Heat Stress Targeting Individual Organs Reveals the Central Role of Roots and Crowns in Rice Stress Responses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35111178
PubMed Central
PMC8801461
DOI
10.3389/fpls.2021.799249
Knihovny.cz E-zdroje
- Klíčová slova
- Oryza sativa (L.), acclimation, antioxidant enzymes, cytokinin oxidase/dehydrogenase (CKX), gene expression, heat shock, jasmonoyl-isoleucine, phytohormones,
- Publikační typ
- časopisecké články MeSH
Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (F v /F m and QY_Lss ), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance.
Zobrazit více v PubMed
Adam A. L., Bestwick C. S., Barna B., Mansfield J. W. (1995). Enzymes regulating the accumulation of active oxygen species during the hypersensitive reaction of bean to
Bajguz A., Hayat S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. PubMed DOI
Beauchamp C., Fridovich I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. PubMed DOI
Bellstaedt J., Trenner J., Lippmann R., Poeschl Y., Zhang X., Friml J., et al. (2019). A mobile auxin signal connects temperature sensing in cotyledons with growth responses in hypocotyls. PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. PubMed DOI PMC
Blakeslee J. J., Rossi T. S., Kriechbaumer V. (2019). Auxin biosynthesis: spatial regulation and adaptation to stress. PubMed DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. PubMed
Bumgarner N. R., Bennett M. A., Ling P. P., Mullen R. W., Kleinhenz M. D. (2011). Canopy cover and root-zone heating effects on fall-and spring-grown leaf lettuce yield in Ohio.
Chauhan H., Khurana N., Agarwal P., Khurana P. (2011). Heat shock factors in rice ( PubMed DOI
Cheng Q., Zhou Y., Liu Z., Zhang L., Song G., Guo Z., et al. (2015). An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. PubMed DOI
Clarke S. M., Cristescu S. M., Miersch O., Harren F. J. M., Wasternack C., Mur L. A. J. (2009). Jasmonates act with salicylic acid to confer basal thermotolerance in PubMed DOI
Clarke S. M., Mur L. A., Wood J. E., Scott I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in PubMed DOI
Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. PubMed DOI
di Donato M., Geisler M. (2019). HSP 90 and co-chaperones: a multitaskers’ view on plant hormone biology. PubMed DOI
Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P. L., et al. (2015). The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. PubMed DOI
Feraru E., Feraru M. I., Barbez E., Waidmann S., Sun L., Gaidora A., et al. (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in PubMed DOI PMC
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of PubMed DOI
Gaudinova A., Dobrev P. I., Solcova B., Novak O., Strnad M., Friedecky D., et al. (2005). The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea ( DOI
Genty B., Briantais J. M., Baker N. R. (1989). The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.
Ghosh A., Shah M. N. A., Jui Z. S., Saha S., Fariha K. A., Islam T. (2018). Evolutionary variation and expression profiling of Isopentenyl transferase gene family in
Hare P. D., Cress W. A., Van Staden J. (1997). The involvement of cytokinins in plant responses to environmental stress.
Horton P., Ruban A. V. (1992). Regulation of photosystem II. PubMed DOI
Hruz T., Laule O., Szabo G., Wessendorp F., Bleuler S., Oertle L., et al. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. PubMed DOI PMC
Jain M., Tyagi A. K., Khurana J. P. (2006). Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice ( PubMed DOI PMC
Kanamaru K., Tanaka K. (2004). Roles of chloroplast RNA polymerase sigma factors in chloroplast development and stress response in higher plants. PubMed DOI
Kieber J. J., Schaller G. E. (2014). Cytokinins. PubMed PMC
Kumar D., Das P. K., Sarmah B. K. (2018). Reference gene validation for normalization of RT-qPCR assay associated with germination and survival of rice under hypoxic condition. PubMed DOI
Küpers J. J., Oskam L., Pierik R. (2020). Photoreceptors regulate plant developmental plasticity through auxin. PubMed DOI PMC
Larkindale J., Huang B. (2004). Thermotolerance and antioxidant systems in PubMed DOI
Larkindale J., Knight M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. PubMed DOI PMC
Li C. R., Liang D. D., Li J., Duan Y. B., Li H., Yang Y. C., et al. (2013). Unravelling mitochondrial retrograde regulation in the abiotic stress induction of rice PubMed DOI
Li H., Liu S. S., Yi C. Y., Wang F., Zhou J., Xia X. J., et al. (2014). Hydrogen peroxide mediates abscisic acid-induced HSP 70 accumulation and heat tolerance in grafted cucumber plants. PubMed DOI
Li N., Euring D., Cha J. Y., Lin Z., Lu M., Huang L. J., et al. (2021). Plant hormone-mediated regulation of heat tolerance in response to global climate change. PubMed DOI PMC
Li S., Fu Q., Chen L., Huang W., Yu D. (2011). PubMed DOI
Li S., Zhou X., Chen L., Huang W., Yu D. (2010). Functional characterization of PubMed DOI
Lubovská Z., Dobrá J., Štorchová H., Wilhelmová N., Vanková R. (2014). Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defence against heat, drought and their combination in PubMed DOI
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. PubMed DOI PMC
Maxwell D. P., Wang Y., McIntosh L. (1999). The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. PubMed DOI PMC
McKey D. (1974). Adaptive patterns in alkaloid physiology. DOI
Mittler R. (2002). Oxidative stress, antioxidants and stress tolerance. PubMed DOI
Miyawaki K., Tarkowski P., Matsumoto-Kitano M., Kato T., Sato S., Tarkowska D., et al. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. PubMed DOI PMC
Motyka V., Kaminek M. (1992). “Characterization of cytokinin oxidase from tobacco and poplar callus cultures,” in
Motyka V., Kaminek M. (1994). Cytokinin oxidase from auxin- and cytokinin-dependent callus cultures of tobacco (
Motyka V., Vankova R., Capkova V., Petrasek J., Kaminek M., Schmulling T. (2003). Cytokinin-induced upregulation of cytokinin oxidase activity in tobacco includes changes in enzyme glycosylation and secretion. DOI
Muench M., Hsin C. H., Ferber E., Berger S., Mueller M. J. (2016). Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors. PubMed DOI PMC
Nagashima A., Hanaoka M., Shikanai T., Fujiwara M., Kanamaru K., Takahashi H., et al. (2004). The multiple-stress responsive plastid sigma factor, SIG5, directs activation of the psbD blue light-responsive promoter (BLRP) in PubMed DOI
Nakano Y., Asada K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical.
Pandey P., Srivastava R. K., Dubey R. S. (2014). Water deficit and aluminum tolerance are associated with a high antioxidative enzyme capacity in Indica rice seedlings. PubMed DOI
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. PubMed DOI PMC
Poór P., Nawaz K., Gupta R., Ashfaque F., Khan M. I. R. (2021). Ethylene involvement in the regulation of heat stress tolerance in plants. PubMed DOI
Prerostova S., Dobrev P. I., Gaudinova A., Hosek P., Soudek P., Knirsch V., et al. (2017). Hormonal dynamics during salt stress responses of salt-sensitive PubMed DOI
Prerostova S., Dobrev P. I., Kramna B., Gaudinova A., Knirsch V., Spichal L., et al. (2020). Heat acclimation and inhibition of cytokinin degradation positively affect heat stress tolerance of Arabidopsis. PubMed DOI PMC
Rachmilevitch S., Lambers H., Huang B. (2006). Root respiratory characteristics associated with plant adaptation to high soil temperature for geothermal and turf-type PubMed DOI
Rivero R. M., Kojima M., Gepstein A., Sakakibara H., Mittler R., Gepstein S., et al. (2007). Delayed leaf senescence induces extreme drought tolerance in a flowering plant. PubMed DOI PMC
Sachs M. M., Ho T. H. D. (1986). Alteration of gene expression during environmental stress in plants.
Sharma L., Dalal M., Verma R. K., Kumar S. V., Yadav S. K., Pushkar S., et al. (2018). Auxin protects spikelet fertility and grain yield under drought and heat stresses in rice.
Sharma P., Dubey R. S. (2005). Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings.
Sheldrake A. R. (2021). The production of auxin by dying cells. PubMed DOI
Shibasaki K., Uemura M., Tsurumi S., Rahman A. (2009). Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms. PubMed DOI PMC
Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., et al. (2002). Regulation and function of ascorbate peroxidase isoenzymes. PubMed DOI
Shigeta T., Zaizen Y., Sugimoto Y., Nakamura Y., Matsuo T., Okamoto S. (2015). Heat shock protein 90 acts in brassinosteroid signaling through interaction with BES1/BZR1 transcription factor. PubMed DOI
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., et al. (2016). Stimulation of PubMed DOI PMC
Sun A. Z., Guo F. Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. PubMed DOI PMC
Sun J., Qi L., Li Y., Chu J., Li C. (2012). PIF4–mediated activation of PubMed DOI PMC
Sun W., Van Montagu M., Verbruggen N. (2002). Small heat shock proteins and stress tolerance in plants. PubMed DOI
Sun Y., Liu X., Zhai H., Gao G., Yao Y., Du Acta Y. (2016). Responses of photosystem II photochemistry and the alternative oxidase pathway to heat stress in grape leaves.
Tsai Y. C., Hong C. Y., Liu L. F., Kao C. H. (2004). Relative importance of Na
Vanlerberghe G. C., McIntosh L. (1997). Alternative oxidase: from gene to function. PubMed DOI
Vives-Peris V., López-Climent M. F., Pérez-Clemente R. M., Gómez-Cadenas A. (2020). Root involvement in plant responses to adverse environmental conditions. DOI
Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. DOI
Wang L. J., Li S. H. (2006). Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (
Wang L. J., Fan L., Loescher W., Duan W., Liu G. J., Cheng J. S., et al. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. PubMed DOI PMC
Wang J., Yuan B., Huang B. (2019). Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. DOI
Wassie M., Zhang W. H., Zhang Q., Ji K., Cao L. W., Chen L. (2020). Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa ( PubMed
Wasternack C., Song S. (2017). Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. PubMed DOI
Widhalm J. R., Dudareva N. (2015). A familiar ring to it: biosynthesis of plant benzoic acids. PubMed DOI
Xie F., Xiao P., Chen D., Xu L., Zhang B. (2012). miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. PubMed DOI
Xu H., Bao J. D., Dai J. S., Li Y., Zhu Y. (2015). Genome-wide identification of new reference genes for qRT-PCR normalization under high temperature stress in rice endosperm. PubMed DOI PMC
Xu P., Zhao P. X., Cai X. T., Mao J. L., Miao Z. Q., Xiang C. B. (2020). Integration of jasmonic acid and ethylene into auxin signaling in root development. PubMed DOI PMC
Xu Y., Tian J., Gianfagna T., Huang B. (2009). Effects of
Yin Y., Qin K., Song X., Zhang Q., Zhou Y., Xia X., et al. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. PubMed DOI
Yoshida K., Terashima I., Noguchi K. (2007). Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. PubMed DOI
Zhang C., Bruins M. E., Yang Z. Q., Liu S. T., Rao P. F. (2016). A new formula to calculate activity of superoxide dismutase in indirect assays. PubMed DOI
Zhang H., Li L., Ye T., Chen R., Gao X., Xu Z. (2016). Molecular characterization, expression pattern and function analysis of the OsHSP90 family in rice.
Zhang L. T., Zhang Z. S., Gao H. Y., Meng X. L., Yang C., Liu J. G., et al. (2012). The mitochondrial alternative oxidase pathway protects the photosynthetic apparatus against photodamage in Rumex K-1 leaves. PubMed DOI PMC
Zhou J., Wang J., Li X., Xia X. J., Zhou Y. H., Shi K., et al. (2014). H PubMed DOI PMC
Zwiewka M., Nodzyñski T., Robert S., Vanneste S., Friml J. (2015). Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in PubMed DOI