Termite nest evolution fostered social parasitism by termitophilous rove beetles

. 2022 May ; 76 (5) : 1064-1072. [epub] 20220331

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35319096

Colonies of social insects contain large amounts of resources often exploited by specialized social parasites. Although some termite species host numerous parasitic arthropod species, called termitophiles, others host none. The reason for this large variability remains unknown. Here, we report that the evolution of termitophily in rove beetles is linked to termite nesting strategies. We compared one-piece nesters, whose entire colony life is completed within a single wood piece, to foraging species, which exploit multiple physically separated food sources. Our epidemiological model predicts that characteristics related to foraging (e.g., extended colony longevity and frequent interactions with other colonies) increase the probability of parasitism by termitophiles. We tested our prediction using literature data. We found that foraging species are more likely to host termitophilous rove beetles than one-piece nesters: 99.6% of known termitophilous species were associated with foraging termites, whereas 0.4% were associated with one-piece nesters. Notably, the few one-piece nesting species hosting termitophiles were those having foraging potential and access to soil. Our phylogenetic analyses confirmed that termitophily primarily evolved with foraging termites. These results highlight that the evolution of complex termite societies fostered social parasitism, explaining why some species have more social parasites than others.

Zobrazit více v PubMed

Abe, T. 1987. Evolution of life types in termites. Pp. 125–148 in Kawano S., Connell J., and Hidaka T., eds. Evolution and coadaptation in biotic communities. Univ. of Tokyo Press, Tokyo.

Bourguignon, T. , Lo N., Cameron S. L., Sobotnik J., Hayashi Y., Shigenobu S., Watanabe D., Roisin Y., Miura T., and Evans T. A.. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32:406–421. PubMed

Bourguignon, T. , Chisholm R. A., and Evans T. A.. 2016. The termite worker phenotype evolved as a dispersal strategy for fertile wingless individuals before eusociality. Am. Nat. 187:372–387. PubMed

Bourguignon, T. , Lo N., Sobotnik J., Ho S. Y. W., Iqbal N., Coissac E., Lee M., Jendryka M. M., Sillam‐Dussès D., Krizkova B., et al. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34:589–597. PubMed

Breed, M. D. 2020. The importance of words: Revising the social insect lexicon. Insectes Soc. 67:459–461.

Breed, M. D. , Cook C., and Krasnec M. O.. 2012. Cleptobiosis in social insects. Psyche 2012:484765.

Bucek, A. , Šobotník J., He S., Shi M., McMahon D. P., Holmes E. C., Roisin Y., Lo N., and Bourguignon T.. 2019. Evolution of termite symbiosis informed by transcriptome‐based phylogenies. Curr. Biol. 29:3728.e4–3734.e4. PubMed

Bucek, A. , Wang M., Sobotník J., Sillam‐Dussès D., Mizumoto N., Stiblik P., Clitheroe C., Lu T., Gonzalez P. J. J., Mohagan A., et al. 2021. Transoceanic voyages of “drywood” termites (Isoptera: Kalotermitidae) inferred from extant and extinct species. Molecular Biology and Evolution and in press, 10.1101/2021.09.24.461667. PubMed DOI PMC

Cai, C. , Huang D., Newton A. F., Eldredge K. T., and Engel M. S.. 2017. Early evolution of specialized termitophily in cretaceous rove beetles. Curr. Biol. 27:1229–1235. PubMed

Chouvenc, T. , Šobotník J., Engel M. S., and Bourguignon T.. 2021. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78:2749–2769. PubMed PMC

Constantino, R. 2016. Termite database.

Emerson, E. A. 1938. Termite nests: a study of the phylogeny of behavior. Ecol. Monogr. 8:247–284.

———. 1955. Geographical origins and dispersions of termite genera. Fieldiana Zool. 37:465–521.

Engel, M. S. , Barden P., Riccio M. L., and Grimaldi D. A.. 2016. Morphologically specialized termite castes and advanced sociality in the early cretaceous. Curr. Biol. 26:522–530. PubMed

Fiedler, K. 2001. Ants that associate with Lycaeninae butterfly larvae: diversity, ecology and biogeography. Divers. Distrib. 7:45–60.

Fielding, A. H. , and Bell J. F.. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24:38–49.

Geiselhardt, S. F. , Peschke K., and Nagel P.. 2007. A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings. Naturwissenschaften 94:871–894. PubMed

Hethcote, H. W. 1989. Three basic epidemiological models. Pp. 119–144 in Levin S. A., Hallam T. G., and Gross L. J., eds. Applied mathematical ecology. Springer, Berlin.

Inward, D. J. G. , Vogler A. P., and Eggleton P.. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44:953–967. PubMed

Jiang, R.‐X. , Zhang H.‐R., Eldredge K. T., Song X.‐B., Li Y.‐D., Tihelka E., Huang D., Wang S., Engel M. S., and Cai C.‐Y.. 2021. Further evidence of Cretaceous termitophily: description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera). Palaeoentomology 10.11646/PALAEOENTOMOLOGY.4.4.13. DOI

Kistner, D. H. 1969. The biology of termitophiles. Pp. 525–557 in Krishna K. and Weesner F. M., eds. Biology of termites. Academic Press, New York.

Kistner, D. H. 1979. Social and evolutionary significance of social insect symbionts. Pp. 339–413 in Herman H. R., ed. Social insects. Academic Press, New York.

Kistner, D. H. 1982. The social insects’ bestiary. Pp. 2–244 in Herman H. R., ed. Social insects. Academic Press, New York:

Kistner, D. H. 1998. New species of termitophilous Trichopseniinae (Coleoptera: Staphylinidae) found with Mastotermes darwiniensis in Australia and in Dominican Amber. Sociobiology 31:51–76.

Kitade, O. , Hayashi Y., and Takatsuto K.. 2012. Variation and diversity of symbiotic protist composition in the damp‐wood termite Hodotermopsis sjoestedti . Japanese J. Protozool. 45:29–36.

Korb, J. 2008. The ecology of social evolution in termites. Pp. 151–174 in Korb J. and Heinze J., eds. Ecology of social evolution. Springer, Berlin.

Korb, J. , and Lenz M.. 2004. Reproductive decision‐making in the termite, Cryptotermes secundus (Kalotermitidae), under variable food conditions. Behav. Ecol. 15:390–395.

Krishna, K. , Grimaldi D. A., Krishna V., and Engel M. S.. 2013. Treatise on the Isoptera of the world: vol 1, Introduction. Bull. Am. Museum Nat. Hist. 377:1–200.

Kronauer, D. J. C. 2020. Army ants: nature's ultimate social hunters. Harvard University Press, Cambridge, MA.

Lepage, M. , and Darlington J. P. E. C.. 2000. Population dynamics of termites. Pp. 333–361 in Abe T., Bignell D. E., and Higashi M., eds. Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Maruyama, M. , Kanao T., and Iwata R.. 2012. Discovery of two aleocharine staphylinid species (Coleoptera) associated with Coptotermes formosanus (Isoptera: Rhinotermitidae) from Central Japan, with a review of the possible natural distribution of C. formosanus in Japan and surrounding. Sociobiology 59:605–616.

Mizumoto, N. , and Bourguignon T.. 2020. Modern termites inherited the potential of collective construction from their common ancestor. Ecol. Evol. 10:6775–6784. PubMed PMC

———. 2021. The evolution of body size in termites. Proc. R. Soc. B Biol. Sci. 288:20211458. PubMed PMC

Nutting, W. L. 1969. Flight and colony foundation. Pp. 233–282 in Krishna K. and Weesner F. M., eds. Biology of termites. Academic Press, New York.

Orme, D. 2018. The caper package: comparative analyses in phylogenetics and evolution in R.

Pagel, M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B Biol. Sci. 255:37–45.

Päivinen, J. , Ahlroth P., Kaitala V., Kotiaho J. S., Suhonen J., and Virola T.. 2003. Species richness and regional distribution of myrmecophilous beetles. Oecologia 134:587–595. PubMed

Parker, J. 2016. Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol. News 22:65–108.

Porter, E. E. , and Hawkins B. A.. 2001. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157:97–106. PubMed

R Core Team . 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R‐project.org/.

Mullins, A. , Chouvenc T., and Su N. Y.. 2021. Soil organic matter is essential for colony growth in subterranean termites. Sci. Rep. 11:21252. PubMed PMC

Rettenmeyer, C. W. , Rettenmeyer M. E., Joseph J., and Berghoff S. M.. 2011. The largest animal association centered on one species: the army ant eciton burchellii and its more than 300 associates. Insectes Soc. 58:281–292.

Revell, L. J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3:217–223.

Roisin, Y. , and Pasteels J.. 1993. Prorhinopsenius neotermitis sp. n. (Coleoptera, Staphylinidae, Trichopseniinae), guest of Neotermes (Isoptera, Kalotermitidae) in Papua New Guinea. Entomologie 63:145–150.

Rupf, T. , and Roisin Y.. 2008. Coming out of the woods: do termites need a specialized worker caste to search for new food sources? Naturwissenschaften 95:811–819. PubMed

Scheffrahn, R. H. , Su N.‐Y., Cabrera B., and Kern W.. 2003. Cuban Subterranean Termite (proposed), Florida Dampwood Termite (old unofficial name), Prorhinotermes simplex (Hagen) (Insecta: Isoptera: Rhinotermitidae). Univ. Florida EENY 282:1–3.

Seevers, C. H. 1957. A monograph on the termitophilous Staphylinidae (Coleoptera). Fieldiana, Zool. 40:1–334.

———. 1971. Fossil Staphylinidae in Tertiary Mexican amber (Coleoptera). Univ. Calif. Publ. Entomol. 63:77–86.

Tuma, J. , Eggleton P., and Fayle T. M.. 2020. Ant‐termite interactions: an important but under‐explored ecological linkage. Biol. Rev. 95:555–572. PubMed

Tung Ho, L. S. , and Ané C.. 2014. A linear‐time algorithm for gaussian and non‐gaussian trait evolution models. Syst. Biol. 63:397–408. PubMed

Waterhouse, D. F. , and Norris K. R.. 1993. Biological control: pacific prospects ‐ supplement 2. Australian Centre for International Agricultural Research, Canberra, Australia.

Wilson, E. O. 1971. The insect societies. Harvard Univ. Press, Cambridge, MA.

Yamamoto, S. , Maruyama M., and Parker J.. 2016. Evidence for social parasitism of early insect societies by Cretaceous rove beetles. Nat. Commun. 7:1–9. PubMed PMC

Zobrazit více v PubMed

Dryad
10.5061/dryad.6t1g1jx19

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...