SWEET11b transports both sugar and cytokinin in developing barley grains
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36857316
PubMed Central
PMC10226576
DOI
10.1093/plcell/koad055
PII: 7061345
Knihovny.cz E-zdroje
- MeSH
- cukry metabolismus MeSH
- cytokininy * metabolismus MeSH
- ječmen (rod) * genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- sacharosa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cukry MeSH
- cytokininy * MeSH
- rostlinné proteiny MeSH
- sacharosa MeSH
Even though Sugars Will Eventually be Exported Transporters (SWEETs) have been found in every sequenced plant genome, a comprehensive understanding of their functionality is lacking. In this study, we focused on the SWEET family of barley (Hordeum vulgare). A radiotracer assay revealed that expressing HvSWEET11b in African clawed frog (Xenopus laevis) oocytes facilitated the bidirectional transfer of not only just sucrose and glucose, but also cytokinin. Barley plants harboring a loss-of-function mutation of HvSWEET11b could not set viable grains, while the distribution of sucrose and cytokinin was altered in developing grains of plants in which the gene was knocked down. Sucrose allocation within transgenic grains was disrupted, which is consistent with the changes to the cytokinin gradient across grains, as visualized by magnetic resonance imaging and Fourier transform infrared spectroscopy microimaging. Decreasing HvSWEET11b expression in developing grains reduced overall grain size, sink strength, the number of endopolyploid endosperm cells, and the contents of starch and protein. The control exerted by HvSWEET11b over sugars and cytokinins likely predetermines their synergy, resulting in adjustments to the grain's biochemistry and transcriptome.
IBG 4 Bioinformatics Forschungszentrum Jülich 52428 Jülich Germany
Institute of Experimental Physics 5 University of Würzburg Am Hubland 97074 Würzburg Germany
Scotland's Rural College Kings Buildings West Mains Road Edinburgh EH9 3JGUK
Zobrazit více v PubMed
Anfang M, Shani E. Transport mechanisms of plant hormones. Curr Opin Plant Biol. 2021:63:102055. 10.1016/j.pbi.2021.102055 PubMed DOI PMC
Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999:16(1):37–48. 10.1093/oxfordjournals.molbev.a026036 PubMed DOI
Becraft PW, Gibum Y. Regulation of aleurone development in cereal grains. J Exp Bot. 2011:62(5):1669–1675. 10.1093/jxb/erq372 PubMed DOI
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016:34(5):525–527. 10.1038/nbt.3519 PubMed DOI
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiol. 2021:186(2):836–852. 10.1093/plphys/kiab127 PubMed DOI PMC
Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. Transport of sugars. Annu Rev Biochem. 2015a:84(1): 865–894. 10.1146/annurev-biochem-060614-033904 PubMed DOI
Chen YS, Ho TD, Liu L, Lee DH, Lee CH, Chen YR, Lin SY, Lu CA, Yu SM. Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. Proc Natl Acad Sci USA. 2019:116(43): 21925–21935. 10.1073/pnas.1904818116 PubMed DOI PMC
Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, et al. . Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010:468(7323): 527–532. 10.1038/nature09606 PubMed DOI PMC
Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, Londoño A, Samuels AL, Frommer WB. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo. Plant Cell. 2015b:27(3):607–619. 10.1105/tpc.114.134585 PubMed DOI PMC
Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012:335(6065): 207–211. 10.1126/science.1213351 PubMed DOI
Chen L, Zhao J, Song J, Jameson PE. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnol J. 2020:18(3):614–630. 10.1111/pbi.13305 PubMed DOI PMC
Corratgé-Faillie C, Lacombe B. Substrate (un)specificity of Arabidopsis NRT1/PTR FAMILY (NPF) proteins. J Exp Bot. 2017:68(12): 3107–3113. 10.1093/jxb/erw499 PubMed DOI
Demidchik V, Maathuis F, Voitsekhovskaja O. Unravelling the plant signalling machinery: an update on the cellular and genetic basis of plant signal transduction. Funct Plant Biol. 2018:45(2): 1–8. 10.1071/FP17085 PubMed DOI
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007:2(9): 2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Fei H, Yang Z, Lu Q, Wen X, Zhang Y, Zhang A, Lu C. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. Plant Sci. 2021:306: 110851. 10.1016/j.plantsci.2021.110851 PubMed DOI
Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983:220(4601): 1049–1051. 10.1126/science.220.4601.1049 PubMed DOI
Gao Y, An K, Guo W, Chen Y, Zhang R, Zhang X, Chang S, Rossi V, Jin F, Cao X, et al. . The endosperm-specific transcription factor TaNAC019 regulates glutenin and starch accumulation and its elite allele improves wheat grain quality. Plant Cell. 2021:33(3): 603–622. 10.1093/plcell/koaa040 PubMed DOI PMC
Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, Kumar S. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells. 2022:11(8): 1303. 10.3390/cells11081303 PubMed DOI PMC
Gillissen B, Bürkle L, André B, Kühn C, Rentsch D, Brandl B, Frommer WB. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell. 2000:12(2):291–300. 10.1105/tpc.12.2.291 PubMed DOI PMC
Guendel A, Hilo A, Rolletschek H, Borisjuk L. Probing the metabolic landscape of plant vascular bundles by infrared fingerprint analysis, imaging and mass spectrometry. Biomolecules. 2021:11(11):1717. 10.3390/biom11111717 PubMed DOI PMC
Guendel A, Rolletschek H, Wagner S, Muszynska A, Borisjuk L. Micro imaging displays the sucrose landscape within and along its allocation pathways. Plant Physiol. 2018:178(4):1448–1460. 10.1104/pp.18.00947 PubMed DOI PMC
Han L, Zhu Y, Liu M, Zhou Y, Lu G, Lan L, Wang X, Zhao Y, Zhang XC. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter. Proc Natl Acad Sci USA. 2017:114(38):10089–10094. 10.1073/pnas.1709241114 PubMed DOI PMC
Hannah LC, James M. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol. 2008:19(2): 160–165. 10.1016/j.copbio.2008.02.013 PubMed DOI
Hensel G, Kastner C, Oleszczuk S, Riechen J, Kumlehn J. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int J Plant Genomics. 2009:2009: 835608. 10.1155/2009/835608 PubMed DOI PMC
Hluska T, Dobrev PI, Tarkowská D, Frébortová J, Zalabák D, Kopečný D, Plíhal O, Kokáš F, Briozzo P, Zatloukal M, et al. . Cytokinin metabolism in maize: novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Sci. 2016:247: 127–137. 10.1016/j.plantsci.2016.03.014 PubMed DOI
Holubová K, Hensel G, Vojta P, Tarkowski P, Bergougnoux V, Galuszka P. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front Plant Sci. 2018:9: 1676. 10.3389/fpls.2018.01676 PubMed DOI PMC
Jameson PE, Song J. Cytokinin: a key driver of seed yield. J Exp Bot. 2016:67(3): 593–606. 10.1093/jxb/erv461 PubMed DOI
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998:23(10): 403–405. 10.1016/S0968-0004(98)01285-7 PubMed DOI
Jelesko JG. An expanding role for purine uptake permease-like transporters in plant secondary metabolism. Front Plant Sci. 2012:3: 78. 10.3389/fpls.2012.00078 PubMed DOI PMC
Jørgensen ME, Crocol C, Halkie BA, Nour-Eldin HH. Uptake assays in Xenopus laevis oocytes using liquid chromatography-mass spectrometry to detect transport activity. Bio Protoc. 2017:7(20): e2581. 10.21769/BioProtoc.2581 PubMed DOI PMC
Kang J, Lee Y, Sakakibara H, Martinoia E. Cytokinin transporters: GO and STOP in signaling. Trends Plant Sci. 2017:22(6): 455–461. 10.1016/j.tplants.2017.03.003 PubMed DOI
Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, Matsui M, Koshiba T, Kamiya Y, Seo M. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc Natl Acad Sci USA. 2012:109(24): 9653–9658. 10.1073/pnas.1203567109 PubMed DOI PMC
Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, Sano N, Koshiba T, Kamiya Y, Ueda M, Seo M. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nat Commun. 2016:7(1): 13245. 10.1038/ncomms13245 PubMed DOI PMC
Kazachkova Y, Zemach I, Panda S, Bocobza S, Vainer A, Rogachev I, Dong Y, Ben-Dor S, Veres D, Kanstrup C, et al. . The GORKY glycoalkaloid transporter is indispensable for preventing tomato bitterness. Nat Plants. 2021:7(4): 468–480. 10.1038/s41477-021-00865-6 PubMed DOI
Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018:145(4): dev149344. 10.1242/dev.149344 PubMed DOI
Ko D, Kang J, Kiba T, Park J, Kojima M, Do J, Kim KY, Kwon M, Endler A, Song WY, et al. . Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci USA. 2014:111(19): 7150–7155. 10.1073/pnas.1321519111 PubMed DOI PMC
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, et al. . Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell. 2010:18(6): 927–937. 10.1016/j.devcel.2010.05.008 PubMed DOI
Le Hir R, Sorin C, Chakraborti D, Moritz T, Schaller H, Tellier F, Robert S, Morin H, Bako L, Bellini C. ABCG9, ABCG11 and ABCG14 ABC transporters are required for vascular development in Arabidopsis. Plant J. 2013:76(5): 811–824. 10.1111/tpj.12334 PubMed DOI
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009:25(11): 1451–1452. 10.1093/bioinformatics/btp187 PubMed DOI
Liu L, Zhao L, Chen P, Cai H, Hou Z, Jin X, Aslam M, Chai M, Lai L, He Q, et al. . ATP binding cassette transporters ABCG1 and ABCG16 affect reproductive development via auxin signalling in Arabidopsis. Plant J. 2020:102(6): 1172–1186. 10.1111/tpj.14690 PubMed DOI
Ma L, Zhang D, Miao Q, Yang J, Xuan Y, Hu Y. Essential role of sugar transporter OsSWEET11 during the early stage of rice grain filling. Plant Cell Physiol. 2017:58(5): 863–873. 10.1093/pcp/pcx040 PubMed DOI
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok S, Wicker T, Radchuk V, Dockter C, Hedley P, Russell J, et al. . A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017:544(7651): 427–433. 10.1038/nature22043 PubMed DOI
Melkus G, Rolletschek H, Fuchs J, Radchuk V, Grafahrend-Belau E, Sreenivasulu N, Rutten T, Weier D, Heinzel N, Schreiber F, et al. . Dynamic 13C/1H NMR imaging uncovers sugar allocation in the living seed. Plant Biotechnol J. 2011:9(9): 1022–1037. 10.1111/j.1467-7652.2011.00618.x PubMed DOI
Michniewicz M, Ho CH, Enders TA, Floro E, Damodaran S, Gunther LK, Powers SK, Frick EM, Topp CN, Frommer WB, et al. . TRANSPORTER OF IBA1 links auxin and cytokinin to influence root architecture. Dev Cell. 2019:50(5): 599–609. 10.1016/j.devcel.2019.06.010 PubMed DOI PMC
Monat C, Padmarasu S, Lux T, Wicker T, Gundlach H, Himmelbach A, Ens J, Li C, Muehlbauer GJ, Schulman AH, et al. . TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019:20(1): 284. 10.1186/s13059-019-1899-5 PubMed DOI PMC
Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, Hobo T, Hattori M, Yoshimura H, Seo M, Ueguchi-Tanaka M. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice. Plant Cell Physiol. 2020:61(11): 1935–1945. 10.1093/pcp/pcaa130 PubMed DOI
Mrízová K, Jiskrová E, Vyroubalová S, Novák O, Ohnoutková L, Frébort I, Harwood W, Galuszka P. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden promise) fundamentally affects morphology and fertility. PLoS One. 2013:8(11): e79029. 10.1371/journal.pone.0079029 PubMed DOI PMC
Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol. 2005:56(1): 165–185. 10.1146/annurev.arplant.56.032604.144046 PubMed DOI
Nour-Eldin HH, Andersen TG, Burow M, Madsen SR, Jørgensen ME, Olsen CE, Dreyer I, Hedrich R, Geiger D, Halkier BA. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds. Nature. 2012:488(7412): 531–534. 10.1038/nature11285 PubMed DOI
Nour-Eldin HH, Hansen BG, Nørholm MHH, Jensen JK, Halkier BA. Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments. Nucleic Acids Res. 2006:34(18): e122. 10.1093/nar/gkl635 PubMed DOI PMC
Olsen OA. Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol. 2001:52(1): 233–267. 10.1146/annurev.arplant.52.1.233 PubMed DOI
Olsen OA. The modular control of cereal endosperm development. Trends Plant Sci. 2020:25(3): 279–290. 10.1016/j.tplants.2019.12.003 PubMed DOI
Oñate L, Vicente-Carbajosa J, Lara P, Díaz I, Carbonero P. Barley BLZ2, a seed-specific bZIP protein that interacts with BLZ1 in vivo and activates transcription from the GCN4-like motif of B-hordein promoters in barley endosperm. J Biol Chem. 1999:274(14): 9175–9182. 10.1074/jbc.274.14.9175 PubMed DOI
Osugi A, Kojima M, Takebayashi Y, Ueda N, Kiba T, Sakakibara H. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat Plants. 2017:3(8): 17112. 10.1038/nplants.2017.112 PubMed DOI
Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol. 2012:12(1): 16. 10.1186/1471-2229-12-16 PubMed DOI PMC
Pasam RK, Sharma R, Walther A, Özkan H, Graner A, Kilian B. Genetic diversity and population structure in a legacy collection of spring barley landraces adapted to a wide range of climates. PLoS One. 2014:9(12): e116164. 10.1371/journal.pone.0116164 PubMed DOI PMC
Peterson R, Slovin JP, Chen C. A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol. 2010:1(2): e13. 10.4081/pb.2010.e13 DOI
Powell AF, Paleczny AR, Olechowski H, Emery RJ. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol Biochem. 2013:64: 33–40. 10.1016/j.plaphy.2012.12.010 PubMed DOI
Radchuk V, Borisjuk L. Physical, metabolic and developmental functions of the seed coat. Front Plant Sci. 2014:5: 510. 10.3389/fpls.2014.00510 PubMed DOI PMC
Radchuk V, Borisjuk L, Radchuk R, Steinbiss HH, Rolletschek H, Broeders S, Wobus U. Jekyll encodes a novel protein involved in the sexual reproduction of barley. Plant Cell. 2006:18(7): 1652–1666. 10.1105/tpc.106.041335 PubMed DOI PMC
Radchuk V, Borisjuk L, Sreenivasulu N, Merx K, Mock HP, Rolletschek H, Wobus U, Weschke W. Spatio-temporal profiling of starch biosynthesis and degradation in the developing barley grain. Plant Physiol. 2009:150(1): 190–204. 10.1104/pp.108.133520 PubMed DOI PMC
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, et al. . Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. J Exp Bot. 2017:68(16): 4595–4612. 10.1093/jxb/erx266 PubMed DOI PMC
Radchuk V, Sharma R, Potokina E, Radchuk R, Weier D, Munz E, Schreiber M, Mascher M, Stein N, Wicker T, et al. . The highly divergent Jekyll genes, required for sexual reproduction, are lineage specific for the related grass tribes Triticeae and Bromeae. Plant J. 2019:98(6): 961–974. 10.1111/tpj.14363 PubMed DOI PMC
Radchuk V, Tran V, Hilo A, Muszynska A, Gündel A, Wagner S, Fuchs J, Hensel G, Ortleb S, Munz E, et al. . Grain filling in barley relies on developmentally controlled programmed cell death. Commun Biol. 2021:4(1): 428. 10.1038/s42003-021-01953-1 PubMed DOI PMC
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015:43(7): e47. 10.1093/nar/gkv007 PubMed DOI PMC
Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, Sasaki-Sekimoto Y, Utsumi T, Chen J, Kanno Y, Masuda S, et al. . The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat Commun. 2015:6(1): 6095. 10.1038/ncomms7095 PubMed DOI PMC
Shanmugarajah K, Linka N, Gräfe K, Smits SHJ, Weber APM, Zeier J, Schmitt L. ABCG1 contributes to suberin formation in Arabidopsis thaliana roots. Sci Rep. 2019:9(1): 11381. 10.1038/s41598-019-47916-9 PubMed DOI PMC
Šimura J, Antoniadi I, Široká J, Tarkowská D, Strnad M, Ljung K, Novák O. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018:177(2): 476–489. 10.1104/pp.18.00293 PubMed DOI PMC
Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, et al. . Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet. 2015:47(12): 1489–1493. 10.1038/ng.3422 PubMed DOI
Thiel J, Weier D, Sreenivasulu N, Strickert M, Weichert N, Melzer M, Czauderna T, Wobus U, Weber H, Weschke W. Different hormonal regulation of cellular differentiation and function in nucellar projection and endosperm transfer cells: a microdissection-based transcriptome study of young barley grains. Plant Physiol. 2008:148(3): 1436–1452. 10.1104/pp.108.127001 PubMed DOI PMC
Trevisan J, Angelov PP, Scott AD, Carmichael PL, Martin FL. IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis. Bioinformatics. 2013:29(8): 1095–1097. 10.1093/bioinformatics/btt084 PubMed DOI
Tuan PA, Yamasaki Y, Kanno Y, Seo M, Ayele BT. Transcriptomics of cytokinin and auxin metabolism and signaling genes during seed maturation in dormant and non-dormant wheat genotypes. Sci Rep. 2019:9(1): 3983. 10.1038/s41598-019-40657-9 PubMed DOI PMC
Vertregt N, Penning de Vries FWT. A rapid method for determining the efficiency of biosynthesis of plant biomass. J Theor Biol. 1987:128(1): 109–119. 10.1016/S0022-5193(87)80034-6 DOI
Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, Schroeder JI. Plant hormone regulation of abiotic stress responses. Nat Rev Mol Cell Biol. 2022:23(7): 516. 10.1038/s41580-022-00501-x PubMed DOI
Wang M, Le Gourrierec J, Jiao F, Demotes-Mainard S, Perez-Garcia MD, Ogé L, Hamama L, Crespel L, Bertheloot J, Chen J, et al. . Convergence and divergence of sugar and cytokinin signaling in plant development. Int J Mol Sci. 2021:22(3): 1282. 10.3390/ijms22031282 PubMed DOI PMC
Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, et al. . Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev. 2020:7(11): 1776–1786. 10.1093/nsr/nwaa110 PubMed DOI PMC
Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, et al. . Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet. 2008:40(11): 1370–1374. 10.1038/ng.220 PubMed DOI
Wang S, Yokosho K, Guo R, Whelan J, Ruan YL, Ma JF, Shou H. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo. Plant Physiol. 2019:180(4): 2133–2141. 10.1104/pp.19.00641 PubMed DOI PMC
Weschke W, Panitz R, Gubatz S, Wang Q, Radchuk R, Weber H, Wobus U. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant J. 2003:33(2): 395–411. 10.1046/j.1365-313X.2003.01633.x PubMed DOI
Yang J, Luo D, Yang B, Frommer WB, Eom JS. SWEET11 and 15 as key players in seed filling in rice. New Phytol. 2018:218(2): 604–615. 10.1111/nph.15004 PubMed DOI
Yim S, Khare D, Kang J, Hwang JU, Liang W, Martinoia E, Zhang D, Kang B, Lee Y. Postmeiotic development of pollen surface layers requires two Arabidopsis ABCG-type transporters. Plant Cell Rep. 2016:35(9): 1863–1873. 10.1007/s00299-016-2001-3 PubMed DOI
Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S.. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. J Integr Plant Biol. 2014;56: 559–570. PubMed
Zalewski W, Galuszka P, Gasparis S, Orczyk W, Nadolska-Orczyk A. Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J Exp Bot. 2010:61(6): 1839–1851. 10.1093/jxb/erq052 PubMed DOI
Zalewski W, Gasparis S, Boczkowska M, Rajchel I, Kała M, Orczyk W, Nadolska-Orczyk A. Expression patterns of HvCKX genes indicate their role in growth and reproductive development of barley. PLoS One. 2014:9(12): e115729. 10.1371/journal.pone.0115729 PubMed DOI PMC
Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun. 2014:5(1): 3274. 10.1038/ncomms4274 PubMed DOI
Zürcher E, Liu J, di Donato M, Geisler M, Müller B. Plant development regulated by cytokinin sinks. Science. 2016:353(6303): 1027–1030. 10.1126/science.aaf7254 PubMed DOI