Barley Root Proteome and Metabolome in Response to Cytokinin and Abiotic Stimuli
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
33250914
PubMed Central
PMC7673457
DOI
10.3389/fpls.2020.590337
Knihovny.cz E-resources
- Keywords
- Hordeum vulgare, ROS, abiotic stress, metabolome, phenylpropanoid biosynthesis, proteome, root, zeatin,
- Publication type
- Journal Article MeSH
Cytokinin is a phytohormone involved in the regulation of diverse developmental and physiological processes in plants. Its potential in biotechnology and for development of higher-yield and more resilient plants has been recognized, yet the molecular mechanisms behind its action are far from understood. In this report, the roots of barley seedlings were explored as a new source to reveal as yet unknown cytokinin-responsive proteins for crop improvement. Here we found significant differences reproducibly observed for 178 proteins, for which some of the revealed cytokinin-responsive pathways were confirmed in metabolome analysis, including alterations phenylpropanoid pathway, amino acid biosynthesis and ROS metabolism. Bioinformatics analysis indicated a significant overlap between cytokinin response and response to abiotic stress. This was confirmed by comparing proteome and metabolome profiles in response to drought, salinity or a period of temperature stress. The results illustrate complex abiotic stress response in the early development of model crop plant and confirm an extensive crosstalk between plant hormone cytokinin and response to temperature stimuli, water availability or salinity stress.
See more in PubMed
Abo-Ogiala A., Carsjens C., Diekmann H., Fayyaz P., Herrfurth C., Feussner I., et al. (2014). Temperature-induced lipocalin (TIL) is translocated under salt stress and protects chloroplasts from ion toxicity. J. Plant Physiol. 171 250–259. 10.1016/j.jplph.2013.08.003 PubMed DOI
Argueso C. T., Ferreira F. J., Kieber J. J. (2009). Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant. Cell Environ. 32 1147–1160. 10.1111/j.1365-3040.2009.01940.x PubMed DOI
Argyros R. D., Mathews D. E., Chiang Y.-H., Palmer C. M., Thibault D. M., Etheridge N., et al. (2008). Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20 2102–2116. PubMed PMC
Bewley J. D., Bradford K. J., Hilhorst H. W. M., Nonogaki H. (2013). Seeds, 3rd Edn New York, NY: Springer, 10.1007/978-1-4614-4693-4 DOI
Bhargava A., Clabaugh I., To J. P., Maxwell B. B., Chiang Y.-H., Schaller E. G., et al. (2013). Identification of cytokinin responsive genes using microarray meta-analysis and RNA-seq in Arabidopsis thaliana. Plant Physiol 162 272–294. PubMed PMC
Bielach A., Podlešáková K., Marhavý P., Duclercq J., Cuesta C., Müller B., et al. (2012). Spatiotemporal regulation of lateral root organogenesis in arabidopsis by cytokinin. Plant Cell 24 3967–3981. 10.1105/tpc.112.103044 PubMed DOI PMC
Blattner F. R. (2018). “Taxonomy of the Genus Hordeum and Barley (Hordeum vulgare),” in The Barley Genome, eds Stein N., Muehlbauer G. J. (New York, NY: Springer; ), 11–23. 10.1007/978-3-319-92528-8_2 DOI
Brenner W. G., Romanov G. A., Köllmer I., Bürkle L., Schmülling T. (2005). Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J. 44 314–333. 10.1111/j.1365-313X.2005.02530.x PubMed DOI
Brenner W. G., Schmulling T. (2012). Transcript profiling of cytokinin action in Arabidopsis roots and shoots discovers largely similar but also organ-specific responses. BMC Plant Biol. 12:112. 10.1186/1471-2229-12-112 PubMed DOI PMC
Cerna H., Černý M., Habánová H., Šafářová D., Abushamsiya K., Navrátil M., et al. (2017). Proteomics offers insight to the mechanism behind Pisum sativum L. response to pea seed-borne mosaic virus (PSbMV). J. Proteomics 153 78–88. 10.1016/j.jprot.2016.05.018 PubMed DOI
Černý M., Dyčka F., Bobál’ová J., Brzobohaty B. (2011). Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J. Exp. Bot. 62 921–937. 10.1093/jxb/erq322 PubMed DOI PMC
Černý M., Jedelský P. L., Novák J., Schlosser A., Brzobohatý B. (2014). Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ. 37 1641–1655. 10.1111/pce.12270 PubMed DOI
Černý M., Novák J., Habánová H., Cerna H., Brzobohatý B. (2016). Role of the proteome in phytohormonal signaling. Biochim. Biophys. Acta Prot. Proteom. 1864 1003–1015. 10.1016/j.bbapap.2015.12.008 PubMed DOI
Chen Y., Hoehenwarter W., Weckwerth W. (2010). Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J. 63 1–17. PubMed
Chory J., Reinecke D., Sim S., Washburn T., Brenner M. (1994). A role for cytokinins in De-etiolation in Arabidopsis (det mutants have an altered response to cytokinins). Plant Physiol. 104 339–347. 10.1104/pp.104.2.339 PubMed DOI PMC
Cortleven A., Leuendorf J. E., Frank M., Pezzetta D., Bolt S., Schmülling T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant. Cell Environ. 42 998–1018. 10.1111/pce.13494 PubMed DOI
Danilova M. N., Kudryakova N. V., Doroshenko A. S., Zabrodin D. A., Vinogradov N. S., Kuznetsov V. V. (2016). Molecular and physiological responses of Arabidopsis thaliana plants deficient in the genes responsible for ABA and cytokinin reception and metabolism to heat shock. Russ. J. Plant Physiol. 63 308–318. 10.1134/S1021443716030043 DOI
Dawson I. K., Russell J., Powell W., Steffenson B., Thomas W. T. B., Waugh R. (2015). Barley: a translational model for adaptation to climate change. New Phytol. 206 913–931. 10.1111/nph.13266 PubMed DOI
Deikman J., Hammer P. E. (1995). Induction of anthocyanin accumulation by cytokinins in Arabidopsis thaliana. Plant Physiol. 108 47–57. 10.1104/pp.108.1.47 PubMed DOI PMC
Didi V., Jackson P., Hejátko J. (2015). Hormonal regulation of secondary cell wall formation. J. Exp. Bot. 66 5015–5027. 10.1093/jxb/erv222 PubMed DOI
Dufková H., Berka M., Luklová M., Rashotte A. M., Brzobohatý B., Černý M. (2019). Eggplant germination is promoted by hydrogen peroxide and temperature in an independent but overlapping manner. Molecules 24:4270. 10.3390/molecules24234270 PubMed DOI PMC
Entsch B., Parker C. W., Letham D. S. (1983). An enzyme from lupin seeds forming alanine derivatives of cytokinins. Phytochemistry 22 375–381. 10.1016/0031-9422(83)83008-8 DOI
Ge S. X., Jung D., Yao R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36 2628–2629. 10.1093/bioinformatics/btz931 PubMed DOI PMC
Gou M., Ran X., Martin D. W., Liu C. J. (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nat. Plants 4 299–310. 10.1038/s41477-018-0142-9 PubMed DOI
Guan C., Wang X., Feng J., Hong S., Liang Y., Ren B., et al. (2014). Cytokinin antagonizes abscisic acid-mediated inhibition of cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE5 protein in Arabidopsis. PLANT Physiol. 164 1515–1526. 10.1104/pp.113.234740 PubMed DOI PMC
Gupta R., Wang Y., Agrawal G. K., Rakwal R., Jo I. H., Bang K. H., et al. (2015). Time to dig deep into the plant proteome: a hunt for low-abundance proteins. Front. Plant Sci 6:22. 10.3389/fpls.2015.00022 PubMed DOI PMC
Hallmark H. T., Černý M., Brzobohatý B., Rashotte A. M. (2020). trans-Zeatin-N-glucosides have biological activity in Arabidopsis thaliana. PLoS One 15:e0232762. 10.1371/journal.pone.0232762 PubMed DOI PMC
Hanin M., Ebel C., Ngom M., Laplaze L., Masmoudi K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci 7:1787. 10.3389/fpls.2016.01787 PubMed DOI PMC
Harwood W. A. (2019). An introduction to barley: the crop and the model. Methods Mol. Biol. 1900 1–5. 10.1007/978-1-4939-8944-7_1 PubMed DOI
Hloušková P., Černý M., Kořínková N., Luklová M., Minguet E. G., Brzobohatý B., et al. (2019). Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J. Proteomics 193 44–61. 10.1016/j.jprot.2018.12.017 PubMed DOI
Holubová K., Hensel G., Vojta P., Tarkowski P., Bergougnoux V., Galuszka P. (2018). Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 9:1676. 10.3389/fpls.2018.01676 PubMed DOI PMC
Hooper C. M., Castleden I. R., Aryamanesh N., Jacoby R. P., Millar A. H. (2016). Finding the subcellular location of barley, wheat, rice and maize proteins: the compendium of crop proteins with Annotated Locations (cropPAL). Plant Cell Physiol. 57:e9. 10.1093/pcp/pcv170 PubMed DOI
Hooper C. M., Castleden I. R., Tanz S. K., Aryamanesh N., Millar A. H. (2017). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 45 D1064–D1074. 10.1093/nar/gkw1041 PubMed DOI PMC
Hoth S., Ikeda Y., Morgante M., Wang X., Zuo J., Hanafey M. K., et al. (2003). Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS Lett. 554 373–380. 10.1016/S0014-5793(03)01194-3 PubMed DOI
Huan C., Jiang L., An X., Yu M., Xu Y., Ma R., et al. (2016). Potential role of reactive oxygen species and antioxidant genes in the regulation of peach fruit development and ripening. Plant Physiol. Biochem. 104 294–303. 10.1016/j.plaphy.2016.05.013 PubMed DOI
Huang Y., Sun M.-M., Ye Q., Wu X.-Q., Wu W.-H., Chen Y.-F. (2017). Abscisic Acid modulates seed germination via ABA INSENSITIVE5-mediated PHOSPHATE1. Plant Physiol. 175 1661–1668. 10.1104/pp.17.00164 PubMed DOI PMC
Jeon J., Kim N. Y., Kim S., Kang N. Y., Novák O., Ku S. J., et al. (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 285 23371–23386. 10.1074/jbc.M109.096644 PubMed DOI PMC
Karunadasa S. S., Kurepa J., Shull T. E., Smalle J. A. (2020). Cytokinin-induced protein synthesis suppresses growth and osmotic stress tolerance. New Phytol. 227 50–64. 10.1111/nph.16519 PubMed DOI
Kaur N., Erickson T. E., Ball A. S., Ryan M. H. (2017). A review of germination and early growth as a proxy for plant fitness under petrogenic contamination — knowledge gaps and recommendations. Sci. Total Environ. 603 728–744. 10.1016/j.scitotenv.2017.02.179 PubMed DOI
Kiba T., Yamashino T., Naito T., Koizumi N., Sakakibara H., Mizuno T. (2005). Combinatorial microarray analysis revealing araidopsis genes implicated in cytokinin responses through the His-to-Asp phosphorelay circuitry. Plant Cell Physiol. 46:S48. PubMed
Kieber J. J., Schaller G. E. (2014). Cytokinins. Arab. B. 12:e0168. PubMed PMC
Kim Y. M., Han Y. J., Hwang O. J., Lee S. S., Shin A. Y., Kim S. Y., et al. (2012). Overexpression of arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol. Cells 33 617–626. 10.1007/s10059-012-0080-8 PubMed DOI PMC
Kurepa J., Shull T. E., Smalle J. A. (2019). Antagonistic activity of auxin and cytokinin in shoot and root organs. Plant Dir. 3:e00121. 10.1002/pld3.121 PubMed DOI PMC
Laplaze L., Benkova E., Casimiro I., Maes L., Vanneste S., Swarup R., et al. (2007). Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19 3889–3900. 10.1105/tpc.107.055863 PubMed DOI PMC
Latijnhouwers M., Xu X. M., Møller S. G. (2010). Arabidopsis stromal 70-kDa heat shock proteins are essential for chloroplast development. Planta 232 567–578. 10.1007/s00425-010-1192-z PubMed DOI
Li X. G., Su Y. H., Zhao X. Y., Li W., Gao X. Q., Zhang X. S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450 109–120. PubMed
Liu M.-S., Li H.-C., Chang Y.-M., Wu M.-T., Chen L.-F. O. (2011). Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence. Plant Sci. 181 288–299. 10.1016/j.plantsci.2011.06.005 PubMed DOI
Lochmanová G., Zdráhal Z., Konečná H., Koukalová Š, Malbeck J., Souček P., et al. (2008). Cytokinin-induced photomorphogenesis in dark-grown Arabidopsis: a proteomic analysis. J. Exp. Bot 59 3705–3719. 10.1093/jxb/ern220 PubMed DOI
Macková H., Hronková M., Dobrá J., Turečková V., Novák O., Lubovská Z., et al. (2013). Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J. Exp. Bot. 64 2805–2815. 10.1093/jxb/ert131 PubMed DOI PMC
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. 10.1038/nature22043 PubMed DOI
Mayer K. F. X., Waugh R., Langridge P., Close T. J., Wise R. P., Graner A., et al. (2012). A physical, genetic and functional sequence assembly of the barley genome. Nature 491 711–716. 10.1038/nature11543 PubMed DOI
McLoughlin F., Kim M., Marshall R. S., Vierstra R. D., Vierling E. (2019). HSP101 interacts with the proteasome and promotes the clearance of ubiquitylated protein aggregates. Plant Physiol. 180 1829–1847. 10.1104/pp.19.00263 PubMed DOI PMC
Mierswa I., Wurst M., Klinkenberg R., Scholz M., Euler T. (2006). “YALE,” in Proceedings of the 12th ACM SIGKDD International Conference On Knowledge Discovery and Data Mining - KDD ’06. New York, NY: Association for Computing Machinery, 935 10.1145/1150402.1150531 DOI
Mrízová K., Jiskrová E., Vyroubalová Š, Novák O., Ohnoutková L., Pospíšilová H., et al. (2013). Overexpression of Cytokinin Dehydrogenase Genes in Barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS One 8:e79029. 10.1371/journal.pone.0079029 PubMed DOI PMC
Müller B., Sheen J. (2008). Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453 1094–1097. 10.1038/nature06943 PubMed DOI PMC
Nakabayashi R., Yonekura-Sakakibara K., Urano K., Suzuki M., Yamada Y., Nishizawa T., et al. (2014). Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J. 77 367–379. 10.1111/tpj.12388 PubMed DOI PMC
Nemhauser J. L., Hong F., Chory J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126 467–475. PubMed
Nishiyama R., Le D. T., Watanabe Y., Matsui A., Tanaka M., Seki M., et al. (2012). Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PLoS One 7:e32124. 10.1371/journal.pone.0032124 PubMed DOI PMC
Nolte H., MacVicar T. D., Tellkamp F., Krüger M. (2018). Instant clue: a software suite for interactive data visualization and analysis. Sci. Rep. 8:12648. 10.1038/s41598-018-31154-6 PubMed DOI PMC
Novák J., Pavlù J., Novák O., Nožková-Hlaváčková V., Špundová M., Hlavinka J., et al. (2013). High cytokinin levels induce a hypersensitive-like response in tobacco. Ann. Bot. 112 41–55. 10.1093/aob/mct092 PubMed DOI PMC
Pang Z., Chong J., Li S., Xia J. (2020). MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics. Metabolites 10:186. 10.3390/metabo10050186 PubMed DOI PMC
Pavlů J., Novák J., Koukalová V., Luklová M., Brzobohatý B., Černý M. (2018). Cytokinin at the crossroad of abiotic stress signalling pathways. Int. J. Mol. Sci. 19:2450. PubMed PMC
Pino L. K., Searle B. C., Bollinger J. G., Nunn B., MacLean B., MacCoss M. J. (2020). The Skyline ecosystem: informatics for quantitative mass spectrometry proteomics. Mass Spectrom. Rev. 39 229–244. 10.1002/mas.21540 PubMed DOI PMC
Pospíšilová H., Jiskrová E., Vojta P., Mrízová K., Kokáš F., Čudejková M. M., et al. (2016). Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. N. Biotechnol. 33 692–705. 10.1016/J.NBT.2015.12.005 PubMed DOI
Powell A. F., Paleczny A. R., Olechowski H., Emery R. J. N. (2013). Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem 64 33–40. 10.1016/j.plaphy.2012.12.010 PubMed DOI
Prerostova S., Dobrev P. I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., et al. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front. Plant Sci. 9:655. 10.3389/fpls.2018.00655 PubMed DOI PMC
Ramireddy E., Hosseini S. A., Eggert K., Gillandt S., Gnad H., von Wirén N., et al. (2018). Root engineering in barley: increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol. 177 1078–1095. 10.1104/pp.18.00199 PubMed DOI PMC
Rider J. E., Hacker A., Mackintosh C. A., Pegg A. E., Woster P. M., Casero R. A. (2007). Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33 231–240. 10.1007/s00726-007-0513-4 PubMed DOI
Riefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18 40–54. 10.1105/tpc.105.037796 PubMed DOI PMC
Righetti P. G., Boschetti E. (2016). Global proteome analysis in plants by means of peptide libraries and applications. J. Proteomics 143 3–14. 10.1016/j.jprot.2016.02.033 PubMed DOI
Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9 671–675. 10.1038/nmeth.2089 PubMed DOI PMC
Seifi H. S., Shelp B. J. (2019). Spermine differentially refines plant defense responses against biotic and abiotic stresses. Front. Plant Sci 10:117. 10.3389/fpls.2019.00117 PubMed DOI PMC
Skalák J., Černý M., Jedelský P., Dobrá J., Ge E., Novák J., et al. (2016). Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of Arabidopsis thaliana. J. Exp. Bot. 67 2861–2873. 10.1093/jxb/erw129 PubMed DOI PMC
Skalák J., Vercruyssen L., Claeys H., Hradilová J., Černý M., Novák O., et al. (2019). Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. Plant J 97 805–824. 10.1111/tpj.14285 PubMed DOI
Szklarczyk D., Gable A. L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., et al. (2019). STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 D607–D613. 10.1093/nar/gky1131 PubMed DOI PMC
Tichá T., Samakovli D., Kuchařová A., Vavrdová T., Šamaj J. (2020). Multifaceted roles of heat shock protein 90 molecular chaperones in plant development. J. Exp. Bot. 71 3966–3985. 10.1093/jxb/eraa177 PubMed DOI
Ueda A., Yamamoto-Yamane Y., Takabe T. (2007). Salt stress enhances proline utilization in the apical region of barley roots. Biochem. Biophys. Res. Commun. 355 61–66. 10.1016/j.bbrc.2007.01.098 PubMed DOI
ul Haq S., Khan A., Ali M., Khattak A. M., Gai W.-X., Zhang H.-X., et al. (2019). Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 20:5321. 10.3390/ijms20215321 PubMed DOI PMC
Vescovi M., Riefler M., Gessuti M., Novak O., Schmulling T., Lo Schiavo F. (2012). Programmed cell death induced by high levels of cytokinin in Arabidopsis cultured cells is mediated by the cytokinin receptor CRE1/AHK4. J. Exp. Bot. 63 2825–2832. 10.1093/jxb/ers008 PubMed DOI PMC
Vizcaíno J. A., Csordas A., Del-Toro N., Dianes J. A., Griss J., Lavidas I., et al. (2016). 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 44 D447–D456. PubMed PMC
Vojta P., Kokáš F., Husičková A., Grúz J., Bergougnoux V., Marchetti C. F., et al. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. N. Biotechnol. 33 676–691. 10.1016/j.nbt.2016.01.010 PubMed DOI
Voxeur A., Höfte H. (2016). Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. Glycobiology 26 950–960. 10.1093/glycob/cww029 PubMed DOI
Wang Y., Li L., Ye T., Zhao S., Liu Z., Feng Y. Q., et al. (2011). Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression. Plant J. 68 249–261. 10.1111/j.1365-313X.2011.04683.x PubMed DOI
Yang X. H., Xu Z. H., Xue H. W. (2005). Arabidopsis membrane steroid binding protein 1 is involved in inhibition of cell elongation. Plant Cell 17 116–131. 10.1105/tpc.104.028381 PubMed DOI PMC
Zalewski W., Galuszka P., Gasparis S., Orczyk W., Nadolska-Orczyk A. (2010). Silencing of the HvCKX1 gene decreases the cytokinin oxidase/dehydrogenase level in barley and leads to higher plant productivity. J. Exp. Bot. 61 1839–1851. 10.1093/jxb/erq052 PubMed DOI
Žd’árská M., Zatloukalová P., Benítez M., Šedo O., Potěšil D., Novák O., et al. (2013). Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol. 161 918–930. PubMed PMC
Zhang Y., Chen B., Xu Z., Shi Z., Chen S., Huang X., et al. (2014). Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 65 3189–3200. 10.1093/jxb/eru167 PubMed DOI PMC
Zhang Y., Liu S., Dai S. Y., Yuan J. S. (2012). Integration of shot-gun proteomics and bioinformatics analysis to explore plant hormone responses. BMC Bioinformatics 13(Suppl. 1):S8. 10.1186/1471-2105-13-S15-S8 PubMed DOI PMC
Zhong L., Zhou W., Wang H., Ding S., Lu Q., Wen X., et al. (2013). Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in arabidopsis under heat stress. Plant Cell 25 2925–2943. 10.1105/tpc.113.111229 PubMed DOI PMC
Zwack P. J., Rashotte A. M. (2015). Interactions between cytokinin signalling and abiotic stress responses. J. Exp. Bot. 66 4863–4871. 10.1093/jxb/erv172 PubMed DOI
Divergent Molecular Responses to Heavy Water in Arabidopsis thaliana Compared to Bacteria and Yeast
Abiotic Stress in Crop Production
Phytochromes and Their Role in Diurnal Variations of ROS Metabolism and Plant Proteome
Defense mechanisms promoting tolerance to aggressive Phytophthora species in hybrid poplar
The Omics Hunt for Novel Molecular Markers of Resistance to Phytophthora infestans
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta