Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32133021
PubMed Central
PMC7040172
DOI
10.3389/fpls.2020.00087
Knihovny.cz E-zdroje
- Klíčová slova
- INCYDE, antioxidant enzymes, cytokinin, cytokinin oxidase/dehydrogenase, heat acclimation, heat stress, phytohormones, stress memory,
- Publikační typ
- časopisecké články MeSH
In order to pinpoint phytohormone changes associated with enhanced heat stress tolerance, the complex phytohormone profiles [cytokinins, auxin, abscisic acid (ABA), jasmonic acid (JA), salicylic acid and ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)] were compared in Arabidopsis thaliana after direct heat shock (45°C, 3 h) and in heat-stressed pre-acclimated plants (1 h at 37°C followed by 2 h at optimal temperature 20°C). Organ-specific responses were followed in shoot apices, leaves, and roots immediately after heat shock and after 24-h recovery at 20°C. The stress strength was evaluated via membrane ion leakage and the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and antioxidant enzymes [superoxide dismutases, guaiacol peroxidases (POD), catalases, ascorbate peroxidases (APX)]. Heat acclimation diminished negative effects of heat stress, especially in apices and roots, no significant differences being observed in leaves. Low NOX1-3 activities indicated diminished production of reactive oxygen species. Higher activity of APX, POD1, and the occurrence of POD3-4 reflected acclimation-stimulated readiness of the antioxidant system. Acclimation diminished heat shock-induced changes of ABA, JA, cytokinin, and auxin levels in apices. Excess of ABA catabolites suggested an early stress response. The strong up-regulation of ABA and ACC in roots indicated defense boost in roots of acclimated plants compared to the non-acclimated ones. To evaluate the possibility to enhance stress tolerance by cytokinin pool modulation, INCYDE-F, an inhibitor of cytokinin oxidase/dehydrogenase, was applied. As cytokinin effects on stress tolerance may depend on timing of their regulation, INCYDE was applied at several time-points. In combination with acclimation, INCYDE treatment had a slight positive effect on heat stress tolerance, mainly when applied after 2-h period of the optimal temperature. INCYDE increased contents of cytokinins trans-zeatin and cis-zeatin in roots and auxin in all tissues after heat shock. INCYDE also helped to suppress the content of ABA in leaves, and ethylene in apices and roots. INCYDE application to non-acclimated plants (applied before or after heat shock) strengthened negative stress effects, probably by delaying of the repair processes. In conclusion, pre-treatment with moderately elevated temperature enhanced heat stress tolerance and accelerated recovery after stress. Inhibition of cytokinin degradation by INCYDE slightly improved recovery of acclimated plants.
Zobrazit více v PubMed
Aremu A. O., Masondo N. A., Sunmonu T. O., Kulkarni M. G., Zatloukal M., Spichal L., et al. (2014). A novel inhibitor of cytokinin degradation (INCYDE) influences the biochemical parameters and photosynthetic apparatus in NaCl-stressed tomato plants. Planta 240, 877–889. 10.1007/s00425-014-2126-y PubMed DOI
Asensi-Fabado M. A., Olivan A., Munne-Bosch S. (2013). A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environ. Exp. Bot. 94, 57–65. 10.1016/j.envexpbot.2012.05.001 DOI
Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287. 10.1103/PhysRev.176.1709 PubMed DOI
Blum A., Ebercon A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat 1. Crop Sci. 21, 43–47. 10.2135/cropsci1981.0011183X002100010013x DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Caverzan A., Passaia G., Barcellos Rosa S., Werner Ribeiro C., Lazzarotto F., Margis-Pinheiro M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35, 1011–1019. 10.1590/S1415-47572012000600016 PubMed DOI PMC
Cerny M., Jedelsky P. L., Novak J., Schlosser A., Brzobohaty B. (2014). Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ. 37, 1641–1655. 10.1111/pce.12270 PubMed DOI
Choudhury F. K., Rivero R. M., Blumwald E., Mittler R. (2017). Reactive oxygen species, abiotic stress and stress combination. Plant J. 90, 856–867. 10.1111/tpj.13299 PubMed DOI
Clarke S. M., Cristescu S. M., Miersch O., Harren F. J., Wasternack C., Mur L. A. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182, 175–187. 10.1111/j.1469-8137.2008.02735.x PubMed DOI
Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmulling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42, 998–1018. 10.1111/pce.13494 PubMed DOI
Cutler S. R., Rodriguez P. L., Finkelstein R. R., Abrams S. R. (2010). Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679. 10.1146/annurev-arplant-042809-112122 PubMed DOI
Djilianov D. L., Dobrev P. I., Moyankova D. P., Vankova R., Georgieva D. T., Gajdosova S., et al. (2013). Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis. J. Plant Growth Regul. 32, 564–574. 10.1007/s00344-013-9323-y DOI
Dobra J., Cerny M., Storchova H., Dobrev P., Skalak J., Jedelsky P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 231, 52–61. 10.1016/j.plantsci.2014.11.005 PubMed DOI
Dobrev P. I., Kaminek M. (2002). Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 950, 21–29. 10.1016/S0021-9673(02)00024-9 PubMed DOI
Dobrev P. I., Vankova R. (2012). “Quantification of abscisic acid, cytokinin, and auxin content in salt-stressed plant tissues,” in Plant Salt Tolerance. Eds. Shabala S., Cuin. T. (Totowa, NJ: Humana Press; ), 251–261. 10.1007/978-1-61779-986-0_17 PubMed DOI
Dubois M., Van den Broeck L., Inze D. (2018). The pivotal role of ethylene in plant growth. Trends Plant Sci. 23, 311–323. 10.1016/j.tplants.2018.01.003 PubMed DOI PMC
Gajdosova S., Spichal L., Kaminek M., Hoyerova K., Novak O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62, 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Gemrotova M., Kulkarni M. G., Stirk W. A., Strnad M., Van Staden J., Spichal L. (2013). Seedlings of medicinal plants treated with either a cytokinin antagonist (PI-55) or an inhibitor of cytokinin degradation (INCYDE) are protected against the negative effects of cadmium. Plant Growth Regul. 71, 137–145. 10.1007/s10725-013-9813-8 DOI
Gill S. S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. 10.1016/j.plaphy.2010.08.016 PubMed DOI
Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172–179. 10.1016/j.tplants.2011.12.005 PubMed DOI
Havlova M., Dobrev P. I., Motyka V., Storchova H., Libus J., Dobra J., et al. (2008). The role of cytokinins in responses to water deficit in tobacco plants over-expressing trans-zeatin O-glucosyltransferase gene under 35S or SAG12 promoters. Plant Cell Environ. 31, 341–353. 10.1111/j.1365-3040.2007.01766.x PubMed DOI
Honig M., Plihalova L., Spichal L., Gruz J., Kadlecova A., Voller J., et al. (2018). New cytokinin derivatives possess UVA and UVB photoprotective effect on human skin cells and prevent oxidative stress. Eur. J. Med. Chem. 150, 946–957. 10.1016/j.ejmech.2018.03.043 PubMed DOI
Hossain M. A., Li Z. G., Hoque T. S., Burritt D. J., Fujita M., Munne-Bosch S. (2018). Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. Protoplasma 255, 399–412. 10.1007/s00709-017-1150-8 PubMed DOI
Inupakutika M. A., Sengupta S., Devireddy A. R., Azad R. K., Mittler R. (2016). The evolution of reactive oxygen species metabolism. J. Exp. Bot. 67, 5933–5943. 10.1093/jxb/erw382 PubMed DOI
Kapoor M., Sreenivasan G. M., Goel N., Lewis J. (1990). Development of thermotolerance in Neurospora crassa by heat shock and other stresses eliciting peroxidase induction. J. Bacteriol. 172, 2798–2801. 10.1128/jb.172.5.2798-2801.1990 PubMed DOI PMC
Kazan K. (2015). Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229. 10.1016/j.tplants.2015.02.001 PubMed DOI
Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685. 10.1038/227680a0 PubMed DOI
Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682–695. 10.1104/pp.010320 PubMed DOI PMC
Larkindale J., Hall J. D., Knight M. R., Vierling E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiol. 138, 882–897. 10.1104/pp.105.062257 PubMed DOI PMC
Ling Y., Serrano N., Gao G., Atia M., Mokhtar M., Woo Y. H., et al. (2018). Thermopriming triggers splicing memory in Arabidopsis. J. Exp. Bot. 69, 2659–2675. 10.1093/jxb/ery062 PubMed DOI PMC
Ljung K. (2013). Auxin metabolism and homeostasis during plant development. Development 140, 943–950. 10.1242/dev.086363 PubMed DOI
Lopez-Huertas E., Corpas F. J., Sandalio L. M. (1999). Characterization of membrane polypeptides from pea leaf peroxisomes involved in superoxide radical generation. Biochem. J. 337, 531–536. 10.1042/bj3370531 PubMed DOI PMC
Lubovska Z., Dobra J., Storchova H., Wilhelmova N., Vankova R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171, 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI
Mackova H., Hronkova M., Dobra J., Tureckova V., Novak O., Lubovska Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64, 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Menezes-Silva P. E., Loram-Lourenco L., Alves R. D. F. B., Sousa L. F., Almeida S. E. D., Farnese F. S. (2019). Different ways to die in a changing world: consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecol. Evol. 9, 11979–11999. 10.1002/ece3.5663 PubMed DOI PMC
Mhamdi A., Queval G., Chaouch S., Vanderauwera S., Van Breusegem F., Noctor G. (2010). Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J. Exp. Bot. 61, 4197–4220. 10.1093/jxb/erq282 PubMed DOI
Mittler R., Zilinskas B. A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 212, 540–546. 10.1006/abio.1993.1366 PubMed DOI
Paces V., Werstiuk E., Hall R. H. (1971). Conversion of N6-(Δ2-isopentenyl) adenosine to adenosine by enzyme activity in tobacco tissue. Plant Physiol. 48, 775–778. 10.1104/pp.48.6.775 PubMed DOI PMC
Prerostova S., Dobrev P. I., Gaudinova A., Hosek P., Soudek P., Knirsch V., et al. (2017). Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci. 264, 188–198. 10.1016/j.plantsci.2017.07.020 PubMed DOI
Reusche M., Klaskova J., Thole K., Truskina J., Novak O., Janz D., et al. (2013). Stabilization of cytokinin levels enhances Arabidopsis resistance against Verticillium longisporum. Mol. Plant-Microbe Interact. 26, 850–860. 10.1094/MPMI-12-12-0287-R PubMed DOI
Serrano N., Ling Y., Bahieldin A., Mahfouz M. M. (2019). Thermopriming reprograms metabolic homeostasis to confer heat tolerance. Sci. Rep. 9, 181. 10.1038/s41598-018-36484-z PubMed DOI PMC
Sharma P., Jha A. B., Dubey R. S., Pessarakli M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 217037. 10.1155/2012/217037 DOI
Skalak J., Cerny M., Jedelsky P., Dobra J., Ge E., Novak J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67, 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC
Stegemann H., Afify A.E.-M.M.R., Hussein K. R. F. (1987). Identification of date (Phoenix dactylifera) by followed by column chromatography on DMEatUulose. Phytochemistry 26, 1–5. 10.1016/S0031-9422(00)81500-9 DOI
Sung D. Y., Kaplan F., Lee K. J., Guy C. L. (2003). Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179–187. 10.1016/S1360-1385(03)00047-5 PubMed DOI
Suzuki N., Bassil E., Hamilton J. S., Inupakutika M. A., Zandalinas S. I., Tripathy D., et al. (2016). ABA is required for plant acclimation to a combination of salt and heat stress. PLoS One 11, e0147625. 10.1371/journal.pone.0147625 PubMed DOI PMC
Veselov D. S., Kudoyarova G. R., Kudryakova N. V., Kusnetsov V. V. (2017). Role of cytokinins in stress resistance of plants. Russ. J. Plant Physiol. 64, 15–27. 10.1134/S1021443717010162 DOI
Vishwakarma K., Upadhyay N., Kumar N., Yadav G., Singh J., Mishra R. K., et al. (2017). Abscisic acid signaling and abiotic stress tolerance in plants: a review on current knowledge and future prospects. Front. Plant Sci. 8, 161. 10.3389/fpls.2017.00161 PubMed DOI PMC
Wang K., Zhang X., Ervin E. (2012). Antioxidative responses in roots and shoots of creeping bentgrass under high temperature: Effects of nitrogen and cytokinin. J. Plant Physiol. 169, 492–500. 10.1016/j.jplph.2011.12.007 PubMed DOI
Xu Y., Huang B. R. (2009). Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Sci. 49, 1876–1884. 10.2135/cropsci2008.07.0441 DOI
Xu Y., Tian J., Gianfagna T., Huang B. (2009). Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul. 57, 281. 10.1371/journal.pone.0155437 DOI
Yang D. Q., Li Y., Shi Y. H., Cui Z. Y., Luo Y. L., Zheng M. J., et al. (2016). Exogenous cytokinins increase grain yield of winter wheat cultivars by improving Stay-Green characteristics under heat stress. PLoS One 11, e0155437. 10.1371/journal.pone.0155437 PubMed DOI PMC
Zatloukal M., Gemrotova M., Dolezal K., Havlicek L., Spichal L., Strnad M. (2008). Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 16, 9268–9275. 10.1016/j.bmc.2008.09.008 PubMed DOI
Zimmermann P., Heinlein C., Orendi G., Zentgraf U. (2006). Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh. Plant Cell Environ. 29, 1049–1060. 10.1111/j.1365-3040.2005.01459.x PubMed DOI