Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses

. 2021 ; 12 () : 799249. [epub] 20220117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35111178

Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (F v /F m and QY_Lss ), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance.

Zobrazit více v PubMed

Adam A. L., Bestwick C. S., Barna B., Mansfield J. W. (1995). Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to

Bajguz A., Hayat S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. PubMed DOI

Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. PubMed DOI

Bellstaedt J., Trenner J., Lippmann R., Poeschl Y., Zhang X., Friml J., et al. (2019). A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. PubMed DOI PMC

Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. PubMed DOI PMC

Blakeslee J. J., Rossi T. S., Kriechbaumer V. (2019). Auxin biosynthesis: spatial regulation and adaptation to stress. PubMed DOI

Bradford M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. PubMed

Bumgarner N. R., Bennett M. A., Ling P. P., Mullen R. W., Kleinhenz M. D. (2011). Canopy cover and root-zone heating effects on fall-and spring-grown leaf lettuce yield in Ohio.

Chauhan H., Khurana N., Agarwal P., Khurana P. (2011). Heat shock factors in rice ( PubMed DOI

Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Guo Z., et al. (2015). An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. PubMed DOI

Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in PubMed DOI

Clarke S. M., Mur L. A., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in PubMed DOI

Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. PubMed DOI

di Donato M., Geisler M. (2019). HSP 90 and co-chaperones: a multitaskers’ view on plant hormone biology. PubMed DOI

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. PubMed DOI

Feraru E., Feraru M. I., Barbez E., Waidmann S., Sun L., Gaidora A., et al. (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in PubMed DOI PMC

Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of PubMed DOI

Gaudinova A., Dobrev P. I., Solcova B., Novak O., Strnad M., Friedecky D., et al. (2005). The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea ( DOI

Genty B., Briantais J. M., Baker N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.

Ghosh A., Shah M. N. A., Jui Z. S., Saha S., Fariha K. A., Islam T. (2018). Evolutionary variation and expression profiling of Isopentenyl transferase gene family in

Hare P. D., Cress W. A., Van Staden J. (1997). The involvement of cytokinins in plant responses to environmental stress.

Horton P., Ruban A. V. (1992). Regulation of photosystem II. PubMed DOI

Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. PubMed DOI PMC

Jain M., Tyagi A. K., Khurana J. P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice ( PubMed DOI PMC

Kanamaru K., Tanaka K. (2004). Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants. PubMed DOI

Kieber J. J., Schaller G. E. (2014). Cytokinins. PubMed PMC

Kumar D., Das P. K., Sarmah B. K. (2018). Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. PubMed DOI

Küpers J. J., Oskam L., Pierik R. (2020). Photoreceptors regulate plant developmental plasticity through auxin. PubMed DOI PMC

Larkindale J., Huang B. (2004). Thermotolerance and antioxidant systems in PubMed DOI

Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. PubMed DOI PMC

Li C. R., Liang D. D., Li J., Duan Y. B., Li H., Yang Y. C., et al. (2013). Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice PubMed DOI

Li H., Liu S. S., Yi C. Y., Wang F., Zhou J., Xia X. J., et al. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. PubMed DOI

Li N., Euring D., Cha J. Y., Lin Z., Lu M., Huang L. J., et al. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. PubMed DOI PMC

Li S., Fu Q., Chen L., Huang W., Yu D. (2011). PubMed DOI

Li S., Zhou X., Chen L., Huang W., Yu D. (2010). Functional characterization of PubMed DOI

Lubovská Z., Dobrá J., Štorchová H., Wilhelmová N., Vanková R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defence against heat, drought and their combination in PubMed DOI

Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. PubMed DOI PMC

Maxwell D. P., Wang Y., McIntosh L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. PubMed DOI PMC

McKey D. (1974). Adaptive patterns in alkaloid physiology. DOI

Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. PubMed DOI

Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. PubMed DOI PMC

Motyka V., Kaminek M. (1992). “Characterization of cytokinin oxidase from tobacco and poplar callus cultures,” in

Motyka V., Kaminek M. (1994). Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (

Motyka V., Vankova R., Capkova V., Petrasek J., Kaminek M., Schmulling T. (2003). Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. DOI

Muench M., Hsin C. H., Ferber E., Berger S., Mueller M. J. (2016). Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. PubMed DOI PMC

Nagashima A., Hanaoka M., Shikanai T., Fujiwara M., Kanamaru K., Takahashi H., et al. (2004). The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in PubMed DOI

Nakano Y., Asada K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical.

Pandey P., Srivastava R. K., Dubey R. S. (2014). Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. PubMed DOI

Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. PubMed DOI PMC

Poór P., Nawaz K., Gupta R., Ashfaque F., Khan M. I. R. (2021). Ethylene involvement in the regulation of heat stress tolerance in plants. PubMed DOI

Prerostova S., Dobrev P. I., Gaudinova A., Hosek P., Soudek P., Knirsch V., et al. (2017). Hormonal dynamics during salt stress responses of salt-sensitive PubMed DOI

Prerostova S., Dobrev P. I., Kramna B., Gaudinova A., Knirsch V., Spichal L., et al. (2020). Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. PubMed DOI PMC

Rachmilevitch S., Lambers H., Huang B. (2006). Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type PubMed DOI

Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., et al. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PubMed DOI PMC

Sachs M. M., Ho T. H. D. (1986). Alteration of gene expression during environmental stress in plants.

Sharma L., Dalal M., Verma R. K., Kumar S. V., Yadav S. K., Pushkar S., et al. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice.

Sharma P., Dubey R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings.

Sheldrake A. R. (2021). The production of auxin by dying cells. PubMed DOI

Shibasaki K., Uemura M., Tsurumi S., Rahman A. (2009). Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. PubMed DOI PMC

Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., et al. (2002). Regulation and function of ascorbate peroxidase isoenzymes. PubMed DOI

Shigeta T., Zaizen Y., Sugimoto Y., Nakamura Y., Matsuo T., Okamoto S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. PubMed DOI

Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., et al. (2016). Stimulation of PubMed DOI PMC

Sun A. Z., Guo F. Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. PubMed DOI PMC

Sun J., Qi L., Li Y., Chu J., Li C. (2012). PIF4–mediated activation of PubMed DOI PMC

Sun W., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. PubMed DOI

Sun Y., Liu X., Zhai H., Gao G., Yao Y., Du Acta Y. (2016). Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves.

Tsai Y. C., Hong C. Y., Liu L. F., Kao C. H. (2004). Relative importance of Na

Vanlerberghe G. C., McIntosh L. (1997). Alternative oxidase: from gene to function. PubMed DOI

Vives-Peris V., López-Climent M. F., Pérez-Clemente R. M., Gómez-Cadenas A. (2020). Root involvement in plant responses to adverse environmental conditions. DOI

Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. DOI

Wang L. J., Li S. H. (2006). Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (

Wang L. J., Fan L., Loescher W., Duan W., Liu G. J., Cheng J. S., et al. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. PubMed DOI PMC

Wang J., Yuan B., Huang B. (2019). Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. DOI

Wassie M., Zhang W. H., Zhang Q., Ji K., Cao L. W., Chen L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa ( PubMed

Wasternack C., Song S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. PubMed DOI

Widhalm J. R., Dudareva N. (2015). A familiar ring to it: biosynthesis of plant benzoic acids. PubMed DOI

Xie F., Xiao P., Chen D., Xu L., Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. PubMed DOI

Xu H., Bao J. D., Dai J. S., Li Y., Zhu Y. (2015). Genome-wide identification of new reference genes for qRT-PCR normalization under high temperature stress in rice endosperm. PubMed DOI PMC

Xu P., Zhao P. X., Cai X. T., Mao J. L., Miao Z. Q., Xiang C. B. (2020). Integration of jasmonic acid and ethylene into auxin signaling in root development. PubMed DOI PMC

Xu Y., Tian J., Gianfagna T., Huang B. (2009). Effects of

Yin Y., Qin K., Song X., Zhang Q., Zhou Y., Xia X., et al. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. PubMed DOI

Yoshida K., Terashima I., Noguchi K. (2007). Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. PubMed DOI

Zhang C., Bruins M. E., Yang Z. Q., Liu S. T., Rao P. F. (2016). A new formula to calculate activity of superoxide dismutase in indirect assays. PubMed DOI

Zhang H., Li L., Ye T., Chen R., Gao X., Xu Z. (2016). Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice.

Zhang L. T., Zhang Z. S., Gao H. Y., Meng X. L., Yang C., Liu J. G., et al. (2012). The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. PubMed DOI PMC

Zhou J., Wang J., Li X., Xia X. J., Zhou Y. H., Shi K., et al. (2014). H PubMed DOI PMC

Zwiewka M., Nodzyñski T., Robert S., Vanneste S., Friml J. (2015). Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...