Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility

. 2013 ; 8 (11) : e79029. [epub] 20131115

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24260147

Barley is one of the most important cereal crops grown worldwide. It has numerous applications, but its utility could potentially be extended by genetically manipulating its hormonal balances. To explore some of this potential we identified gene families of cytokinin dehydrogenases (CKX) and isopentenyl transferases, enzymes that respectively irreversibly degrade and synthesize cytokinin (CK) plant hormones, in the raw sequenced barley genome. We then examined their spatial and temporal expression patterns by immunostaining and qPCR. Two CKX-specific antibodies, anti-HvCKX1 and anti-HvCKX9, predominantly detect proteins in the aleurone layer of maturing grains and leaf vasculature, respectively. In addition, two selected CKX genes were used for stable, Agrobacterium tumefaciens-mediated transformation of the barley cultivar Golden Promise. The results show that constitutive overexpression of CKX causes morphological changes in barley plants and prevents their transition to flowering. In all independent transgenic lines roots proliferated more rapidly and root-to-shoot ratios were higher than in wild-type plants. Only one transgenic line, overexpressing CKX under the control of a promoter from a phosphate transporter gene, which is expressed more strongly in root tissue than in aerial parts, yielded progeny. Analysis of several T1-generation plants indicates that plants tend to compensate for effects of the transgene and restore CK homeostasis later during development. Depleted CK levels during early phases of development are restored by down-regulation of endogenous CKX genes and reinforced de novo biosynthesis of CKs.

Zobrazit více v PubMed

Vyroubalová Š, Šmehilová M, Galuszka P, Ohnoutková L (2011) Genetic transformation of barley: limiting factors. Biol Plantarum 55: 213–224.

Nuutila AM, Ritala A, Skadsen RW, Mannonen L, Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-ß-glucanase in transgenic barley seeds during germination. Plant Mol Biol 41: 777–783. PubMed

Dunwell JM (2009) Transgenic wheat, barley and oats: Future prospects. Methods Mol Biol 478: 333–345. PubMed

Hensel G (2011) Genetic transformation of Triticeae cereals for molecular farming. In Alvarez MA, editor. Genetic transformation. Rijeka, Croatia: InTech Open Access Publisher. 171–190.

Werner T, Köllmer I, Bartrina I, Holst K, Schmülling T (2006) New insights into the biology of cytokinin degradation. Plant Biol 8: 371–381. PubMed

Werner T, Motyka V, Laucou V, Smets R, van Onckelen H, et al. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15: 2532–2550. PubMed PMC

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, et al. (2005) Cytokinin oxidase regulates rice grain production. Science 309: 741–745. PubMed

Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. P Natl Acad Sci USA 98: 10487–10492. PubMed PMC

Werner T, Holst K, Pörs Y, Guivarc'h A, Mustroph A, et al. (2008) Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J Exp Bot 59: 2659–2672. PubMed PMC

Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, et al. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17: 678–682. PubMed

Galuszka P, Frébortová J, Werner T, Mamoru Y, Strnad M, et al. (2004) Cytokinin oxidase/dehydrogenase genes in barley and wheat cloning and heterologous expression. Eur J Biochem 271: 3990–4002. PubMed

Šmehilová M, Galuszka P, Bilyeu KD, Jaworek P, Kowalska M, et al. (2009) Subcellular localization and biochemical comparison of cytosolic and secreted cytokinin dehydrogenase enzymes from maize. J Exp Bot 60: 2701–2712. PubMed

Schünmann P, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the barley PHT1:1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136: 4205–4214. PubMed PMC

Jung J, Won SY, Suh SY, Kim H, Wing R, et al. (2006) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis . Planta 225: 575–588. PubMed

Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci 316: 1194–1199.

Cho MJ, Jiang W, Lemaux PG (1998) Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. Plant Sci 138: 229–244.

Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4: 1–12. PubMed PMC

Frébort I, Šebela M, Galuszka P, Werner T, Schmülling T, et al. (2002) Cytokinin oxidase/dehydrogenase assay: optimized procedures and applications. Anal Biochem 306: 1–7. PubMed

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. PubMed

Schägger H, von Jagow G (1987) Tricine–sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range 1 to 100 kDa. Anal Biochem 166: 368–379. PubMed

Bilyeu KD, Cole JL, Laskey JG, Riekhof WR, Esparza TJ, et al. (2001) Molecular and biochemical characterization of a cytokinin oxidase from maize. Plant Physiol 125: 378–386. PubMed PMC

Faiss M, Zalubìlová J, Strnad M, Schmülling T (1997) Conditional transgenic expression of the ipt gene indicates a function for cytokinins in paracrine signaling in whole tobacco plants. Plant J 12: 401–415. PubMed

Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69: 2214–2224. PubMed

Vyroubalová Š, Václavíková K, Turečková V, Novák O, Šmehilová M, et al. (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol 151: 433–447. PubMed PMC

Novák O, Tarkowski P, Tarkowská D, Doležal K, Lenobel R, et al. (2003) Quantitative analysis of cytokinins in plants by liquid chromatography–single-quadrupole mass spectrometry. Anal Chim Acta 480: 207–218.

Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, et al. (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491: 711–716. PubMed

Mameaux S, Cockram J, Thiel T, Steuernaqel B, Stein N, et al. (2012) Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae. Plant Biotechnol J 10: 67–82. PubMed

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, et al. (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 420747. PubMed PMC

Galuszka P, Frébort I, Šebela M, Sauer P, Jacobsen S, et al. (2001) Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem 268: 450–461. PubMed

Zatloukal M, Gemrotová M, Doležal K, Havlíček L, Spíchal L, et al. (2008) Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorgan Med Chem 16: 9268–9275. PubMed

Chu ZX, Ma Q, Lin YX, Tang XL, Zhou YQ, et al. (2011) Genome-wide identification, classification, and analysis of two-component signal system genes in maize. Genet Mol Res 10: 3316–3330. PubMed

Kurokawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, et al. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445: 652–655. PubMed

Podlešáková K, Zalabák D, Čudejková M, Plíhal O, Szüčová L, et al. (2012) Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS One 7: e39293. PubMed PMC

Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, et al. (2013) Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol Adv 31: 97–117. PubMed

Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, et al. (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22: 3905–3920. PubMed PMC

Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A (2010) Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot 61: 1839–1851. PubMed

Balibrea-Lara ME, Gonzalez Garcia MC, Fatima T, Ehness R, Lee TK, et al. (2004) Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16: 1276–1287. PubMed PMC

Ye X, Williams EJ, Shen J, Esser JA, Nichols AM, et al. (2008) Plant development inhibitory genes in binary vector backbone improve quality event efficiency in soybean transformation. Transgenic Res 17: 827–838. PubMed

Furtado A, Henry RJ, Takaiwa F (2008) Comparison of promoters in transgenic rice. Plant Biotechnol J 6: 679–693. PubMed

Furtado A, Henry RJ, Pellerineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant Biotechnol J 7: 240–253. PubMed

Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, et al. (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131: 1270–1282. PubMed PMC

Morris RO (1997) Hormonal regulation of seed development. In: Larkins BA, Vasil IK, editors. Cellular and molecular biology of plant seed development. Dordrecht: Kluwer Academic Publishers. 117–148.

Lomin SN, Yonekura-Sakakibara K, Romanov GA, Sakakibara H (2011) Ligand-binding properties and subcellular localization of maize cytokinin receptors. J Exp Bot 62: 5149–5159. PubMed PMC

Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, et al. (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156: 1808–1818. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...