Changing Temperature Conditions during Somatic Embryo Maturation Result in Pinus pinaster Plants with Altered Response to Heat Stress

. 2022 Jan 24 ; 23 (3) : . [epub] 20220124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163242

Grantová podpora
AGL2016-76143-C4-01-R Ministerio de Ciencia y Tecnología
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministry of Education

Under the global warming scenario, obtaining plant material with improved tolerance to abiotic stresses is a challenge for afforestation programs. In this work, maritime pine (Pinus pinaster Aiton) plants were produced from somatic embryos matured at different temperatures (18, 23, or 28 °C, named after M18, M23, and M28, respectively) and after 2 years in the greenhouse a heat stress treatment (45 °C for 3 h/day for 10 days) was applied. Temperature variation during embryo development resulted in altered phenotypes (leaf histology, proline content, photosynthetic rates, and hormone profile) before and after stress. The thickness of chlorenchyma was initially larger in M28 plants, but was significantly reduced after heat stress, while increased in M18 plants. Irrespective of their origin, when these plants were subjected to a heat treatment, relative water content (RWC) and photosynthetic carbon assimilation rates were not significantly affected, although M18 plants increased net photosynthesis rate after 10 days recovery (tR). M18 plants showed proline contents that increased dramatically (2.4-fold) when subjected to heat stress, while proline contents remained unaffected in M23 and M28 plants. Heat stress significantly increased abscisic acid (ABA) content in the needles of maritime pine plants (1.4-, 3.6- and 1.9-fold in M18, M23, and M28 plants, respectively), while indole-3-acetic acid content only increased in needles from M23 plants. After the heat treatment, the total cytokinin contents of needles decreased significantly, particularly in M18 and M28 plants, although levels of active forms (cytokinin bases) did not change in M18 plants. In conclusion, our results suggest that maturation of maritime pine somatic embryos at lower temperature resulted in plants with better performance when subjected to subsequent high temperature stress, as demonstrated by faster and higher proline increase, lower increases in ABA levels, no reduction in active cytokinin, and a better net photosynthesis rate recovery.

Zobrazit více v PubMed

Zas R., Sampedro L., Solla A., Vivas M., Lombardero M.J., Alía R., Rozas V. Dendroecology in common gardens: Population differentiation and plasticity in resistance, recovery and resilience to extreme drought events in Pinus pinaster. Agric. For. Meteorol. 2020;291:108060. doi: 10.1016/j.agrformet.2020.108060. DOI

Alía R., Martín S. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Maritime Pine (Pinus pinaster) International Plant Genetic Resources Institute; Bioversity International; Rome, Italy: 2003. p. 6.

Nguyen-Queyrens A., Bouchet-Lannat F. Osmotic adjustment in three-year-old seedlings of five provenances of maritime pine (Pinus pinaster) in response to drought. Tree Physiol. 2003;23:397–404. doi: 10.1093/treephys/23.6.397. PubMed DOI

Menéndez-Gutiérrez M., Alonso M., Toval G., Díaz R. Variation in pinewood nematode susceptibility among Pinus pinaster Ait. provenances from the Iberian Peninsula and France. Ann. For. Sci. 2017;74:76. doi: 10.1007/s13595-017-0677-3. DOI

Arrillaga I., Guevara M.A., Muñoz-Bertomeu J., Lázaro-Gimeno D., Sáez-Laguna E., Díaz L.M., Torralba L., Mendoza-Poudereux I., Segura J., Cervera M.T. Selection of haploid cell lines from megagametophyte cultures of maritime pine as a DNA source for massive sequencing of the species. Plant Cell Tiss. Org. Cult. 2014;118:147–155. doi: 10.1007/s11240-014-0470-z. DOI

Arrillaga I., Morcillo M., Zanón I., Lario F., Segura J., Sales E. New approaches to optimize somatic embryogenesis in maritime pine. Front. Plant Sci. 2019;10:138. doi: 10.3389/fpls.2019.00138. PubMed DOI PMC

Andivia E., Ruiz-Benito P., Díaz-Martínez P., Carro-Martínez N., Zavala M.A., Madrigal-González J. Inter-specific tolerance to recurrent droughts of pine species revealed in saplings rather than adult trees. For. Ecol. Manag. 2020;459:117858. doi: 10.1016/j.foreco.2019.117848. DOI

Neumann M., Mues V., Moreno A., Hasenauer H., Seidl R. Climate variability drives recent tree mortality in Europe. Glob. Chang. Biol. 2017;23:4788–4797. doi: 10.1111/gcb.13724. PubMed DOI PMC

Lebedev V.G., Lebedeva T.N., Chernodubov A.I., Shestibratov K.A. Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests. 2020;11:1190. doi: 10.3390/f11111190. DOI

Lelu-Walter M.A., Klimaszewska K., Miguel C., Aronen T., Hargreaves C., Teyssier C., Trontin J.F. Somatic embryogenesis for more effective breeding and deployment of improved varieties in Pinus spp.: Bottlenecks and recent advances. In: Loyola-Vargas V.M., Ochoa-Alejo N., editors. Somatic Embryogenesis: Fundamental Aspects and Applications. Springer International Publishing; Cham, Switzerland: 2016. pp. 319–365.

Lelu-Walter M.A., Thompson D., Harvengt L., Sanchez L., Toribio M., Pâques L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes. 2013;9:883–899. doi: 10.1007/s11295-013-0620-1. DOI

Turgut-Kara N., Arikan B., Celik H. Epigenetic memory and priming in plants. Genetica. 2020;148:47–54. doi: 10.1007/s10709-020-00093-4. PubMed DOI

Galviz Y.C.F., Ribeiro R.V., Souza G.M. Yes, plants do have memory. Theor. Exp. Plant Physiol. 2020;32:195–202. doi: 10.1007/s40626-020-00181-y. DOI

Kvaalen H., Johnsen Ø. Timing of bud set in Picea abies is regulated by a memory of temperature during zygotic and somatic embryogenesis. New Phytol. 2008;177:49–59. doi: 10.1111/j.1469-8137.2007.02222.x. PubMed DOI

Egertsdotter U. Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scand. J. For. Res. 2019;34:360–369. doi: 10.1080/02827581.2018.1441433. DOI

Cano M., Morcillo A., Humánez A., Mendoza-Poudereux I., Alborch A., Segura J., Arrillaga I. Maritime pine (Pinus pinaster Aiton) In: Jain S.M., Gupta P., editors. Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. 2nd ed. Volume 1. Springer International Publishing; Cham, Switzerland: 2018. pp. 167–179.

Humánez A., Blasco M., Brisa C., Segura J., Arrillaga I. Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tissue Organ Cult. 2012;111:373–383. doi: 10.1007/s11240-012-0203-0. DOI

Pérez-Oliver M.A., Haro J.G., Pavlović I., Novák O., Segura J., Sales E., Arrillaga I. Priming maritime pine megagametophytes during somatic embryogenesis improved plant adaptation to heat stress. Plants. 2021;10:446. doi: 10.3390/plants10030446. PubMed DOI PMC

García-Mendiguren O., Montalbán I.A., Goicoa T., Ugarte M.D., Moncaleán P. Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees. 2016;30:949–958. doi: 10.1007/s00468-015-1336-7. DOI

Marques do Nascimento A.M., Alves-Barroso P., Ferreira do Nascimento N.F., Goicoa T., Ugarte M.D., Montalbán I.A., Moncaleán P. Pinus spp. somatic embryo conversion under high temperature: Effect on the morphological and physiological characteristics of plantlets. Forests. 2020;11:1181. doi: 10.3390/f11111181. DOI

Chen W.L., Yang W.J., Lo H.F., Yeh D.M. Physiology, anatomy, and cell membrane thermostability selection ofleafy radish (Raphanus sativus var. Oleiformis Pers.) with different tolerance under heat stress. Sci. Hortic. 2014;179:367–375. doi: 10.1016/j.scienta.2014.10.003. DOI

Estravis-Barcala M., Mattera M.G., Soliani C., Bellora N., Opgenoorth L., Heer K., Arana M.V. Molecular bases of responses to abiotic stress in trees. J. Exp. Bot. 2020;71:3765–3779. doi: 10.1093/jxb/erz532. PubMed DOI PMC

Kaur G., Asthir B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015;59:609–619. doi: 10.1007/s10535-015-0549-3. DOI

Ghosh U.K., Islam M.N., Siddiqui M.N., Cao X., Khan M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2021 doi: 10.1111/plb.13363. PubMed DOI

Yu D., Wildhagen H., Tylewicz S., Miskolczi P.C., Bhalerao R.P., Polle A. Abscisic acid signalling mediates biomass trade-off and allocation in poplar. New Phytol. 2019;223:1192–1203. doi: 10.1111/nph.15878. PubMed DOI

Shen H.F., Zhao B., Xu J.J., Liang W., Huang W.M., Li H.H. Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron. S. Afr. J. Bot. 2017;112:338–345. doi: 10.1016/j.sajb.2017.06.018. DOI

Li M., Jannasch A.H., Jiang Y. Growth and Hormone Alterations in Response to Heat Stress in Perennial Ryegrass Accessions Differing in Heat Tolerance. J. Plant Growth Regul. 2020;39:1022–1102. doi: 10.1007/s00344-019-10043-w. DOI

Pereira C., Castander-Olarieta A., Sales E., Montalbán I.A., Canhoto J., Moncaleán P. Heat stress in Pinus halepensis somatic embryogenesis induction: Effect in DNA methylation and differential expression of stress-related genes. Plants. 2021;10:2333. doi: 10.3390/plants10112333. PubMed DOI PMC

Castander-Olarieta A., Pereira C., Sales E., Meijón M., Arrillaga I., Cañal M.J., Goicoa T., Ugarte M.D., Moncaleán P., Montalbán I.A. Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes. Plants. 2020;9:1762. doi: 10.3390/plants9121762. PubMed DOI PMC

Pereira C., Castander-Olarieta A., Montalbán I.A., Pěnčík A., Petřík I., Pavlovic I., De Medeiros Oliveira E., Fraga H., Guerra M.P., Novak O., et al. Embryonal masses induced at high temperatures in Aleppo pine: Cytokinin profile and cytological characterization. Forests. 2020;11:807. doi: 10.3390/f11080807. DOI

Castander-Olarieta A., Pereira C., Montalbán I.A., Pěnčík A., Petřík I., Pavlović I., Novák O., Strnad M., Moncaleán P. Quantification of endogenous aromatic cytokinins in Pinus radiata embryonal masses after application of heat stress during initiation of somatic embryogenesis. Trees. 2020;35:1075–1080. doi: 10.1007/s00468-020-02047-x. DOI

Castander-Olarieta A., Moncaleán P., Pereira C., Pěnčík A., Petřík I., Pavlovic I., Novák O., Strnad M., Goicoa T., Ugarte M.D., et al. Cytokinins are involved in drought tolerance of Pinus radiata plants originating from embryonal masses induced at high temperatures. Tree Physiol. 2021;41:912–926. doi: 10.1093/treephys/tpaa055. PubMed DOI

Moncaleán P., García-Mendiguren O., Novak O., Strnad M., Goicoa T., Ugarte M.D., Montalbán I.A. Temperature and water availability during maturation affect the cytokinins and auxins profile of radiata pine somatic embryos. Front. Plant Sci. 2018;9:1898. doi: 10.3389/fpls.2018.01898. PubMed DOI PMC

Escandón M., Cañal M., Pascual J., Pinto G., Correia B., Amaral J., Meijón M. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol. 2016;36:63–77. doi: 10.1093/treephys/tpv127. PubMed DOI

Escandón M., Valledor L., Pascual J., Pinto G., Cañal M.J., Meijón M. System-wide analysis of short-term response to high temperature in Pinus radiata. J. Exp. Bot. 2017;68:3629–3641. doi: 10.1093/jxb/erx198. PubMed DOI

Kolb P.F., Robberecht R. High temperature and drought stress effects on survival of Pinus ponderosa seedlings. Tree Physiol. 1996;16:665–672. doi: 10.1093/treephys/16.8.665. PubMed DOI

Turunen M., Latola K. UV-B radiation and acclimation in timberline plants. Environ. Pollut. 2005;137:390–403. doi: 10.1016/j.envpol.2005.01.030. PubMed DOI

Li W.D., Biswas D.K., Xu H., Xu C.Q., Wang X.Z., Liu J.K., Jiang G.M. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct. Plant. Biol. 2009;36:783–792. doi: 10.1071/FP09022. PubMed DOI

Teskey R., Wertin T., Bauweraerts I., Ameye M., McGuire M., Steppe K. Review: Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 2015;38:1699–1712. doi: 10.1111/pce.12417. PubMed DOI

Yuan L., Tang L., Zhu S., Hou J., Chen G., Liu F., Liu S., Wang C. Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes. Acta Soc. Bot. Pol. 2017;86:3554. doi: 10.5586/asbp.3554. DOI

Natarajan S., Kuehny J.S. Morphological, Physiological, and Anatomical Characteristics Associated with Heat Preconditioning and Heat Tolerance in Salvia splendens. J. Amer. Soc. Hort. Sci. 2008;133:527–534. doi: 10.21273/JASHS.133.4.527. DOI

Muhammad I., Shalmani A., Ali M., Yang Q.H., Ahmad H., Li F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 2021;11:2310. doi: 10.3389/fpls.2020.615942. PubMed DOI PMC

Konôpková A., Kurjak D., Kmeť J., Klumpp R., Longauer R., Ditmarová Ľ., Gömöry D. Differences in photochemistry and response to heat stress between silver fir (Abies alba Mill.) provenances. Trees. 2018;32:73–86. doi: 10.1007/s00468-017-1612-9. DOI

Kunert N., Hajek P., Hietz P., Morris H., Rosner S., Tholen D. Summer temperatures reach the thermal tolerance threshold of photosynthetic decline in temperate conifers. Plant Biol. 2021 doi: 10.1111/plb.13349. PubMed DOI PMC

Devireddy A.R., Tschaplinski T.J., Tuskan G.A., Muchero W., Chen J.G. Role of reactive oxygen species and hormones in plant responses to temperature changes. Int. J. Mol. Sci. 2021;22:8843. doi: 10.3390/ijms22168843. PubMed DOI PMC

Birami B., Gattmann M., Heyer A.G., Grote R., Arneth A., Ruehr N.K. Heat waves alter carbon allocation and increase mortality of Aleppo pine under dry conditions. Front. For. Glob. Chang. 2018;1:8. doi: 10.3389/ffgc.2018.00008. DOI

Khan M.I.R., Iqbal N., Masood A., Per T.S., Khan N.A. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signal. Behav. 2013;8:e26374. doi: 10.4161/psb.26374. PubMed DOI PMC

Rajametov S.N., Yang E.Y., Cho M.C., Chae S.Y., Jeong H.B., Chae W.B. Heat-tolerant hot pepper exhibits constant photosynthesis via increased transpiration rate, high proline content and fast recovery in heat stress condition. Sci. Rep. 2021;11:14328. doi: 10.1038/s41598-021-93697-5. PubMed DOI PMC

Correia B., Rodriguez J.L., Valledor L., Almeida T., Santos C., Cañal M.J., Pinto G. Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak. J. Plant Physiol. 2014;171:399–406. doi: 10.1016/j.jplph.2013.12.004. PubMed DOI

Dias M.C., Santos C., Silva S., Pinto D.C.G.A., Silva A.M.S. Physiological and Metabolite Reconfiguration of Olea europaea to cope and recover from a heat or high UV-B shock. J. Agric. Food Chem. 2020;68:11339–11349. doi: 10.1021/acs.jafc.0c04719. PubMed DOI

De Diego N., Saiz-Fernández I., Rodríguez J.L., Pérez-Alfocea P., Sampedro M.C., Barrio R.J., Lacuesta M., Moncaleán P. Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. J. Plant Physiol. 2015;188:64–71. doi: 10.1016/j.jplph.2015.08.006. PubMed DOI

Hossain M.A., Li Z., Hoque T.S., Burritt D.J., Fujita M., Munné-Bosch S. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: Key regulators and posible mechanisms. Protoplasma. 2018;255:399–412. doi: 10.1007/s00709-017-1150-8. PubMed DOI

Zhang X., Wang X., Zhuang L., Gao Y., Huang B. Abscisic acid mediation of drought priming-enhanced heat tolerance in tall fescue (Festuca arundinacea) and Arabidopsis. Physiol. Plant. 2019;167:488–501. doi: 10.1111/ppl.12975. PubMed DOI

Prerostova S., Dobrev P.I., Kramna B., Gaudinova A., Knirsch V., Spichal L., Zatloukal M., Vankova R. Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis. Front. Plant Sci. 2020;11:87. doi: 10.3389/fpls.2020.00087. PubMed DOI PMC

Ábrahám E., Hourton-cabassa C., Erdei L., Szabados L. Methods for determination of proline in plants. Methods Mol. Biol. 2010;639:317–331. doi: 10.1007/978-1-60761-702-0_20. PubMed DOI

Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant hormonomics: Multiple phyto-hormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...