Direct Patlak Reconstruction of [68Ga]Ga-PSMA PET for the Evaluation of Primary Prostate Cancer Prior Total Prostatectomy: Results of a Pilot Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37761975
PubMed Central
PMC10530818
DOI
10.3390/ijms241813677
PII: ijms241813677
Knihovny.cz E-zdroje
- Klíčová slova
- PSA, PSMA PET/CT, Prostate cancer, [68Ga]Ga-PSMA, primary tumor,
- MeSH
- EDTA analogy a deriváty MeSH
- izotopy gallia MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prostaty * diagnostické zobrazování chirurgie patologie MeSH
- PET/CT * metody MeSH
- pilotní projekty MeSH
- prospektivní studie MeSH
- prostatektomie * metody MeSH
- prostatický specifický antigen metabolismus krev MeSH
- radiofarmaka MeSH
- radioizotopy galia * MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- EDTA MeSH
- gallium 68 PSMA-11 MeSH Prohlížeč
- izotopy gallia MeSH
- prostatický specifický antigen MeSH
- radiofarmaka MeSH
- radioizotopy galia * MeSH
To investigate the use of kinetic parameters derived from direct Patlak reconstructions of [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) to predict the histological grade of malignancy of the primary tumor of patients with prostate cancer (PCa). Thirteen patients (mean age 66 ± 10 years) with a primary, therapy-naïve PCa (median PSA 9.3 [range: 6.3-130 µg/L]) prior radical prostatectomy, were recruited in this exploratory prospective study. A dynamic whole-body [68Ga]Ga-PSMA-11 PET/CT scan was performed for all patients. Measured quantification parameters included Patlak slope (Ki: absolute rate of tracer consumption) and Patlak intercept (Vb: degree of tracer perfusion in the tumor). Additionally, the mean and maximum standardized uptake values (SUVmean and SUVmax) of the tumor were determined from a static PET 60 min post tracer injection. In every patient, initial PSA (iPSA) values that were also the PSA level at the time of the examination and final histology results with Gleason score (GS) grading were correlated with the quantitative readouts. Collectively, 20 individual malignant prostate lesions were ascertained and histologically graded for GS with ISUP classification. Six lesions were classified as ISUP 5, two as ISUP 4, eight as ISUP 3, and four as ISUP 2. In both static and dynamic PET/CT imaging, the prostate lesions could be visually distinguished from the background. The average values of the SUVmean, slope, and intercept of the background were 2.4 (±0.4), 0.015 1/min (±0.006), and 52% (±12), respectively. These were significantly lower than the corresponding parameters extracted from the prostate lesions (all p < 0.01). No significant differences were found between these values and the various GS and ISUP (all p > 0.05). Spearman correlation coefficient analysis demonstrated a strong correlation between static and dynamic PET/CT parameters (all r ≥ 0.70, p < 0.01). Both GS and ISUP grading revealed only weak correlations with the mean and maximum SUV and tumor-to-background ratio derived from static images and dynamic Patlak slope. The iPSA demonstrated no significant correlation with GS and ISUP grading or with dynamic and static PET parameter values. In this cohort of mainly high-risk PCa, no significant correlation between [68Ga]Ga-PSMA-11 perfusion and consumption and the aggressiveness of the primary tumor was observed. This suggests that the association between SUV values and GS may be more distinctive when distinguishing clinically relevant from clinically non-relevant PCa.
Christian Doppler Lab Applied Metabolomics 1090 Vienna Austria
Department of Urology 2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
Department of Urology University of Texas Southwestern Medical Center Dallas TX 75390 USA
Department of Urology Weill Cornell Medical College New York NY 10065 USA
Zobrazit více v PubMed
Humphrey P.A. Histopathology of Prostate Cancer. Cold Spring Harb. Perspect. Med. 2017;7:a030411. doi: 10.1101/cshperspect.a030411. PubMed DOI PMC
Hollemans E., Verhoef E.I., Bangma C.H., Rietbergen J., Helleman J., Roobol M.J., van Leenders G.J. Large cribriform growth pattern identifies ISUP grade 2 prostate cancer at high risk for recurrence and metastasis. Mod. Pathol. 2019;32:139–146. doi: 10.1038/s41379-018-0157-9. PubMed DOI PMC
Kozikowski M., Malewski W., Michalak W., Dobruch J. Clinical utility of MRI in the decision-making process before radical prostatectomy: Systematic review and meta-analysis. PLoS ONE. 2019;14:e0210194. doi: 10.1371/journal.pone.0210194. PubMed DOI PMC
Yi N., Wang Y., Zang S., Yang L., Liu H., Sun H., Wang L., Wang F. Ability of (68) Ga-PSMA PET/CT SUVmax to differentiate ISUP GG2 from GG3 in intermediate-risk prostate cancer: A single-center retrospective study of 147 patients. Cancer Med. 2023;12:7140–7148. doi: 10.1002/cam4.5516. PubMed DOI PMC
Ghezzo S., Mapelli P., Bezzi C., Samanes Gajate A.M., Brembilla G., Gotuzzo I., Russo T., Preza E., Cucchiara V., Ahmed N., et al. Role of [(68)Ga]Ga-PSMA-11 PET radiomics to predict post-surgical ISUP grade in primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2023;50:2548–2560. doi: 10.1007/s00259-023-06187-3. PubMed DOI
Kawada T., Yanagisawa T., Rajwa P., Sari Motlagh R., Mostafaei H., Quhal F., Laukhtina E., Aydh A., König F., Pallauf M., et al. Diagnostic Performance of Prostate-specific Membrane Antigen Positron Emission Tomography–targeted biopsy for Detection of Clinically Significant Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. Oncol. 2022;5:390–400. doi: 10.1016/j.euo.2022.04.006. PubMed DOI
Dimitrakopoulou-Strauss A., Pan L., Sachpekidis C. Kinetic modeling and parametric imaging with dynamic PET for oncological applications: General considerations, current clinical applications, and future perspectives. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:21–39. doi: 10.1007/s00259-020-04843-6. PubMed DOI PMC
Olde Heuvel J., de Wit-van der Veen B.J., Sinaasappel M., Slump C.H., Stokkel M.P.M. Early differences in dynamic uptake of 68Ga-PSMA-11 in primary prostate cancer: A test-retest study. PLoS ONE. 2021;16:e0246394. doi: 10.1371/journal.pone.0246394. PubMed DOI PMC
Gong K., Cheng-Liao J., Wang G., Chen K.T., Catana C., Qi J. Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method with MRI Information Based on Structural Similarity. IEEE Trans. Med. Imaging. 2018;37:955–965. doi: 10.1109/TMI.2017.2776324. PubMed DOI PMC
Dias A.H., Jochumsen M.R., Zacho H.D., Munk O.L., Gormsen L.C. Multiparametric dynamic whole-body PSMA PET/CT using [(68)Ga]Ga-PSMA-11 and [(18)F]PSMA-1007. EJNMMI Res. 2023;13:31. doi: 10.1186/s13550-023-00981-8. PubMed DOI PMC
Karakatsanis N.A., Zhou Y., Lodge M.A., Casey M.E., Wahl R.L., Zaidi H., Rahmim A. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys. Med. Biol. 2015;60:8643–8673. doi: 10.1088/0031-9155/60/22/8643. PubMed DOI PMC
Uprimny C., Kroiss A.S., Decristoforo C., Fritz J., von Guggenberg E., Kendler D., Scarpa L., di Santo G., Roig L.G., Maffey-Steffan J., et al. (68)Ga-PSMA-11 PET/CT in primary staging of prostate cancer: PSA and Gleason score predict the intensity of tracer accumulation in the primary tumour. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:941–949. doi: 10.1007/s00259-017-3631-6. PubMed DOI
Koerber S.A., Utzinger M.T., Kratochwil C., Kesch C., Haefner M.F., Katayama S., Mier W., Iagaru A.H., Herfarth K., Haberkorn U., et al. (68)Ga-PSMA-11 PET/CT in Newly Diagnosed Carcinoma of the Prostate: Correlation of Intraprostatic PSMA Uptake with Several Clinical Parameters. J. Nucl. Med. 2017;58:1943–1948. doi: 10.2967/jnumed.117.190314. PubMed DOI
Xue A.L., Kalapara A.A., Ballok Z.E., Levy S.M., Sivaratnam D., Ryan A., Ramdave S., O’sullivan R., Moon D., Grummet J.P., et al. (68)Ga-Prostate-Specific Membrane Antigen Positron Emission Tomography Maximum Standardized Uptake Value as a Predictor of Gleason Pattern 4 and Pathological Upgrading in Intermediate-Risk Prostate Cancer. J. Urol. 2022;207:341–349. doi: 10.1097/JU.0000000000002254. PubMed DOI
Roberts M.J., Morton A., Papa N., Franklin A., Raveenthiran S., Yaxley W.J., Coughlin G., Gianduzzo T., Kua B., McEwan L., et al. Primary tumour PSMA intensity is an independent prognostic biomarker for biochemical recurrence-free survival following radical prostatectomy. Eur. J. Nucl. Med. Mol. Imaging. 2022;49:3289–3294. doi: 10.1007/s00259-022-05756-2. PubMed DOI PMC
Sachpekidis C., Pan L., Hadaschik B.A., Kopka K., Haberkorn U., Dimitrakopoulou-Strauss A. (68)Ga-PSMA-11 PET/CT in prostate cancer local recurrence: Impact of early images and parametric analysis. Am. J. Nucl. Med. Mol. Imaging. 2018;8:351–359. PubMed PMC
Ringheim A., Campos Neto G.C., Anazodo U., Cui L., da Cunha M.L., Vitor T., Martins K.M., Miranda A.C.C., de Barboza M.F., Fuscaldi L.L., et al. Kinetic modeling of (68)Ga-PSMA-11 and validation of simplified methods for quantification in primary prostate cancer patients. EJNMMI Res. 2020;10:12. doi: 10.1186/s13550-020-0594-6. PubMed DOI PMC
Strauss D.S., Sachpekidis C., Kopka K., Pan L., Haberkorn U., Dimitrakopoulou-Strauss A. Pharmacokinetic studies of [(68) Ga]Ga-PSMA-11 in patients with biochemical recurrence of prostate cancer: Detection, differences in temporal distribution and kinetic modelling by tissue type. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:4472–4482. doi: 10.1007/s00259-021-05420-1. PubMed DOI PMC
Demirci E., Kabasakal L., Şahin O.E., Akgün E., Gültekin M.H., Doğanca T., Tuna M.B., Öbek C., Kiliç M., Esen T., et al. Can SUVmax values of Ga-68-PSMA PET/CT scan predict the clinically significant prostate cancer? Nucl. Med. Commun. 2019;40:86–91. doi: 10.1097/MNM.0000000000000942. PubMed DOI PMC
Sathekge M., Lengana T., Maes A., Vorster M., Zeevaart J., Lawal I., Ebenhan T., Van de Wiele C. (68)Ga-PSMA-11 PET/CT in primary staging of prostate carcinoma: Preliminary results on differences between black and white South-Africans. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:226–234. doi: 10.1007/s00259-017-3852-8. PubMed DOI PMC
Jena A., Taneja R., Taneja S., Singh A., Kumar V., Agarwal A., Subramanian N. Improving Diagnosis of Primary Prostate Cancer with Combined (68)Ga–Prostate-Specific Membrane Antigen–HBED-CC Simultaneous PET and Multiparametric MRI and Clinical Parameters. AJR Am. J. Roentgenol. 2018;211:1246–1253. doi: 10.2214/AJR.18.19585. PubMed DOI
Sachpekidis C., Kopka K., Eder M., Hadaschik B.A., Freitag M.T., Pan L., Haberkorn U., Dimitrakopoulou-Strauss A. 68Ga-PSMA-11 Dynamic PET/CT Imaging in Primary Prostate Cancer. Clin. Nucl. Med. 2016;41:e473–e479. doi: 10.1097/RLU.0000000000001349. PubMed DOI
Verburg F.A., Pfister D., Drude N.I., Mottaghy F.M., Behrendt F.F. PSA levels, PSA doubling time, Gleason score and prior therapy cannot predict measured uptake of [68Ga]PSMA-HBED-CC lesion uptake in recurrent/metastatic prostate cancer. Nuklearmedizin. 2017;56:225–232. PubMed
Rosenzweig B., Haramaty R., Davidson T., Lazarovich A., Shvero A., Haifler M., Gal J., Golan S., Shpitzer S., Hoffman A., et al. Very Low Prostate PET/CT PSMA Uptake May Be Misleading in Staging Radical Prostatectomy Candidates. J. Pers. Med. 2022;12:410. doi: 10.3390/jpm12030410. PubMed DOI PMC
Woythal N., Arsenic R., Kempkensteffen C., Miller K., Janssen J.-C., Huang K., Makowski M.R., Brenner W., Prasad V. Immunohistochemical Validation of PSMA Expression Measured by 68Ga-PSMA PET/CT in Primary Prostate Cancer. J. Nucl. Med. 2018;59:238–243. doi: 10.2967/jnumed.117.195172. PubMed DOI
Sachpekidis C., Eder M., Kopka K., Mier W., Hadaschik B.A., Haberkorn U., Dimitrakopoulou-Strauss A. (68)Ga-PSMA-11 dynamic PET/CT imaging in biochemical relapse of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:1288–1299. doi: 10.1007/s00259-015-3302-4. PubMed DOI
Bogdanovic B., Solari E.L., Villagran Asiares A., van Marwick S., Schachoff S., Eiber M., Weber W.A., Nekolla S.G. Is there more than meets the eye in PSMA imaging in prostate cancer with PET/MRI? Looking closer at uptake time, correlation with PSA and Gleason score. Eur. J. Hybrid Imaging. 2023;7:8. doi: 10.1186/s41824-023-00166-5. PubMed DOI PMC
Hoffmann M.A., Müller-Hübenthal J., Rosar F., Fischer N., von Eyben F.E., Buchholz H.G., Wieler H.J., Schreckenberger M. Primary Staging of Prostate Cancer Patients with [(18)F]PSMA-1007 PET/CT Compared with [(68)Ga]Ga-PSMA-11 PET/CT. J. Clin. Med. 2022;11:5064. doi: 10.3390/jcm11175064. PubMed DOI PMC
Oyama N., Akino H., Suzuki Y., Kanamaru H., Miwa Y., Tsuka H., Sadato N., Yonekura Y., Okada K. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol. Imaging Biol. 2002;4:99–104. doi: 10.1016/S1095-0397(01)00065-6. PubMed DOI
Walker-Samuel S., Ramasawmy R., Torrealdea F., Rega M., Rajkumar V., Johnson S.P., Richardson S., Gonçalves M., Parkes H.G., Årstad E., et al. In vivo imaging of glucose uptake and metabolism in tumors. Nat. Med. 2013;19:1067–1072. doi: 10.1038/nm.3252. PubMed DOI PMC
Piert M., Park H., Khan A., Siddiqui J., Hussain H., Chenevert T., Wood D., Johnson T., Shah R.B., Meyer C. Detection of Aggressive Primary Prostate Cancer with 11C-Choline PET/CT Using Multimodality Fusion Techniques. J. Nucl. Med. 2009;50:1585–1593. doi: 10.2967/jnumed.109.063396. PubMed DOI PMC
Chen R., Wang Y., Zhu Y., Shi Y., Xu L., Huang G., Liu J. The Added Value of (18)F-FDG PET/CT Compared with (68)Ga-PSMA PET/CT in Patients with Castration-Resistant Prostate Cancer. J. Nucl. Med. 2022;63:69–75. doi: 10.2967/jnumed.120.262250. PubMed DOI PMC
Rausch I., Cal-González J., Dapra D., Gallowitsch H.J., Lind P., Beyer T., Minear G. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26. doi: 10.1186/s40658-015-0132-1. PubMed DOI PMC
Tao Y., Peng Z., Krishnan A., Zhou X.S. Robust Learning-Based Parsing and Annotation of Medical Radiographs. IEEE Trans. Med. Imaging. 2011;30:338–350. doi: 10.1109/TMI.2010.2077740. PubMed DOI
Karakatsanis N.A., Lodge M.A., Zhou Y., Wahl R.L., Rahmim A. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys. Med. Biol. 2013;58:7419–7445. doi: 10.1088/0031-9155/58/20/7419. PubMed DOI PMC
Wang G., Qi J. Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys. Med. Biol. 2010;55:1505–1517. doi: 10.1088/0031-9155/55/5/016. PubMed DOI PMC
Patlak C.S., Blasberg R.G., Fenstermacher J.D. Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. J. Cereb. Blood Flow Metab. 1983;3:1–7. doi: 10.1038/jcbfm.1983.1. PubMed DOI
Patlak C.S., Blasberg R.G. Graphical Evaluation of Blood-to-Brain Transfer Constants from Multiple-Time Uptake Data. Generalizations. J. Cereb. Blood Flow Metab. 1985;5:584–590. doi: 10.1038/jcbfm.1985.87. PubMed DOI