunmonu T. O., Kulkarni M. G., Zatloukal M., Spichal L., et al. (2014). A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants. Planta 240, 877–889. 10.1007/s00425-014-2126-y PubMed DOI

Asensi-Fabado M. A., Olivan A., Munne-Bosch S. (2013). A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environ. Exp. Bot. 94, 57–65. 10.1016/j.envexpbot.2012.05.001 DOI

Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287. 10.1103/PhysRev.176.1709 PubMed DOI

Blum A., Ebercon A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Sci. 21, 43–47. 10.2135/cropsci1981.0011183X002100010013x DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI

Caverzan A., Passaia G., Barcellos Rosa S., Werner Ribeiro C., Lazzarotto F., Margis-Pinheiro M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011–1019. 10.1590/S1415-47572012000600016 PubMed DOI PMC

Cerny M., Jedelsky P. L., Novak J., Schlosser A., Brzobohaty B. (2014). Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ. 37, 1641–1655. 10.1111/pce.12270 PubMed DOI

Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867. 10.1111/tpj.13299 PubMed DOI

Clarke S. M., Cristescu S. M., Miersch O., Harren F. J., Wasternack C., Mur L. A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182, 175–187. 10.1111/j.1469-8137.2008.02735.x PubMed DOI

Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmulling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018. 10.1111/pce.13494 PubMed DOI

Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI

Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdosova S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32, 564–574. 10.1007/s00344-013-9323-y DOI

Dobra J., Cerny M., Storchova H., Dobrev P., Skalak J., Jedelsky P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 231, 52–61. 10.1016/j.plantsci.2014.11.005 PubMed DOI

Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI

Dobrev P. I., Vankova R. (2012). “Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues,” in Plant Salt Tolerance. Eds. Shabala S., Cuin. T. (Totowa, NJ: Humana Press; ), 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI

Dubois M., Van den Broeck L., Inze D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23, 311–323. 10.1016/j.tplants.2018.01.003 PubMed DOI PMC

Gajdosova S., Spichal L., Kaminek M., Hoyerova K., Novak O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62, 2827–2840. 10.1093/jxb/erq457 PubMed DOI

Gemrotova M., Kulkarni M. G., Stirk W. A., Strnad M., Van Staden J., Spichal L. (2013). Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul. 71, 137–145. 10.1007/s10725-013-9813-8 DOI

Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI

Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI

Havlova M., Dobrev P. I., Motyka V., Storchova H., Libus J., Dobra J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 31, 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI

Honig M., Plihalova L., Spichal L., Gruz J., Kadlecova A., Voller J., et al. (2018). New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 150, 946–957. 10.1016/j.ejmech.2018.03.043 PubMed DOI

Hossain M. A., Li Z. G., Hoque T. S., Burritt D. J., Fujita M., Munne-Bosch S. (2018). Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412. 10.1007/s00709-017-1150-8 PubMed DOI

Inupakutika M. A., Sengupta S., Devireddy A. R., Azad R. K., Mittler R. (2016). The evolution of reactive oxygen species metabolism. J. Exp. Bot. 67, 5933–5943. 10.1093/jxb/erw382 PubMed DOI

Kapoor M., Sreenivasan G. M., Goel N., Lewis J. (1990). Development of thermotolerance in Neurospora crassa by heat shock and other stresses eliciting peroxidase induction. J. Bacteriol. 172, 2798–2801. 10.1128/jb.172.5.2798-2801.1990 PubMed DOI PMC

Kazan K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229. 10.1016/j.tplants.2015.02.001 PubMed DOI

Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. 10.1038/227680a0 PubMed DOI

Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682–695. 10.1104/pp.010320 PubMed DOI PMC

Larkindale J., Hall J. D., Knight M. R., Vierling E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897. 10.1104/pp.105.062257 PubMed DOI PMC

Ling Y., Serrano N., Gao G., Atia M., Mokhtar M., Woo Y. H., et al. (2018). Thermopriming triggers splicing memory in Arabidopsis. J. Exp. Bot. 69, 2659–2675. 10.1093/jxb/ery062 PubMed DOI PMC

Ljung K. (2013). Auxin metabolism and homeostasis during plant development. Development 140, 943–950. 10.1242/dev.086363 PubMed DOI

Lopez-Huertas E., Corpas F. J., Sandalio L. M. (1999). Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337, 531–536. 10.1042/bj3370531 PubMed DOI PMC

Lubovska Z., Dobra J., Storchova H., Wilhelmova N., Vankova R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171, 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI

Mackova H., Hronkova M., Dobra J., Tureckova V., Novak O., Lubovska Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64, 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC

Menezes-Silva P. E., Loram-Lourenco L., Alves R. D. F. B., Sousa L. F., Almeida S. E. D., Farnese F. S. (2019). Different ways to die in a changing world: consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol. Evol. 9, 11979–11999. 10.1002/ece3.5663 PubMed DOI PMC

Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Van Breusegem F., Noctor G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197–4220. 10.1093/jxb/erq282 PubMed DOI

Mittler R., Zilinskas B. A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 212, 540–546. 10.1006/abio.1993.1366 PubMed DOI

Paces V., Werstiuk E., Hall R. H. (1971). Conversion of N6-(Δ2-isopentenyl) adenosine to adenosine by enzyme activity in tobacco tissue. Plant Physiol. 48, 775–778. 10.1104/pp.48.6.775 PubMed DOI PMC

Prerostova S., Dobrev P. I., Gaudinova A., Hosek P., Soudek P., Knirsch V., et al. (2017). Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci. 264, 188–198. 10.1016/j.plantsci.2017.07.020 PubMed DOI

Reusche M., Klaskova J., Thole K., Truskina J., Novak O., Janz D., et al. (2013). Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol. Plant-Microbe Interact. 26, 850–860. 10.1094/MPMI-12-12-0287-R PubMed DOI

Serrano N., Ling Y., Bahieldin A., Mahfouz M. M. (2019). Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Sci. Rep. 9, 181. 10.1038/s41598-018-36484-z PubMed DOI PMC

Sharma P., Jha A. B., Dubey R. S., Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 217037. 10.1155/2012/217037 DOI

Skalak J., Cerny M., Jedelsky P., Dobra J., Ge E., Novak J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67, 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC

Stegemann H., Afify A.E.-M.M.R., Hussein K. R. F. (1987). Identification of date (Phoenix dactylifera) by followed by column chromatography on DMEatUulose. Phytochemistry 26, 1–5. 10.1016/S0031-9422(00)81500-9 DOI

Sung D. Y., Kaplan F., Lee K. J., Guy C. L. (2003). Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179–187. 10.1016/S1360-1385(03)00047-5 PubMed DOI

Suzuki N., Bassil E., Hamilton J. S., Inupakutika M. A., Zandalinas S. I., Tripathy D., et al. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11, e0147625. 10.1371/journal.pone.0147625 PubMed DOI PMC

Veselov D. S., Kudoyarova G. R., Kudryakova N. V., Kusnetsov V. V. (2017). Role of cytokinins in stress resistance of plants. Russ. J. Plant Physiol. 64, 15–27. 10.1134/S1021443717010162 DOI

Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R. K., et al. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8, 161. 10.3389/fpls.2017.00161 PubMed DOI PMC

Wang K., Zhang X., Ervin E. (2012). Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J. Plant Physiol. 169, 492–500. 10.1016/j.jplph.2011.12.007 PubMed DOI

Xu Y., Huang B. R. (2009). Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 49, 1876–1884. 10.2135/cropsci2008.07.0441 DOI

Xu Y., Tian J., Gianfagna T., Huang B. (2009). Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul. 57, 281. 10.1371/journal.pone.0155437 DOI

Yang D. Q., Li Y., Shi Y. H., Cui Z. Y., Luo Y. L., Zheng M. J., et al. (2016). Exogenous cytokinins increase grain yield of winter wheat cultivars by improving Stay-Green characteristics under heat stress. PLoS One 11, e0155437. 10.1371/journal.pone.0155437 PubMed DOI PMC

Zatloukal M., Gemrotova M., Dolezal K., Havlicek L., Spichal L., Strnad M. (2008). Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 16, 9268–9275. 10.1016/j.bmc.2008.09.008 PubMed DOI

Zimmermann P., Heinlein C., Orendi G., Zentgraf U. (2006). Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 29, 1049–1060. 10.1111/j.1365-3040.2005.01459.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...