One-Step Electrochemical Synthesis of AlO x -Passivated Twisted-Phosphorene Nanosheets for Potentially Stable Energy Storage Devices

. 2023 Mar 10 ; 6 (5) : 3912-3918. [epub] 20230301

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36938491

Black phosphorus (BP), a promising 2D material for electronics, energy storage, catalysis, and sensing, has sparked a research boom. However, exfoliated thin-layered BP is unstable and can easily be degraded under environmental conditions, severely limiting its practical applications. In this context, a simple and cost-effective method has been proposed that involves electrochemically exfoliating BP and simultaneously electrochemically depositing aluminum oxide (AlO x ) for passivation of the exfoliated BP. The ambient stability of the exfoliated BP is studied using a time-dependent atomic force microscope (AFM). The AlO x capping layer significantly improves the environmental stability of BP compared to uncapped BP. The thermal stability of the resulting BP is evaluated using power-dependent Raman spectroscopy. The results show that the AlO x -passivated BP has increased thermal stability, with only a slight shift in peak position toward higher Raman power intensity. These properties can make the material suitable for stable energy storage devices. Interestingly, the electrochemical exfoliation and passivation processes resulted in the BP with a twist angle (9.86°), which is expected to exhibit unique electronic properties similar to those of graphene with a twist angle.

Zobrazit více v PubMed

Novoselov K. S.; Geim A. K.; Morozov S. V.; Jiang D.-e.; Zhang Y.; Dubonos S. V.; Grigorieva I. V.; Firsov A. A. Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666–669. 10.1126/science.1102896. PubMed DOI

Gupta A.; Sakthivel T.; Seal S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. 10.1016/j.pmatsci.2015.02.002. DOI

Gogotsi Y.; Anasori B.. The rise of MXenes; ACS Publications: 2019; Vol. 13, pp 8491–8494. PubMed

Zheng H. M.; Gao J.; Sun S. M.; Ma Q.; Wang Y. P.; Zhu B.; Liu W. J.; Lu H. L.; Ding S. J.; Zhang D. W. Effects of Al2O3 capping and post-annealing on the conduction behavior in few-layer black phosphorus field-effect transistors. IEEE J. Electron Devices Soc. 2018, 6, 320–324. 10.1109/JEDS.2018.2804481. DOI

Xu Y.; Shi Z.; Shi X.; Zhang K.; Zhang H. Recent progress in black phosphorus and black-phosphorus-analogue materials: properties, synthesis and applications. Nanoscale 2019, 11 (31), 14491–14527. 10.1039/C9NR04348A. PubMed DOI

Zhang Y.; Dong N.; Tao H.; Yan C.; Huang J.; Liu T.; Robertson A. W.; Texter J.; Wang J.; Sun Z. Exfoliation of stable 2D black phosphorus for device fabrication. Chem. Mater. 2017, 29 (15), 6445–6456. 10.1021/acs.chemmater.7b01991. DOI

Sun Z.; Zhang Y.; Yu H.; Yan C.; Liu Y.; Hong S.; Tao H.; Robertson A. W.; Wang Z.; Pádua A. A. H. New solvent-stabilized few-layer black phosphorus for antibacterial applications. Nanoscale 2018, 10 (26), 12543–12553. 10.1039/C8NR03513J. PubMed DOI

Wu B.; Kovalska E.; Luxa J.; Marvan P.; Cintl Š.; Sofer Z. Free-Standing Black Phosphorus Foils for Energy Storage and Catalysis. Chem. - Eur. J. 2020, 26 (36), 8162–8169. 10.1002/chem.202001144. PubMed DOI

Das S.; Zhang W.; Demarteau M.; Hoffmann A.; Dubey M.; Roelofs A. Tunable transport gap in phosphorene. Nano Lett. 2014, 14 (10), 5733–5739. 10.1021/nl5025535. PubMed DOI

Liu H.; Neal A. T.; Zhu Z.; Luo Z.; Xu X.; Tománek D.; Ye P. D. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8 (4), 4033–4041. 10.1021/nn501226z. PubMed DOI

Pai Y.-H.; Chen C.-H. Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. Nanoscale 2021, 13 (2), 763–775. 10.1039/D0NR08364J. PubMed DOI

Haratipour N.; Robbins M. C.; Koester S. J.. Black phosphorus p-MOSFETs with high transconductance and nearly ideal subthreshold slope. arXiv preprint; arXiv:1409.8395, 2014.

Zhu H.; McDonnell S.; Qin X.; Azcatl A.; Cheng L.; Addou R.; Kim J.; Ye P. D.; Wallace R. M. Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS Appl. Mater. Interfaces 2015, 7 (23), 13038–13043. 10.1021/acsami.5b03192. PubMed DOI

Tofan D.; Sakazaki Y.; Walz Mitra K. L.; Peng R.; Lee S.; Li M.; Velian A. Surface Modification of Black Phosphorus with Group 13 Lewis Acids for Ambient Protection and Electronic Tuning. Angew. Chem. 2021, 133 (15), 8410–8417. 10.1002/ange.202100308. PubMed DOI

Lei W.; Liu G.; Zhang J.; Liu M. Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem. Soc. Rev. 2017, 46 (12), 3492–3509. 10.1039/C7CS00021A. PubMed DOI

Sofer Z.; Luxa J.; Bouša D.; Sedmidubský D.; Lazar P.; Hartman T.; Hardtdegen H.; Pumera M. The covalent functionalization of layered black phosphorus by nucleophilic reagents. Angew. Chem., Int. Ed. 2017, 56 (33), 9891–9896. 10.1002/anie.201705722. PubMed DOI

Zhu H.; Qin X.; Azcatl A.; Addou R.; McDonnell S.; Peide D. Y.; Wallace R. M. Surface and interfacial study of half cycle atomic layer deposited Al2O3 on black phosphorus. Microelectron. Eng. 2015, 147, 1–4. 10.1016/j.mee.2015.04.014. DOI

Deng B.; Ma C.; Wang Q.; Yuan S.; Watanabe K.; Taniguchi T.; Zhang F.; Xia F. Strong mid-infrared photoresponse in small-twist-angle bilayer graphene. Nat. Photonics 2020, 14 (9), 549–553. 10.1038/s41566-020-0644-7. DOI

Wang L.; Sofer Z.; Pumera M. Voltammetry of layered black phosphorus: electrochemistry of multilayer phosphorene. ChemElectroChem. 2015, 2 (3), 324–327. 10.1002/celc.201402363. DOI

Wen X.; Zhang J.; Luo H.; Tsay C.; Jiang H.; Lin Y.-H.; Guo J. Synthesis and electrochemical properties of an aluminum hexafluorophosphate electrolyte. J. Phys. Chem. Lett. 2021, 12, 5903–5908. 10.1021/acs.jpclett.1c01236. PubMed DOI

Manabe S.; Wong C. M.; Sevov C. S. Direct and scalable electroreduction of triphenylphosphine oxide to triphenylphosphine. J. Am. Chem. Soc. 2020, 142 (6), 3024–3031. 10.1021/jacs.9b12112. PubMed DOI

Kovalska E.; Luxa J.; Melle-Franco M.; Wu B.; Marek I.; Roy P. K.; Marvan P.; Sofer Z. Single-step synthesis of platinoid-decorated phosphorene: perspectives for catalysis, gas sensing, and energy storage. ACS Appl. Mater. Interfaces 2020, 12 (45), 50516–50526. 10.1021/acsami.0c15525. PubMed DOI

Vergouw J. M.; Difeo A.; Xu Z.; Finch J. A. An agglomeration study of sulphide minerals using zeta-potential and settling rate. Part 1: Pyrite and galena. Miner. Eng. 1998, 11 (2), 159–169. 10.1016/S0892-6875(97)00148-9. DOI

Du H.; Lin X.; Xu Z.; Chu D. Recent developments in black phosphorus transistors. J. Mater. Chem. C 2015, 3 (34), 8760–8775. 10.1039/C5TC01484K. DOI

Korotcenkov G. Black phosphorus-new nanostructured material for humidity sensors: achievements and limitations. Sensors 2019, 19 (5), 1010.10.3390/s19051010. PubMed DOI PMC

Wang Y.; Slassi A.; Cornil J.; Beljonne D.; Samorì P. Tuning the Optical and Electrical Properties of Few-Layer Black Phosphorus via Physisorption of Small Solvent Molecules. Small 2019, 15 (47), 1903432.10.1002/smll.201903432. PubMed DOI

Xu W. P.; Xu H. Role of surface adsorption in tuning the properties of black phosphorus. Phys. Chem. Chem. Phys. 2018, 20 (1), 112–117. 10.1039/C7CP06576K. PubMed DOI

Peng X.; Wei Q.; Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 2014, 90 (8), 085402.10.1103/PhysRevB.90.085402. DOI

Hu H.; Gao H.; Gao L.; Li F.; Xu N.; Long X.; Hu Y.; Jin J.; Ma J. Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale 2018, 10 (13), 5834–5839. 10.1039/C7NR06085H. PubMed DOI

Azimi G.; Dhiman R.; Kwon H.-M.; Paxson A. T.; Varanasi K. K. Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 2013, 12 (4), 315–320. 10.1038/nmat3545. PubMed DOI

Su L.; Zhang Y. Temperature coefficients of phonon frequencies and thermal conductivity in thin black phosphorus layers. Appl. Phys. Lett. 2015, 107 (7), 071905.10.1063/1.4928931. DOI

Li Y.; Hu Z.; Lin S.; Lai S. K.; Ji W.; Lau S. P. Giant anisotropic Raman response of encapsulated ultrathin black phosphorus by uniaxial strain. Adv. Funct. Mater. 2017, 27 (19), 1600986.10.1002/adfm.201600986. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...