Temperature and Water Availability During Maturation Affect the Cytokinins and Auxins Profile of Radiata Pine Somatic Embryos
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30619440
PubMed Central
PMC6306442
DOI
10.3389/fpls.2018.01898
Knihovny.cz E-zdroje
- Klíčová slova
- Pinus radiata, cytokinins, embryogenic cell lines, embryonal masses, indol-3-acetic acid, somatic embryogenesis,
- Publikační typ
- časopisecké články MeSH
Somatic embryogenesis (SE) provides us a potent biotechnological tool to manipulate the physical and chemical conditions (water availability) along the process and to study their effect in the final success in terms of quantity of somatic embryos produced. In the last years, our research team has been focused on the study of different aspects of the SE in Pinus spp. One of the main aspects affecting SE is the composition of culture media; in this sense, phytohormones play one of the most crucial roles in this propagation system. Many studies in conifers have shown that different stages of SE and somatic embryo development are correlated with distinct endogenous phytohormone profiles under the stress conditions needed for the process (i.e., cytokinins play a regulatory role in stress signaling, which it is essential for radiata pine SE). Based on this knowledge, the aim of this study was to test the effect of different temperatures (18, 23, and 28°C) and gelling agent concentrations (8, 9, and 10 gL-1) during the maturation stage of Pinus radiata SE in maturation and germination rates. Parallel, phytohormone profile of somatic embryos developed was evaluated. In this sense, the highest gellan gum concentration led to significantly lower water availability. At this gellan gum concentration and 23°C a significantly higher number of somatic embryos was obtained and the overall success of the process increased with respect to other treatments assayed. The somatic embryos produced in these conditions showed the highest concentration of iP-type cytokinins and total ribosides. Although, the different conditions applied during maturation of somatic embryos led to different hormonal profiles, they did not affect the ex vitro survival of the resulting somatic plants, where no significant differences were observed.
Zobrazit více v PubMed
Aitken-Christie J., Singh A. P., Davies H. (1988). “Multiplication of meristematic tissue: a new tissue culture system for radiata pine,” in Genetic Manipulation of Woody Plants, eds Hanover J. W., Keathley D. E. (New York, NY: Plenum Publishing Corp; ), 413–432.
Almeida J. A. S., Leal R. R., Carmazini V. C. B., Salomon M. V., Guerreiro-Filho O. (2014). Effect of temperature and cytokinin on the capacity of direct somatic embryogenesis in Coffea arabica L. genotypes. Coffee Sci. 9 394–399.
Arnau J. A., Tadeo F. R., Guerri J., Primo-Millo E. (1999). Cytokinins in peach: endogenous levels during early fruit development. Plant Physiol. Biochem. 37 741–750. 10.1016/S0981-9428(00)86687-5 DOI
Ayil-Gutiérrez B., Galaz-Avalos R. M., Peña-Cabrera E., Loyola-Vargas V. M. (2013). Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. Plant Signal. Behav. 8:e26998. 10.4161/psb.26998 PubMed DOI PMC
Benková E., Michniewicz M., Sauer M., Teichmann T., Seifertová D., Jürgens G., et al. (2003). Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115 591–602. 10.1016/S0092-8674(03)00924-3 PubMed DOI
Bernardi J., Lanubile A., Li Q.-B., Kumar D., Kladnik A., Cook S. D., et al. (2012). Impaired auxin biosynthesis in the defective endosperm18 mutant is due to mutational loss of expression in the ZmYuc1 gene encoding endosperm-specific YUCCA1 protein in maize. Plant Physiol. 160 1318–1328. 10.1104/pp.112.204743 PubMed DOI PMC
Bielach A., Hrtyan M., Tognetti V. B. (2017). Plants under stress: involvement of auxin and cytokinin. Int. J. Mol. Sci. 18:E1427. 10.3390/ijms18071427 PubMed DOI PMC
Bonga J. M., Klimaszewska K. K., von Aderkas P. (2010). Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 100 241–254. 10.1007/s11240-009-9647-2 DOI
Buendía-González L., Estrada-Zúñiga M. E., Orozco-Villafuerte J., Cruz-Sosa F., Vernon-Carter E. J. (2012). Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata. Plant Cell Tissue Organ Cult. 108 287–296. 10.1007/s11240-011-0042-4 DOI
Choudhury H., Kumaria S., Tandon P. (2008). Induction and maturation of somatic embryos from intact megagametophyte explants in Khasi pine (Pinus kesiya Royle ex. Gord.). Curr. Sci. 95 1433–1438.
Corredoira E., Valladares S., Vieitez A. M. (2006). Morphohistological analysis of the origin and development of somatic embryos from leaves of mature Quercus robur. In Vitro Cell. Dev. Biol. Plant 42 525–533. 10.1079/IVP2006827 DOI
Emery R. J. N., Leport L., Barton J. E., Turner N. C., Atkins A. (1998). Cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 117 1515–1523. 10.1104/pp.117.4.1515 PubMed DOI PMC
Fehér A. (2015). Somatic embryogenesis - stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta 1849 385–402. 10.1016/j.bbagrm.2014.07.005 PubMed DOI
Frébort I., Kowalska M., Hluska T., Frébortová J., Galuszka P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62 2431–2452. 10.1093/jxb/err004 PubMed DOI
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62 2827–2840. 10.1093/jxb/erq457 PubMed DOI
García-Mendiguren O., Montalbán I. A., Goicoa T., Ugarte M. D., Moncaleán P. (2016). Environmental conditions at the initial stages of Pinus radiata somatic embryogenesis affect the production of somatic embryos. Trees Struct. Funct. 30 949–958. 10.1007/s00468-015-1336-7 DOI
Garin E., Bernier-Cardou M., Isabel N., Klimaszewska K., Plourde A. (2000). Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell Tissue Organ Cult. 62 27–37. 10.1023/A:1006402215457 DOI
Grzyb M., Kalandyk A., Waligórski P., Mikuła A. (2017). The content of endogenous hormones and sugars in the process of early somatic embryogenesis in the tree fern Cyathea delgadii Sternb. Plant Cell Tissue Organ Cult. 129 387–397. 10.1007/s11240-017-1185-8 DOI
Hargreaves C., Reeves C., Gough K., Montalbán I. A., Low C., van Ballekom S., et al. (2017). Nurse tissue for embryo rescue: testing new conifer somatic embryogenesis methods in a F1 hybrid pine. Trees Struct. Funct. 31 273–283. 10.1007/s00468-016-1482-6 DOI
Harvengt L. (2005). “Somatic embryogenesis in maritime pine (Pinus pinaster Ait.),” in Protocol of Somatic Embryogenesis in Woody Plants, eds Jainand S. M., Gupta P. K. (Berlin: Springer Verlag; ), 107–120. 10.1007/1-4020-2985-3_10 DOI
Hess J. R., Carman J. G. (1998). Embryogenic competence of immature wheat embryos: genotype, donor plant, environment and endogenous hormone concentrations. Crop Sci. 38 249–253. 10.2135/cropsci1998.0011183X003800010042x DOI
Jiménez V. M. (2005). Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul. 47 91–110. 10.1007/s10725-005-3478-x DOI
Jiménez V. M., Bangerth F. (2001). Endogenous hormone concentrations and embryogenic callus development in wheat. Plant Cell Tissue Organ Cult. 67 37–46. 10.1023/A:1011671310451 DOI
Jin F., Hu L., Yuan D., Xu J., Gao W., He L., et al. (2014). Comparative transcriptome analysis between somatic embryos (SEs) and zygotic embryos in cotton: evidence for stress response functions in SE development. Plant Biotechnol. J. 12 161–173. 10.1111/pbi.12123 PubMed DOI
Kakimoto T. (2003). Perception and signal transduction of cytokinins. Annu. Rev. Plant Biol. 54 605–627. 10.1146/annurev.arplant.54.031902.134802 PubMed DOI
Kikuchi A., Sanuki N., Higashi K., Koshiba T., Kamada H. (2006). Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223 637–645. 10.1007/s00425-005-0114-y PubMed DOI
Klemš M., Slámová Z., Motyka V., Malbeck J., Trávníčková A., Macháčková I., et al. (2011). Changes in cytokinin levels and metabolism in tobacco (Nicotiana tabacum L.) explants during in vitro shoot organogenesis induced by trans-zeatin and dihydrozeatin. Plant Growth Regul. 65 427–437. 10.1007/s10725-011-9612-z DOI
Klimaszewska K., Bernier-Cardou M., Cyr D. R., Sutton B. C. S. (2000). Influence of gelling agents on culture medium gel strength, water availability, tissue water potential, and maturation response in embryogenic cultures of Pinus strobus L. In Vitro Cell. Dev. Biol. Plant 36 279–286. 10.1007/s11627-000-0051-1 DOI
Klimaszewska K., Noceda C., Pelletier G., Label P., Rodriguez R., Lelu-Walter M. A. (2009). Biological characterization of young and aged embryogenic cultures of Pinus pinaster (Ait.). In Vitro Cell. Dev. Biol. Plant 45 20–33. 10.1007/s11627-008-9158-6 DOI
Klimaszewska K., Smith D. R. (1997). Maturation of somatic embryos of Pinus strobus is promoted by a high concentration of gellan gum. Physiol. Plant. 100 949–957. 10.1111/j.1399-3054.1997.tb00022.x DOI
Kohli A., Sreenivasulu N., Lakshmanan P., Kumar P. P. (2013). The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. Plant Cell Rep. 32 945–957. 10.1007/s00299-013-1461-y PubMed DOI
Krajňáková J., Häggman H., Gömöry D. (2009). Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica somatic embryos. Plant Cell Tissue Organ Cult. 96 251–262. 10.1007/s11240-008-9482-x DOI
Kudo T., Makita N., Kojima M., Tokunaga H., Sakakibara H. (2012). Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-o-glucosyltransferase in rice. Plant Physiol. 160 319–331. 10.1104/pp.112.196733 PubMed DOI PMC
Leljak-Levanič D., Mrvková M., Turečková V., Pěnčík A., Rolčík J., Strnad M., et al. (2016). Hormonal and epigenetic regulation during embryogenic tissue habituation in Cucurbita pepo L. Plant Cell Rep. 35 77–89. 10.1007/s00299-015-1869-7 PubMed DOI
Lelu-Walter M.-A., Gautier F., Eliášová K., Sanchez L., Teyssier C., Lomenech A.-M., et al. (2018). High gellan gum concentration and secondary somatic embryogenesis: two key factors to improve somatic embryo development in Pseudotsuga menziesii [Mirb.]. Plant Cell Tissue Organ Cult. 132 137–155. 10.1007/s11240-017-1318-0 DOI
Lelu-Walter M.-A., Pâques L. E. (2009). Simplified and improved somatic embryogenesis of hybrid larches (Larix x eurolepis and Larix x marschlinsii). Ann. For. Sci. 66 104p1–104p10.
Lelu-Walter M.-A., Thompson D., Harvengt L., Sanchez L., Toribio M., Pâques L. E. (2013). Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genet. Genomes 9 883–899. 10.1007/s11295-013-0620-1 DOI
Limanton-Grevet A., Sotta B., Brown S., Jullien M. (2000). Analysis of habituated embryogenic lines in Asparagus officinalis L.: growth characteristics, hormone content and ploidy level of calli and regenerated plants. Plant Sci. 160 15–26. 10.1016/S0168-9452(00)00356-3 PubMed DOI
Márquez-Martín B., Sesmero R., Quesada M. A., Pliego-Alfaro F., Sánchez-Romero C. (2011). Water relations in culture media influence maturation of avocado somatic embryos. J. Plant Physiol. 168 2028–2034. 10.1016/j.jplph.2011.06.008 PubMed DOI
Moncaleán P., Alonso P., Centeno M. L., Cortizo A., Rodríguez A., Fernández B., et al. (2005). Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol. 25 1–9. 10.1093/treephys/25.1.1 PubMed DOI
Moncaleán P., Cañal M. J., Fernández H., Fernández B., Rodríguez A. (2003). Nutritional and gibberellic acid requirements in kiwifruit vitroponic cultures. In Vitro Cell. Dev. Biol. Plant 39 49–55. 10.1079/IVP2002371 DOI
Montalbán I. A., De Diego N., Moncaleán P. (2010). Bottlenecks in Pinus radiata somatic embryogenesis: improving maturation and germination. Trees Struct. Funct. 24 1061–1107. 10.1007/s00468-010-0477-y DOI
Montalbán I. A., De Diego N., Moncaleán P. (2011). Testing novel cytokinins for improved in vitro adventitious shoots formation and subsequent ex vitro performance in Pinus radiata. Forestry 84 363–373. 10.1093/forestry/cpr022 DOI
Montalbán I. A., De Diego N., Moncaleán P. (2012). Enhancing initiation and proliferation in radiata pine (Pinus radiata D. Don) somatic embryogenesis through seed family screening, zygotic embryo staging and media adjustments. Acta Physiol. Plant. 34 451–460. 10.1007/s11738-011-0841-6 DOI
Montalbán I. A., Moncaleán P. (2018). Rooting of Pinus radiata somatic embryos: factors involved in the success of the process. J. For. Res. 1–7. 10.1007/s11676-018-0618-5 DOI
Morel A., Teyssier C., Trontin J.-F., Eliášová K., Pešek B., Beaufour M., et al. (2014). Early molecular events involved in Pinus pinaster Ait. somatic embryo development under reduced water availability: transcriptomic and proteomic analyses. Physiol. Plant. 152 184–201. 10.1111/ppl.12158 PubMed DOI
Nic-Can G. I., Avilez-Montalvo J. R., Aviles-Montalvo R. N., Márquez-López R. E., Mellado-Mojica E., Galaz-Ávalos R. M., et al. (2016). “The relationship between stress and somatic embryogenesis,” in Somatic Embryogenesis: Fundamental Aspects and Applications, eds Loyola-Vargas V. M., Ochoa-Alejo N. (Cham: Springer Nature; ), 151–170. 10.1007/978-3-319-33705-0_9 DOI
Novák O., Hauserová E., Amakorová P., Doležal K., Strnad M. (2008). Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69 2214–2224. 10.1016/j.phytochem.2008.04.022 PubMed DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. (2012). Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 72 523–536. 10.1111/j.1365-313X.2012.05085.x PubMed DOI
Pacheco de Freitas H., do Nascimento L., Corrêa C., Pessoa dos Santos H., de Andrade J., Guerra M. P. (2016). Glutathione and abscisic acid supplementation influences somatic embryo maturation and hormone endogenous levels during somatic embryogenesis in Podocarpus lambertii Klotzsch ex Endl. Plant Sci. 253 98–106. 10.1016/j.plantsci.2016.09.012 PubMed DOI
Park Y. S., Beaulieu J., Bousquet J. (2016). “Multi-varietal forestry integrating genomic selection and somatic embryogenesis,” in Vegetative Propagation of Forest Trees, eds Park Y. S., Bonga J. M., Moon H. K. (Seoul: National Institute of Forest Science; ), 323–335.
Pěnčík A., Casanova-Sáez R., Pilaøová V., Žukauskaitë A., Pinto R., Luis Micol J., et al. (2018). Ultra-rapid auxin metabolite profiling for high-throughput Arabidopsis mutant screening. J. Exp. Bot. 6 2569–2579. 10.1093/jxb/ery084 PubMed DOI PMC
Pěnčík A., Turečková V., Paulišić S., Rolčík J., Strnad M., Mihaljević S. (2015). Ammonium regulates embryogenic potential in Cucurbita pepo through pH-mediated changes in endogenous auxin and abscisic acid. Plant Cell Tissue Organ Cult. 122 89–100. 10.1007/s11240-015-0752-0 DOI
Pereira C., Montalbán I. A., García-Mendiguren O., Goicoa T., Ugarte D., Correia S., et al. (2016). Pinus halepensis somatic embryogenesis is affected by the physical and chemical conditions at the initial stages of the process. J. For. Res. 21 143–150. 10.1007/s10310-016-0524-7 DOI
Pereira C., Montalbán I. A., Goicoa T., Ugarte M. D., Correia S., Canhoto J., et al. (2017). The effect of changing temperature and agar concentration at proliferation stage in the final success of Aleppo pine somatic embryogenesis. For. Syst. 26 1–4.
Prewein C., Vagner M., Wilhelm E. (2004). Changes in water status and proline and abscisic acid concentrations in developing somatic embryos of pedunculate oak (Quercus robur) during maturation and germination. Tree Physiol. 24 1251–1257. 10.1093/treephys/24.11.1251 PubMed DOI
Quoirin M., Lepoivre P. (1977). Études des milieu adaptés aux cultures in vitro de Prunus. Acta Hortic. 78 437–442. 10.17660/ActaHortic.1977.78.54 DOI
Rittenberg D., Foster L. (1940). A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J. Biol. Chem. 133 727–744.
Sáenz L., Jones L. H., Oropeza C., Vláčil D., Strnad M. (2003). Endogenous isoprenoid and aromatic cytokinins in different plant parts of Cocos nucifera (L.). Plant Growth Regul. 39 205–215. 10.1023/A:1022851012878 DOI
Salajova T., Salaj J. (2005). Somatic embryogenesis in Pinus nigra: embryogenic tissue initiation, maturation and regeneration ability of established cell lines. Biol. Plant. 49 333–339. 10.1007/s10535-005-0003-z DOI
Silveira V., Balbuena T. S., Santa-Catarina C., Floh E. I. S., Guerra M. P., Handro W. (2004). Biochemical changes during seed development in Pinus taeda L. Plant Growth Regul. 44 147–156. 10.1023/B:GROW.0000049410.63154.ed DOI
Skirycz A., Vandenbroucke K., Clauw P., Maleux K., De Meyer B., Dhondt S., et al. (2011). Survival and growth of Arabidopsis plants given limited water are not equal. Nat. Biotechnol. 29 212–214. 10.1038/nbt.1800 PubMed DOI
Somleva M., Kapchina V., Alexieva V., Golovinsky E. (1995). Anticytokinin effects on in vitro response of embryogenic and non-embryogenic genotypes of Dactylis glomerata L. Plant Growth Regul. 16 109–112. 10.1007/BF00029530 DOI
Stirk W. A., Gold J. D., Novák O., Strnad M., Van Staden J. (2005). Changes in endogenous cytokinins during germination and seedling establishment of Tagetes minuta L. Plant Growth Regul. 47 1–7. 10.1016/j.jplph.2012.01.013 PubMed DOI
Svačinová J., Novák O., Plaèková L., Lenobel R., Holík J., Strnad M., et al. (2012). A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8:17. 10.1186/1746-4811-8-17 PubMed DOI PMC
Teyssier C., Grondin C., Bonhomme L., Lomenech A. M., Vallance M., Morabito D., et al. (2011). Increased gelling agent concentration promotes somatic embryo maturation in hybrid larch (Larix x eurolepsis): a 2-DE proteomic analysis. Physiol. Plant. 141 152–165. 10.1111/j.1399-3054.2010.01423.x PubMed DOI
Troch V., Werbrouck S., Geelen D., Van Labeke M.-C. (2009). Optimization of horse chestnut (Aesculus hippocastanum L.) somatic embryo conversion. Plant Cell Tissue Organ Cult. 98 115–123. 10.1007/s11240-009-9544-8 DOI
Vondrakova Z., Dobrev P. I., Pesek B., Fischerova L., Vagner M., Motyka V. (2018). Profiles of endogenous phytohormones over the course of norway spruce somatic embryogenesis. Front. Plant Sci. 9:1283. 10.3389/fpls.2018.01283 PubMed DOI PMC
Vyroubalová S., Václavíková K., Turecková V., Novák O., Smehilová M., Hluska T., et al. (2009). Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 151 433–447. 10.1104/pp.109.142489 PubMed DOI PMC
Walter C., Find J. I., Grace L. J. (2005). “Somatic embryogenesis and genetic transformation in Pinus radiata,” in Protocols for Somatic Embryogenesis in Woody Plants, eds Jain S. M., Gupta P. K. (Dordrecht: Springer; ), 11–24. 10.1007/1-4020-2985-3_2 DOI
Wang H., Cai J.-Z., Xia H.-L., Li X.-K., Yang S.-L. (2014). Factors influencing carrot embryogenesis and somatic embryo development. Chin. J. Pharm. Biotechnol. 21 297–301.
Zeng F., Zhang X., Jin S., Cheng L., Liang S., Hu L., et al. (2007). Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tissue Organ Cult. 90 63–70. 10.1007/s11240-007-9253-0 DOI
Zhang C. X., Li Q., Kong L. (2007). Induction, development and maturation of somatic embryos in Bunge’s pine (Pinus bungeana Zucc. ex Endl.). Plant Cell Tissue Organ Cult. 91 273–280. 10.1007/s11240-007-9294-4 DOI
Zur I., Dubas E., Krzewska M., Waligórski P., Dziuka M., Janowiak F. (2015). Hormonal requirements for effective induction of microspore embryogenesis in triticale (×Triticosecale Wittm.) anther culture. Plant Cell Rep. 34 47–62. 10.1007/s00299-014-1686-4 PubMed DOI PMC