Free-Standing Black Phosphorus Foils for Energy Storage and Catalysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32270525
DOI
10.1002/chem.202001144
Knihovny.cz E-zdroje
- Klíčová slova
- all-solid-state supercapacitors, black phosphorus, electrochemistry, energy storage, free-standing films,
- Publikační typ
- časopisecké články MeSH
Few-layered black phosphorus (BP) is a two-dimensional material that has attracted intensive attention for applications in energy storage and catalysis due to its large surface area and good electrical and thermal conductivity. Herein, a comparable study of BP electrochemical exfoliation in various solutions of tetrabutylammonium salts (TBAX; X is PF6 - , BF4 - , and ClO4 - ) in DMSO is reported. Based on morphological and structural analyses, it is shown that TBAPF6 /DMSO medium was specifically appropriate for the production of high-quality BP nanosheets with micrometer lateral size and a thickness of about 2.4 nm. TBAPF6 /DMSO-processed, few-layered BP exhibits enhanced hydrogen evolution reaction (HER) catalytic activity compared with that of samples exfoliated with the assistance of BF4 - and ClO4 - ions. Finally, the fabrication of flexible, free-standing BP films and their performance in an all-solid-state supercapacitor device are demonstrated.
Zobrazit více v PubMed
K. Ramasamy, R. K. Gupta, S. Palchoudhury, S. Ivanov, A. Gupta, Chem. Mater. 2015, 27, 379.
M. Beidaghi, Y. Gogotsi, Energy Environmental Science 2014, 7, 867.
X. Zhu, T. Zhang, Z. Sun, H. Chen, J. Guan, X. Chen, H. Ji, P. Du, S. J. A. M. Yang, Adv. Mater. 2017, 29, 1605776.
Q. Liu, Y.-R. Xu, A.-J. Wang, J. J. Feng, J. Power Sources 2016, 302, 394.
A. Patel, R. J. H. Dawson, Hydrometallurgy 2015, 157, 219.
A. Yu, V. Chabot, J. Zhang, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications, CRC, Boca Rotan, 2017.
J. A. Rogers, T. Someya, Y. J. S. Huang, Science 2010, 327, 1603.
H. Gwon, H.-S. Kim, K. U. Lee, D.-H. Seo, Y. C. Park, Y.-S. Lee, B. T. Ahn, K. Kang, Energy Environmental Science 2011, 4, 1277-1283.
J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu, Z. L. J. A. C. I. E. Wang, Angew. Chem. Int. Ed. 2011, 50, 1683;
Angew. Chem. 2011, 123, 1721.
H. Moon, H. Lee, J. Kwon, Y. D. Suh, D. K. Kim, I. Ha, J. Yeo, S. Hong, S. H. J. S. R. Ko, Sci. Rep. 2017, 7, 41981.
K. Wang, P. Zhao, X. Zhou, H. Wu, Z. Wei, J. Mater. Chem. 2011, 21, 16373.
H. Xiao, M. Zhao, J. Zhang, X. Ma, J. Zhang, T. Hu, T. Tang, J. Jia, H. Wu, Electrochem. Commun. 2018, 89, 10.
M. Qiu, Z. T. Sun, D. K. Sang, X. G. Han, H. Zhang, C. M. Niu, Nanoscale 2017, 9, 13384.
B. Yang, C. Hao, F. Wen, B. Wang, C. Mu, J. Xiang, L. Li, B. Xu, Z. Zhao, Z. J. A. Liu, ACS Appl. Mater. Interfaces 2017, 9, 44478.
H. Du, X. Lin, Z. Xu, D. Chu, J. Mater. Chem. C 2015, 3, 8760.
J. Wu, N. Mao, L. Xie, H. Xu, J. J. A. C. I. E. Zhang, Angew. Chem. Int. Ed. 2015, 54, 2366;
Angew. Chem. 2015, 127, 2396.
X. Ling, S. Huang, E. H. Hasdeo, L. Liang, W. M. Parkin, Y. Tatsumi, A. R. Nugraha, A. A. Puretzky, P. M. Das, B. G. J. N. Sumpter, Nano Lett. 2016, 16, 2260.
J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, M. H. Rummeli, Adv. Energy Mater. 2018, 8, 1702093.
Z. S. Wu, K. Parvez, X. Feng, K. J. N. Müllen, Nat. Commun. 2013, 4, 2487.
E. Kovalska, J. Luxa, T. Hartman, N. Antonatos, P. Shaban, E. Oparin, M. Zhukova, Z. Sofer, Nanoscale 2020, 12, 2638-2647.
Y. Yang, H. Hou, G. Zou, W. Shi, H. Shuai, J. Li and X. Ji, Nanoscale 2019, 11, 16-33.
H. Liu, Y. Du, Y. Deng, P. D. Ye, Chem. Soc. Rev. 2015, 44, 2732.
A. J. Cooper, M. Velický, I. A. Kinloch, R. A. W. Dryfe, J. Electroanal. Chem. 2014, 730, 34.
W. Sirisaksoontorn, A. A. Adenuga, V. T. Remcho, M. M. Lerner, J. Am. Chem. Soc. 2011, 133, 12436.
S. Yang, K. Zhang, A. G. Ricciardulli, P. Zhang, Z. Liao, M. R. Lohe, E. Zschech, P. W. M. Blom, W. Pisula, K. Müllen, X. Feng, Angew. Chem. Int. Ed. 2018, 57, 4677;
Angew. Chem. 2018, 130, 4767.
C.-J. Shih, S. Lin, M. S. Strano, D. Blankschtein, J. Am. Chem. Soc. 2010, 132, 14638.
A. M. Abdelkader, A. J. Cooper, R. A. W. Dryfe, I. A. Kinloch, Nanoscale 2015, 7, 6944.
C. Sun, L. Wen, J. Zeng, Y. Wang, Q. Sun, L. Deng, C. Zhao, Z. Li, Biomaterials 2016, 91, 81.
X. Li, Y. Fang, J. Wang, B. Wei, K. Qi, H. Y. Hoh, Q. Hao, T. Sun, Z. Wang, Z. Yin, Y. Zhang, J. Lu, Q. Bao, C. Su, Small 2019, 15, 1902427.
R. Hultgren, N. S. Gingrich, B. E. Warren, J. Chem. Phys. 1935, 3, 351.
S. Sugai, I. Shirotani, Solid State Commun. 1985, 53, 753.
W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, Z. J. N. R. Zhang, Nano Res. 2014, 7, 853.
V. Nemoshkalenko, V. Didyk, V. Krivitskii, A. J. Z. N. K. Senekevich, Zh. Neorg. Khim. 1983, 28, 2182.
T. Moffat, R. Latanision, R. J. E. Ruf, Electrochim. Acta 1995, 40, 1723.
M. Edmonds, A. Tadich, A. Carvalho, A. Ziletti, K. O'Donnell, S. Koenig, D. Coker, B. J. I. Ozyilmaz, ACS Appl. Mater. Interfaces 2015, 7, 14557.
Y. Tian, H. Wang, H. Li, Z. Guo, B. Tian, Y. Cui, Z. Li, G. Li, H. Zhang, Y. Wu, J. Mater. Chem. A 2020, 8, 4647-4676.
Z. Zhang, J. Hao, W. Yang, B. Lu, J. J. N. Tang, Nanoscale 2015, 7, 4400.
Synthesis of Xenes: physical and chemical methods