Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35111178
PubMed Central
PMC8801461
DOI
10.3389/fpls.2021.799249
Knihovny.cz E-zdroje
- Klíčová slova
- Oryza sativa (L.), acclimation, antioxidant enzymes, cytokinin oxidase/dehydrogenase (CKX), gene expression, heat shock, jasmonoyl-isoleucine, phytohormones,
- Publikační typ
- časopisecké články MeSH
Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (F v /F m and QY_Lss ), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance.
Zobrazit více v PubMed
Adam A. L., Bestwick C. S., Barna B., Mansfield J. W. (1995). Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to Pseudomonas syringae pv. phaseolicola. Planta 197 240–249.
Bajguz A., Hayat S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47 1–8. 10.1016/j.plaphy.2008.10.002 PubMed DOI
Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 276–287. 10.1016/0003-2697(71)90370-8 PubMed DOI
Bellstaedt J., Trenner J., Lippmann R., Poeschl Y., Zhang X., Friml J., et al. (2019). A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. Plant Physiol. 180 757–766. 10.1104/pp.18.01377 PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. Int. J. Mol. Sci. 18:1427. 10.3390/ijms18071427 PubMed DOI PMC
Blakeslee J. J., Rossi T. S., Kriechbaumer V. (2019). Auxin biosynthesis: spatial regulation and adaptation to stress. J. Exp. Bot. 70 5041–5049. 10.1093/jxb/erz283 PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–254. PubMed
Bumgarner N. R., Bennett M. A., Ling P. P., Mullen R. W., Kleinhenz M. D. (2011). Canopy cover and root-zone heating effects on fall-and spring-grown leaf lettuce yield in Ohio. Horttechnology 21 737–744.
Chauhan H., Khurana N., Agarwal P., Khurana P. (2011). Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress. Mol. Genet. Genom. 286 171–187. 10.1007/s00438-011-0638-8 PubMed DOI
Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Guo Z., et al. (2015). An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol. 17 419–429. 10.1111/plb.12267 PubMed DOI
Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana. New Phytol. 182 175–187. 10.1111/j.1469-8137.2008.02735.x PubMed DOI
Clarke S. M., Mur L. A., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J. 38 432–447. 10.1111/j.1365-313X.2004.02054.x PubMed DOI
Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 42 998–1018. 10.1111/pce.13494 PubMed DOI
di Donato M., Geisler M. (2019). HSP 90 and co-chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett. 593 1415–1430. 10.1002/1873-3468.13499 PubMed DOI
Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 231 52–61. 10.1016/j.plantsci.2014.11.005 PubMed DOI
Feraru E., Feraru M. I., Barbez E., Waidmann S., Sun L., Gaidora A., et al. (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 116 3893–3898. 10.1073/pnas.1814015116 PubMed DOI PMC
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI
Gaudinova A., Dobrev P. I., Solcova B., Novak O., Strnad M., Friedecky D., et al. (2005). The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J. Plant Growth Regul. 24 188–200. 10.1007/s00344-005-0043-9 DOI
Genty B., Briantais J. M., Baker N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990 87–92.
Ghosh A., Shah M. N. A., Jui Z. S., Saha S., Fariha K. A., Islam T. (2018). Evolutionary variation and expression profiling of Isopentenyl transferase gene family in Arabidopsis thaliana L. and Oryza sativa L. Plant Gene 15 15–27.
Hare P. D., Cress W. A., Van Staden J. (1997). The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23 79–103.
Horton P., Ruban A. V. (1992). Regulation of photosystem II. Photosynth. Res. 34 375–385. 10.1007/978-1-4615-3366-5_53 PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinform. 2008:420747. 10.1155/2008/420747 PubMed DOI PMC
Jain M., Tyagi A. K., Khurana J. P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice (Oryza sativa). BMC Plant Biol. 6:1. 10.1186/1471-2229-6-1 PubMed DOI PMC
Kanamaru K., Tanaka K. (2004). Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants. Biosci. Biotechnol. Biochem. 68 2215–2223. 10.1271/bbb.68.2215 PubMed DOI
Kieber J. J., Schaller G. E. (2014). Cytokinins. Arabidopsis Book? 12:e0168. PubMed PMC
Kumar D., Das P. K., Sarmah B. K. (2018). Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. J. Appl. Genet. 59 419–430. 10.1007/s13353-018-0466-1 PubMed DOI
Küpers J. J., Oskam L., Pierik R. (2020). Photoreceptors regulate plant developmental plasticity through auxin. Plants 9 940. 10.3390/plants9080940 PubMed DOI PMC
Larkindale J., Huang B. (2004). Thermotolerance and antioxidant systems in Agrostis stolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene. J. Plant Physiol. 161 405–413. 10.1078/0176-1617-01239 PubMed DOI
Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128 682–695. 10.1104/pp.010320 PubMed DOI PMC
Li C. R., Liang D. D., Li J., Duan Y. B., Li H., Yang Y. C., et al. (2013). Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice ALTERNATIVE OXIDASE 1 genes. Plant Cell Environ. 36 775–788. 10.1111/pce.12013 PubMed DOI
Li H., Liu S. S., Yi C. Y., Wang F., Zhou J., Xia X. J., et al. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. Plant Cell Environ. 37 2768–2780. 10.1111/pce.12360 PubMed DOI
Li N., Euring D., Cha J. Y., Lin Z., Lu M., Huang L. J., et al. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. Front. Plant Sci. 11:627969. 10.3389/fpls.2020.627969 PubMed DOI PMC
Li S., Fu Q., Chen L., Huang W., Yu D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233 1237–1252. 10.1007/s00425-011-1375-2 PubMed DOI
Li S., Zhou X., Chen L., Huang W., Yu D. (2010). Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29 475–483. 10.1007/s10059-010-0059-2 PubMed DOI
Lubovská Z., Dobrá J., Štorchová H., Wilhelmová N., Vanková R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defence against heat, drought and their combination in Nicotiana tabacum plants. J. Plant Physiol. 171 1625–1633. 10.1016/j.jplph.2014.06.021 PubMed DOI
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Maxwell D. P., Wang Y., McIntosh L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. U.S.A. 96 8271–8276. 10.1073/pnas.96.14.8271 PubMed DOI PMC
McKey D. (1974). Adaptive patterns in alkaloid physiology. Am. Nat. 108 305–320. 10.1086/282909 DOI
Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 405–410. 10.1016/s1360-1385(02)02312-9 PubMed DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 103 16598–16603. 10.1073/pnas.0603522103 PubMed DOI PMC
Motyka V., Kaminek M. (1992). “Characterization of cytokinin oxidase from tobacco and poplar callus cultures,” in Physiology and Biochemistry of Cytokinins in Plants, eds Kaminek M., Mok D. W. S., Zazimalova E. (The Hague: SPB Academic Publishing; ), 33–39.
Motyka V., Kaminek M. (1994). Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (Nicotiana tabacum L.). J. Plant Growth Regul. 13 1–9.
Motyka V., Vankova R., Capkova V., Petrasek J., Kaminek M., Schmulling T. (2003). Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. Physiol. Plant. 117 11–21. 10.1034/j.1399-3054.2003.1170102.x PubMed DOI
Muench M., Hsin C. H., Ferber E., Berger S., Mueller M. J. (2016). Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. J. Exp. Bot. 67 6139–6148. 10.1093/jxb/erw376 PubMed DOI PMC
Nagashima A., Hanaoka M., Shikanai T., Fujiwara M., Kanamaru K., Takahashi H., et al. (2004). The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in Arabidopsis thaliana. Plant Cell Physiol. 45 357–368. 10.1093/pcp/pch050 PubMed DOI
Nakano Y., Asada K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28 131–140.
Pandey P., Srivastava R. K., Dubey R. S. (2014). Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. Protoplasma 251 147–160. 10.1007/s00709-013-0533-8 PubMed DOI
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acid Res. 29:e45. 10.1093/nar/29.9.e45 PubMed DOI PMC
Poór P., Nawaz K., Gupta R., Ashfaque F., Khan M. I. R. (2021). Ethylene involvement in the regulation of heat stress tolerance in plants. Plant Cell Rep. 10.1007/s00299-021-02675-8 [Epub ahead of print]. PubMed DOI
Prerostova S., Dobrev P. I., Gaudinova A., Hosek P., Soudek P., Knirsch V., et al. (2017). Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Plant Sci. 264 188–198. 10.1016/j.plantsci.2017.07.020 PubMed DOI
Prerostova S., Dobrev P. I., Kramna B., Gaudinova A., Knirsch V., Spichal L., et al. (2020). Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. Front. Plant Sci. 11:87. 10.3389/fpls.2020.00087 PubMed DOI PMC
Rachmilevitch S., Lambers H., Huang B. (2006). Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type Agrostis species. J. Exp. Bot. 57 623–631. 10.1093/jxb/erj047 PubMed DOI
Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., et al. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc. Natl. Acad. Sci. U.S.A. 104 19631–19636. 10.1073/pnas.0709453104 PubMed DOI PMC
Sachs M. M., Ho T. H. D. (1986). Alteration of gene expression during environmental stress in plants. Annu. Rev. Plant Physiol. 37 363–376.
Sharma L., Dalal M., Verma R. K., Kumar S. V., Yadav S. K., Pushkar S., et al. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice. Environ. Exp. Bot. 150 9–24.
Sharma P., Dubey R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 46 209–221.
Sheldrake A. R. (2021). The production of auxin by dying cells. J. Exp. Bot. 72 2288–2300. 10.1093/jxb/erab009 PubMed DOI
Shibasaki K., Uemura M., Tsurumi S., Rahman A. (2009). Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. Plant Cell 21 3823–3838. 10.1105/tpc.109.069906 PubMed DOI PMC
Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., et al. (2002). Regulation and function of ascorbate peroxidase isoenzymes. J. Exp. Bot. 53 1305–1319. 10.1093/jexbot/53.372.1305 PubMed DOI
Shigeta T., Zaizen Y., Sugimoto Y., Nakamura Y., Matsuo T., Okamoto S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. J. Plant Physiol. 178 69–73. 10.1016/j.jplph.2015.02.003 PubMed DOI
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC
Sun A. Z., Guo F. Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. Front. Plant Sci. 7:398. 10.3389/fpls.2016.00398 PubMed DOI PMC
Sun J., Qi L., Li Y., Chu J., Li C. (2012). PIF4–mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet. 8:e1002594. 10.1371/journal.pgen.1002594 PubMed DOI PMC
Sun W., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577 1–9. 10.1016/s0167-4781(02)00417-7 PubMed DOI
Sun Y., Liu X., Zhai H., Gao G., Yao Y., Du Acta Y. (2016). Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves. Physiol. Plant. 38:232.
Tsai Y. C., Hong C. Y., Liu L. F., Kao C. H. (2004). Relative importance of Na+ and Cl– in NaCl-induced antioxidant systems in roots of rice seedlings. Physiol. Plant. 122 86–94.
Vanlerberghe G. C., McIntosh L. (1997). Alternative oxidase: from gene to function. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 703–734. 10.1146/annurev.arplant.48.1.703 PubMed DOI
Vives-Peris V., López-Climent M. F., Pérez-Clemente R. M., Gómez-Cadenas A. (2020). Root involvement in plant responses to adverse environmental conditions. Agronomy 10:942. 10.3390/agronomy10070942 DOI
Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61 199–223. 10.1016/j.envexpbot.2007.05.011 DOI
Wang L. J., Li S. H. (2006). Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regul. 48, 137–144.
Wang L. J., Fan L., Loescher W., Duan W., Liu G. J., Cheng J. S., et al. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol. 10:34. 10.1186/1471-2229-10-34 PubMed DOI PMC
Wang J., Yuan B., Huang B. (2019). Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. Crop Sci. 59 667–674. 10.2135/cropsci2018.01.0063 PubMed DOI
Wassie M., Zhang W. H., Zhang Q., Ji K., Cao L. W., Chen L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol. Environ. Saf. 191:110206. PubMed
Wasternack C., Song S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68 1303–1321. 10.1093/jxb/erw443 PubMed DOI
Widhalm J. R., Dudareva N. (2015). A familiar ring to it: biosynthesis of plant benzoic acids. Mol. Plant 8 83–97. 10.1016/j.molp.2014.12.001 PubMed DOI
Xie F., Xiao P., Chen D., Xu L., Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 80 75–84. 10.1007/s11103-012-9885-2 PubMed DOI
Xu H., Bao J. D., Dai J. S., Li Y., Zhu Y. (2015). Genome-wide identification of new reference genes for qRT-PCR normalization under high temperature stress in rice endosperm. PLoS One 10:e0142015. 10.1371/journal.pone.0142015 PubMed DOI PMC
Xu P., Zhao P. X., Cai X. T., Mao J. L., Miao Z. Q., Xiang C. B. (2020). Integration of jasmonic acid and ethylene into auxin signaling in root development. Front. Plant Sci. 11:271. 10.3389/fpls.2020.00271 PubMed DOI PMC
Xu Y., Tian J., Gianfagna T., Huang B. (2009). Effects of SAG12-ipt expression on cytokinin production, growth and senescence of creeping bentgrass (Agrostis stolonifera L.) under heat stress. Plant Growth Regul. 57 281–291.
Yin Y., Qin K., Song X., Zhang Q., Zhou Y., Xia X., et al. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol. 59 2239–2254. 10.1093/pcp/pcy146 PubMed DOI
Yoshida K., Terashima I., Noguchi K. (2007). Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. Plant Cell Environ. 48 606–614. 10.1093/pcp/pcm033 PubMed DOI
Zhang C., Bruins M. E., Yang Z. Q., Liu S. T., Rao P. F. (2016). A new formula to calculate activity of superoxide dismutase in indirect assays. Anal. Biochem. 503 65–67. 10.1016/j.ab.2016.03.014 PubMed DOI
Zhang H., Li L., Ye T., Chen R., Gao X., Xu Z. (2016). Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice. Biotechnol. Biotechnol. Equip. 30 669–676.
Zhang L. T., Zhang Z. S., Gao H. Y., Meng X. L., Yang C., Liu J. G., et al. (2012). The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. BMC Plant Biol. 12:40. 10.1186/1471-2229-12-40 PubMed DOI PMC
Zhou J., Wang J., Li X., Xia X. J., Zhou Y. H., Shi K., et al. (2014). H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J. Exp. Bot. 65 4371–4383. 10.1093/jxb/eru217 PubMed DOI PMC
Zwiewka M., Nodzyñski T., Robert S., Vanneste S., Friml J. (2015). Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsis thaliana. Mol. Plant 8 1175–1187. 10.1016/j.molp.2015.03.007 PubMed DOI