Priming Maritime Pine Megagametophytes during Somatic Embryogenesis Improved Plant Adaptation to Heat Stress

. 2021 Feb 26 ; 10 (3) : . [epub] 20210226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33652929

Grantová podpora
AGL2016-76143-C4-01-R Ministerio de Ciencia e Innovación
AGL2016-76143-C4-01-R European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000738 Grantová Agentura České Republiky

In the context of global climate change, forest tree research should be addressed to provide genotypes with increased resilience to high temperature events. These improved plants can be obtained by heat priming during somatic embryogenesis (SE), which would produce an epigenetic-mediated transgenerational memory. Thereby, we applied 37 °C or 50 °C to maritime pine (Pinus pinaster) megagametophytes and the obtained embryogenic masses went through the subsequent SE phases to produce plants that were further subjected to heat stress conditions. A putative transcription factor WRKY11 was upregulated in priming-derived embryonal masses, and also in the regenerated P37 and P50 plants, suggesting its role in establishing an epigenetic memory in this plant species. In vitro-grown P50 plants also showed higher cytokinin content and SOD upregulation, which points to a better responsiveness to heat stress. Heat exposure of two-year-old maritime pine plants induced upregulation of HSP70 in those derived from primed embryogenic masses, that also showed better osmotic adjustment and higher increases in chlorophyll, soluble sugars and starch contents. Moreover, ϕPSII of P50 plants was less affected by heat exposure. Thus, our results suggest that priming at 50 °C at the SE induction phase is a promising strategy to improve heat resilience in maritime pine.

Zobrazit více v PubMed

Hanewinkel M., Cullmann D.A., Schelhaas M.-J., Nabuurs G.-J., Zimmermann N.E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013;3:203–207. doi: 10.1038/nclimate1687. DOI

Fitzgerald J., Jacobsen J.B., Blennow K., Thorsen B.J., Lindner M. Climate change in European forests: How to adapt. In: Fitzgerald J., Jacobsen J.B., Blennow K., Thorsen B.J., Lindner M., editors. EFI Policy Brief. European Forest Institute; Joensuu, Finland: 2013. p. 16.

Lebedev V.G., Lebedeva T.N., Chernodubov A.I., Shestibratov K.A. Genomic selection for forest tree improvement: Methods, achievements and perspectives. Forests. 2020;11:1190. doi: 10.3390/f11111190. DOI

Bose A.K., Moser B., Rigling A., Lehmann M.M., Milcu A., Peter M., Rellstab C., Wohlgemuth T., Gessler A. Memory of environmental conditions across generations affects the acclimation potential of scots pine. Plant Cell Environ. 2020;43:1288–1299. doi: 10.1111/pce.13729. PubMed DOI PMC

Turgut-Kara N., Arikan B., Celik H. Epigenetic memory and priming in plants. Genetica. 2020;148:47–54. doi: 10.1007/s10709-020-00093-4. PubMed DOI

Galviz Y.C.F., Ribeiro R.V., Souza G.M. Yes, plants do have memory. Theor. Exp. Plant Physiol. 2020;32:195–202. doi: 10.1007/s40626-020-00181-y. DOI

Ding Y., Liu N., Virlouvet L., Riethoven J.J., Fromm M., Avramova Z. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol. 2013;13:229. doi: 10.1186/1471-2229-13-229. PubMed DOI PMC

Yakovlev I.A., Carneros E., Lee Y., Olsen J.E., Fossdal C.G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta. 2016;243:1237–1249. doi: 10.1007/s00425-016-2484-8. PubMed DOI

Schmitz R.J., Schultz M.D., Lewsey M.G., O’Malley R.C., Urich M.A., Libiger O., Schork N.J., Ecker J.R. Transgenerational epigenetic instability is a source of novel methylation variants. Science. 2011;334:369–373. doi: 10.1126/science.1212959. PubMed DOI PMC

Raj S., Bräutigam K., Hamanishi E., Wilkins O., Thomas B.R., Schroeder W.R., Mansfield S.D., Plant A.L., Campbell M.M. Clone history shapes Populus drought responses. Proc. Natl. Acad. Sci. USA. 2011;108:12521–12526. doi: 10.1073/pnas.1103341108. PubMed DOI PMC

Yakovlev I.A., Fossdal C.G., Johnsen Ø. MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol. 2010;187:1154–1169. doi: 10.1111/j.1469-8137.2010.03341.x. PubMed DOI

Baum S., Reimer-Michalski E.-M., Bolger A., Andrea J., Mantai A.J., Benes V., Usadel B., Conratha U. Isolation of Open Chromatin Identifies Regulators of Systemic Acquired Resistance. Plant Physiol. 2019;181:817–833. doi: 10.1104/pp.19.00673. PubMed DOI PMC

Hossain M.A., Li Z., Hoque T.S., Burritt D.J., Fujita M., Munné-Bosch S. Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: Key regulators and posible mechanisms. Protoplasma. 2018;255:399–412. doi: 10.1007/s00709-017-1150-8. PubMed DOI

Wang X., Liu F., Jiang D. Priming: A promising strategy for crop production in response to future climate. J. Integr. Agric. 2017;16:2709–2716. doi: 10.1016/S2095-3119(17)61786-6. DOI

Mishra D., Shekhar S., Singh D., Chakraborty S., Chakraborty N. Heat Shock Proteins and Abiotic Stress Tolerance in Plants. In: Asea A., Kaur P., editors. Regulation of Heat Shock Protein Responses. Springer; Cham, Switzerland: 2018. pp. 41–69.

Kurjak D., Konôpková A., Kmeť J., Macková M., Frýdl J., Živčák M., Palmroth S., Ditmarová L., Gömör D. Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. Eur. J. For. Res. 2019;13892:79–92. doi: 10.1007/s10342-018-1155-7. DOI

Marias D.E., Meinzer F.C., Woodruff D.R., McCulloh K.A. Thermotolerance and heat stress responses of Douglas-fir and ponderosa pine seedling populations from contrasting climates. Tree Physiol. 2016;37:301–315. doi: 10.1093/treephys/tpw117. PubMed DOI

Escandón M., Cañal M., Pascual J., Pinto G., Correia B., Amaral J., Meijón M. Integrated physiological and hormonal profile of heat-induced thermotolerance in Pinus radiata. Tree Physiol. 2016;36:63–77. doi: 10.1093/treephys/tpv127. PubMed DOI

Escandón M., Valledor L., Pascual J., Pinto G., Cañal M.J., Meijón M. System-wide analysis of short-term response to high temperature in Pinus radiata. J. Exp. Bot. 2017;68:3629–3641. doi: 10.1093/jxb/erx198. PubMed DOI

Prerostova S., Dobrev P.I., Kramna B., Gaudinova A., Knirsch V., Spichal L., Zatloukal M., Vankova R. Heat Acclimation and Inhibition of Cytokinin Degradation Positively Affect Heat Stress Tolerance of Arabidopsis. Front. Plant Sci. 2020;11:87. doi: 10.3389/fpls.2020.00087. PubMed DOI PMC

Wani S.H., Kumar V., Shriram V., Sah S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016;4:162. doi: 10.1016/j.cj.2016.01.010. DOI

Zwack P.J., Rashotte A.M. Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 2015;66:4863–4871. doi: 10.1093/jxb/erv172. PubMed DOI

O’Brien J., Benková E. Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 2013;4 doi: 10.3389/fpls.2013.00451. PubMed DOI PMC

Černý M., Jedelský P.L., Novák J., Schlosser A., Brzobohatý B. Cytokikin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ. 2014;37:1641–1655. doi: 10.1111/pce.12270. PubMed DOI

Lelu-Walter M.A., Thompson D., Harvengt L., Sanchez L., Toribio M., Pâques L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes. 2013;9:883–899. doi: 10.1007/s11295-013-0620-1. DOI

Bonga J.M. Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees. 2017;31:781–789. doi: 10.1007/s00468-016-1509-z. DOI

Arrillaga I., Morcillo M., Zanón I., Lario F., Segura J., Sales E. New approaches to optimize somatic embryogenesis in maritime pine. Front. Plant Sci. 2019;10:138. doi: 10.3389/fpls.2019.00138. PubMed DOI PMC

Humánez A., Blasco M., Brisa C., Segura J., Arrillaga I. Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tissue Organ Cult. 2012;111:373–383. doi: 10.1007/s11240-012-0203-0. DOI

Alía R., Martín S. International Plant Genetic Resources Institute. Bioversity International; Rome, Italy: 2003. EUFORGEN Technical guidelines for genetic conservation and use for maritime pine (Pinus pinaster) p. 6.

Zas R., Sampedro L., Solla A., Vivas M., Lombardero M.J., Alía R., Rozas V. Dendroecology in common gardens: Population differentiation and plasticity in resistance, recovery and resilience to extreme drought events in Pinus pinaster. Agric. For. Meteorol. 2020;291:108060. doi: 10.1016/j.agrformet.2020.108060. DOI

García-Mendiguren O., Montalbán I.A., Goicoa T., Ugarte M.D., Moncaleán P. Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees. 2016;30:949–958. doi: 10.1007/s00468-015-1336-7. DOI

Moncaleán P., García-Mendiguren O., Novak O., Strnad M., Goicoa T., Ugarte M.D., Montalbán I.A. Temperature and water availability during maturation affect the cytokinins and auxins profile of radiata pine somatic embryos. Front. Plant Sci. 2018;9:1898. doi: 10.3389/fpls.2018.01898. PubMed DOI PMC

García-Mendiguren O., Montalbán I.A., Goicoa T., Ugarte M.D., Moncaleán P. Are we able to modulate the response of somatic embryos of pines to drought stress? Acta Hortic. 2017;1155:77–84. doi: 10.17660/ActaHortic.2017.1155.10. DOI

Castander-Olarieta A., Montalbán I.A., De Medeiros Oliveira E., Dell’Aversana E., D’Amelia L., Carillo P., Steiner N., Fraga H.P.F., Guerra M.P., Goicoa T., et al. Effect of thermal stress on tissue ultrastructure and metabolite profiles during initiation of radiata pine somatic embryogenesis. Front. Plant Sci. 2019;9:2004. doi: 10.3389/fpls.2018.02004. PubMed DOI PMC

Castander-Olarieta A., Pereira C., Montalbán I.A., Pěnčík A., Petřík I., Pavlovic I., Novák O., Strnad M., Moncaleán P. Quantification of endogenous aromatic cytokinins in Pinus radiata embryonal masses after application of heat stress during initiation of somatic embryogenesis. Trees. 2020 doi: 10.1007/s00468-020-02047-x. DOI

Castander-Olarieta A., Moncaleán P., Pereira C., Pěnčík A., Petřík I., Pavlovic I., Novák O., Strnad M., Goicoa T., Ugarte M.D., et al. Cytokinins are involved in drought tolerance of Pinus radiata plants originating from embryonal masses induced at high temperatures. Tree Physiol. 2020:tpaa055. doi: 10.1093/treephys/tpaa055. PubMed DOI

Castander-Olarieta A., Pereira C., Sales E., Meijón M., Arrillaga I., Cañal M.J., Goicoa T., Ugarte M.D., Moncaleán P., Montalbán I.A. Induction of radiata pine somatic embryogenesis at high temperatures provokes a long-term decrease in DNA methylation/hydroxymethylation and differential expression of stress-related genes. Plants. 2020;9:1762. doi: 10.3390/plants9121762. PubMed DOI PMC

Do Nascimento A.M.M., Barroso P.A., Do Nascimento N.F.F., Goicoa T., Ugarte M.D., Montalbán I.A., Moncaleán P. Pinus spp. Somatic Embryo Conversion under High Temperature: Effect on the Morphological and Physiological Characteristics of Plantlets. Forests. 2020;11:1181. doi: 10.3390/f11111181. DOI

Pereira C., Castander-Olarieta A., Montalbán I.A., Pěnčík A., Petřík I., Pavlovic I., De Medeiros Oliveira E., Fraga H., Guerra M.P., Novak O., et al. Embryonal masses induced at high temperatures in Aleppo pine: Cytokinin profile and cytological characterization. Forests. 2020;11:807. doi: 10.3390/f11080807. DOI

Vega-Bartol J.J., Simões M., Lorenz W.W., Rodrigues A.S., Alba R., Dean J.F., Miguel C.M. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster. BMC Plant Biol. 2013;13:123. doi: 10.1186/1471-2229-13-123. PubMed DOI PMC

Rodrigues A.S., De Vega J.J., Miguel C.M. Comprehensive assembly and analysis of the transcriptome of maritime pine developing embryos. BMC Plant Biol. 2018;18:379. doi: 10.1186/s12870-018-1564-2. PubMed DOI PMC

Perdiguero P., Barbero M., Cervera M., Collada C., Soto Á. MoLecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea) Plant Physiol. Biochem. 2013;67:199–208. doi: 10.1016/j.plaphy.2013.03.008. PubMed DOI

Cano M., Morcillo A., Humánez A., Mendoza-Poudereux I., Alborch A., Segura J., Arrillaga I. Maritime pine (Pinus pinaster Aiton) In: Jain S.M., Gupta P., editors. Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. 2nd ed. Volume 1. Springer International Publishing; Cham, Switzerland: 2018. pp. 167–179.

Luo M., Cheng K., Xu Y., Yang S., Wu K. Plant Responses to Abiotic Stress Regulated by Histone Deacetylases. Front. Plant Sci. 2017;8:2147. doi: 10.3389/fpls.2017.02147. PubMed DOI PMC

Khan I.U., Ali A., Khan H.A., Baek D., Park J., Lim C.J., Zareen S., Jan M., Lee S.Y., Pardo J.M., et al. PWR/HDA9/ABI4 Complex Epigenetically Regulates ABA Dependent Drought Stress Tolerance in Arabidopsis. Front. Plant Sci. 2020;11:623. doi: 10.3389/fpls.2020.00623. PubMed DOI PMC

de Rooij P.G.H., Perrella G., Kaiserli E., Van Zanten M. The diverse and unanticipated roles of histone deacetylase 9 in coordinating plant development and environmental acclimation. J. Exp. Bot. 2020;71:6211–6225. doi: 10.1093/jxb/eraa335. PubMed DOI PMC

Kaur R., Sinha K., Bhunia R. Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Mol. Biol. Rep. 2019;46:2577–2593. doi: 10.1007/s11033-019-04686-x. PubMed DOI

Wu X., Shiroto Y., Kishitani S., Ito Y., Toriyama K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep. 2009;28:21–30. doi: 10.1007/s00299-008-0614-x. PubMed DOI

Ali M.A., Azeem F., Nawaz M.A., Acet T., Abbas A., Imran Q.M., Shah K.H., Rehman H.M., Chhung G., Yang S.H., et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis. J. Plant Physiol. 2018;226:12–21. doi: 10.1016/j.jplph.2018.04.007. PubMed DOI

Usman M.G., Rafii M.Y., Ismail M.R., Malek M.A., Latif M.A., Oladosu Y. Heat Shock Proteins: Functions And Response Against Heat Stress In Plants. Int. J. Sci. Technol. Res. 2014;3:204–218.

Mittler R., Finka A., Goloubinoff P. How do plants feel the heat? Trends Biochem. Sci. 2012;37:118–125. doi: 10.1016/j.tibs.2011.11.007. PubMed DOI

Lohmann C., Eggers-Schumacher G., Wunderlich M., Schöffl F. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. MoL. Genet. Genom. 2004;271:11–21. doi: 10.1007/s00438-003-0954-8. PubMed DOI

Byung-Hoon K., Fritz S. Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J. Exp. Bot. 2002;53:371–375. doi: 10.1093/jexbot/53.367.371. PubMed DOI

Lee G.J., Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 2000;122:189–198. doi: 10.1104/pp.122.1.189. PubMed DOI PMC

Sarkar N.K., Kim Y.K., Grover A. Rice sHsp genes: Genomic organization and expression profiling under stress and development. BMC Genom. 2009;10:393. doi: 10.1186/1471-2164-10-393. PubMed DOI PMC

Dobrá J., Černý M., Štorchová H., Dobrev P., Skalák J., Jedelský P.L., Lukšanová H., Gaudinová A., Pešek B., Malbeck J., et al. The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis. Plant Sci. 2015;231:52–61. doi: 10.1016/j.plantsci.2014.11.005. PubMed DOI

Schäfer M., Brütting C., Meza-Canales I.D., Großkinsky D.K., Vankova R., Baldwin I.T., Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC

Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010;61:651–679. doi: 10.1146/annurev-arplant-042809-112122. PubMed DOI

Asensi-Fabado M.A., Olivan A., Munne-Bosch S. A comparative study of the hormonal response to high temperatures and stress reiteration in three Labiatae species. Environ. Exp. Bot. 2013;94:57–65. doi: 10.1016/j.envexpbot.2012.05.001. DOI

Gosavi G.U., Jadhav A., Kale A.A., Gadakh S.R., Pawar B.D., Chimote V.P. Effect of heat stress on proline, chlorophyll content, heat shock proteins and antioxidant enzyme activity in sorghum (Sorghum bicolor) at seedlings stage. Indian J. Biotechnol. 2014;13:356–363.

Raja V., Qadir S.U., Alyemeni M.N., Ahmad P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech. 2020;10:208. doi: 10.1007/s13205-020-02206-4. PubMed DOI PMC

Sattar A., Sher A., Ijaz M., Ul-Allah S., Rizwan M.S., Hussain M., Jabran K., Cheema M.A. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS ONE. 2020;15:e0232974. doi: 10.1371/journal.pone.0232974. PubMed DOI PMC

Arbona V., Hossain Z., López-Climent M.F., Pérez-Clemente R.M., Gómez-Cadenas A. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant. 2008;132:452–466. doi: 10.1111/j.1399-3054.2007.01029.x. PubMed DOI

Wahid A., Gelani S., Ashraf M., Foolad M.R. Heat tolerance in plants: An overview. Env. Exp. Bot. 2007;61:199–223. doi: 10.1016/j.envexpbot.2007.05.011. DOI

Wang B., Chen J., Chen L., Wang X., Wang R., Ma L., Peng S., Luo J., Chen Y. Combined drought and heat stress in Camellia oleifera cultivars: Leaf characteristics, soluble sugar and protein contents, and Rubisco gene expression. Trees. 2015;29:1483–1492. doi: 10.1007/s00468-015-1229-9. DOI

Ahmed C., Rouina B., Boukhris M. Changes in water relations, photosynthetic activity and proline accumulation in one-year-old olive trees (Olea europaea L. cv. ChemLali) in response to NaCl salinity. Acta Physiol. Plant. 2008;30:553–560. doi: 10.1007/s11738-008-0154-6. DOI

MoLinari H., Marur C., Daros E., de Campos M., de Carvalho J., Filho J., Pereira L., Vieira L. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): Osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol. Plant. 2007;130:218–229. doi: 10.1111/j.1399-3054.2007.00909.x. DOI

Borgo L., Marur C.J., Vieira L.G. Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Sci. Agron. 2015;37:191–199. doi: 10.4025/actasciagron.v37i2.19097. DOI

Zhou R., Kong L., Wu Z., Rosenqvist E., Wanga Y., Zhaoa L., Zhaoa T., Ottosen C. Physiological response of tomatoes at drought, heat and their combination followed by recovery. Physiol. Plant. 2019;165:144–154. doi: 10.1111/ppl.12764. PubMed DOI

Adams III W., Demmig-Adams B. Carotenoid composition and down regulation of photosystem II in three conifer species during the winter. Physiol. Plant. 1994;92:451–458. doi: 10.1034/j.1399-3054.1994.920313.x. DOI

Grover A., Mittal D., Negi M., Lavania D. Generating high temperature tolerant transgenic plants: Achievements and challenges. Plant Sci. 2013;205–206:38–47. doi: 10.1016/j.plantsci.2013.01.005. PubMed DOI

Irigoyen J., Einerich D., Sanchez-Diaz M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativd) plants. Physiol. Plant. 1992;84:55–60. doi: 10.1111/j.1399-3054.1992.tb08764.x. DOI

Wang X., Cai J., Liu F., Dai T., Cao W., Wollenweber B., Jiang D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol. Bioch. 2014;74:185–192. doi: 10.1016/j.plaphy.2013.11.014. PubMed DOI

Harsh A., Sharma Y., Joshi U., Rampuria S., Singh G., Kumar S., Sharma R. Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia) Ann. Agric. Sci. 2016;61:57–64. doi: 10.1016/j.aoas.2016.02.001. DOI

Vinocur B., Altman A. Recent Advances in Engineering Plant Tolerance to Abiotic Stress: Achievements and Limitations. Curr. Opin. Biotechnol. 2005;16:123–132. doi: 10.1016/j.copbio.2005.02.001. PubMed DOI

Correia B., Hancock R.D., Amaral J., Gomez-Cadenas A., Valledor L., Pinto G. Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone. Front. Plant Sci. 2018;9:819. doi: 10.3389/fpls.2018.00819. PubMed DOI PMC

Canales J., Bautista R., Label P., Gómez-Maldonado J., Lesur I., Fernández-Pozo N., Rueda-López M., Guerrero-Fernández D., Castro-Rodríguez V., Hicham B., et al. Gene expression profiling in the stem of young maritime pine trees: Detection of ammonium stress-responsive genes in the apex. Trees. 2012;26:609–619. doi: 10.1007/s00468-011-0625-z. DOI

Vega-Bartol J.J., Santos R.R., Simoes M., Miguel C.M. Normalizing gene expression by quantitative PCR during somatic embryogenesis in two representative conifer species: Pinus pinaster and Picea abies. Plant Cell Rep. 2013;32:715–729. doi: 10.1007/s00299-013-1407-4. PubMed DOI

Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant hormonomics: Multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Bates L., Waldren R., Teare I. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–208. doi: 10.1007/BF00018060. DOI

Nebauer S., Renau-Morata B., Guardiola J., MoLina R. Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiol. 2011;31:169–177. doi: 10.1093/treephys/tpq103. PubMed DOI

Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1997;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI

Rodríguez O., Vilasó J.E., Aguilera I., Pérez R.M., Ábalos A. Validación por verificación del método colorimétrico de la antrona para la cuantificación de ramnolípidos. Revista Cubana de Química. 2013;25:287–294.

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2017.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...