Steady-State Levels of Cytokinins and Their Derivatives May Serve as a Unique Classifier of Arabidopsis Ecotypes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31963497
PubMed Central
PMC7020191
DOI
10.3390/plants9010116
PII: plants9010116
Knihovny.cz E-zdroje
- Klíčová slova
- abscisic acid, cytokinin glucosides, cytokinin metabolism, cytokinins, indole-3-acetic acid, single nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
We determined steady-state (basal) endogenous levels of three plant hormones (abscisic acid, cytokinins and indole-3-acetic acid) in a collection of thirty different ecotypes of Arabidopsis that represent a broad genetic variability within this species. Hormone contents were analysed separately in plant shoots and roots after 21 days of cultivation on agar plates in a climate-controlled chamber. Using advanced statistical and machine learning methods, we tested if basal hormonal levels can be considered a unique ecotype-specific classifier. We also explored possible relationships between hormone levels and the prevalent environmental conditions in the site of origin for each ecotype. We found significant variations in basal hormonal levels and their ratios in both root and shoot among the ecotypes. We showed the prominent position of cytokinins (CK) among the other hormones. We found the content of CK and CK metabolites to be a reliable ecotype-specific identifier. Correlation with the mean temperature at the site of origin and the large variation in basal hormonal levels suggest that the high variability may potentially be in response to environmental factors. This study provides a starting point for ecotype-specific genetic maps of the CK metabolic and signalling network to explore its contribution to the adaptation of plants to local environmental conditions.
Zobrazit více v PubMed
Clark R.M., Schweikert G., Toomajian C., Ossowski S., Zeller G., Shinn P., Warthmann N., Hu T.T., Fu G., Hinds D.A., et al. Common sequence polymorphisms shaping genetic diversity in arabidopsis thaliana. Science. 2007;317:338–342. doi: 10.1126/science.1138632. PubMed DOI
Passardi F., Dobias J., Valério L., Guimil S., Penel C., Dunand C. Morphological and physiological traits of three major arabidopsis thaliana accessions. J. Plant Physiol. 2007;164:980–992. doi: 10.1016/j.jplph.2006.06.008. PubMed DOI
Kissen R., Hyldbakk E., Wang C.W.V., Sørmo C.G., Rossiter J.T., Bones A.M. Ecotype dependent expression and alternative splicing of epithiospecifier protein (ESP) in arabidopsis thaliana. Plant Mol. Biol. 2012;78:361–375. doi: 10.1007/s11103-011-9869-7. PubMed DOI
Takahashi S., Monda K., Negi J., Konishi F., Ishikawa S., Hashimoto-Sugimoto M., Goto N., Iba K. Natural variation in stomatal responses to environmental changes among Arabidopsis thaliana ecotypes. PLoS ONE. 2015;10:e0117449. doi: 10.1371/journal.pone.0117449. PubMed DOI PMC
Clauw P., Coppens F., De Beuf K., Dhondt S., Van Daele T., Maleux K., Storme V., Clement L., Gonzalez N., Inzé D. Leaf responses to mild drought stress in natural variants of arabidopsis. Plant Physiol. 2015;167:800–816. doi: 10.1104/pp.114.254284. PubMed DOI PMC
Clauw P., Coppens F., Korte A., Herman D., Slabbinck B., Dhondt S., Van Daele T., De Milde L., Vermeersch M., Maleux K., et al. Leaf growth response to mild drought: Natural variation in arabidopsis sheds light on trait architecture. Plant Cell. 2016;28:2417–2434. doi: 10.1105/tpc.16.00483. PubMed DOI PMC
Verma V., Ravindran P., Kumar P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016;16:86. doi: 10.1186/s12870-016-0771-y. PubMed DOI PMC
Samsonova Z., Kuklova A., Mazura P., Rotkova G., Novak O., Brzobohaty B., Kiran N.S. Natural variation in the cytokinin metabolic network in arabidopsis thaliana. Mendelnet. 2012:881–886.
Wilkinson S. Water Use Efficiency in Plant Biology. Blackwell Publishing; Bacon, MA, USA: 2004. Water Use Efficiency and Chemical Signalling; pp. 75–112.
Zhang P., Wang W.Q., Zhang G.L., Kaminek M., Dobrev P., Xu J., Gruissem W. Senescence-inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava. J. Integr. Plant Biol. 2010;52:653–669. doi: 10.1111/j.1744-7909.2010.00956.x. PubMed DOI
Miyawaki K., Matsumoto-Kitano M., Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004;37:128–138. doi: 10.1046/j.1365-313X.2003.01945.x. PubMed DOI
Takei K., Yamaya T., Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyse the biosynthesis of trans-Zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI
Nordström A., Tarkowski P., Tarkowska D., Norbaek R., Åstot C., Dolezal K., Sandberg G. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA. 2004;101:8039–8044. doi: 10.1073/pnas.0402504101. PubMed DOI PMC
Schaller G.E., Bishopp A., Kieber J.J. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. Plant Cell. 2015;27:44–63. doi: 10.1105/tpc.114.133595. PubMed DOI PMC
Miller C.O., Skoog F., Okomura F.S., Von Saltza M.H. Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Am. Chem. Soc. 1956;75:1345–1350.
Miller C.O., Skoog F., Von Saltza M.H., Strong F.M. Kinetin, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 1955;77:1392. doi: 10.1021/ja01610a105. DOI
Pospíšilová J., Haisel D., Synková H., Baťková-Spoustová P. Improvement of ex vitro transfer of tobacco plantlets by addition of abscisic acid to the last subculture. Biol. Plant. 2009;53:617–624. doi: 10.1007/s10535-009-0113-0. DOI
Kudoyarova G., Veselova S., Hartung W., Farhutdinov R., Veselov D., Sharipova G. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta. 2011;233:87–94. doi: 10.1007/s00425-010-1286-7. PubMed DOI
Ghanem M.E., Hichri I., Smigocki A.C., Albacete A., Fauconnier M.L., Diatloff E., Martinez-Andujar C., Lutts S., Dodd I.C., Pérez-Alfocea F. Root-targeted biotechnology to mediate hormonal signalling and improve crop stress tolerance. Plant Cell Rep. 2011;30:807–823. doi: 10.1007/s00299-011-1005-2. PubMed DOI
Wang T., Li C., Wu Z., Jia Y., Wang H., Sun S., Mao C., Wang X. Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Front. Plant Sci. 2017;8:1121. doi: 10.3389/fpls.2017.01121. PubMed DOI PMC
Qi Y. Ensemble Machine Learning: Methods and ApplicatiOns. Springer; Boston, MA, USA: 2012. Random Forest for Bioinformatics; pp. 307–323.
Gelová Z., Ten Hoopen P., Novák O., Motyka V., Pernisová M., Dabravolski S., Didi V., Tillack I., OklešA Ková J., Strnad M., et al. Antibody-mediated modulation of cytokinins in tobacco: Organ-specific changes in cytokinin homeostasis. J. Exp. Bot. 2018;69:441–454. doi: 10.1093/jxb/erx426. PubMed DOI
Bishopp A., Lehesranta S., Vatén A., Help H., El-Showk S., Scheres B., Helariutta K., Mähönen A.P., Sakakibara H., Helariutta Y. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr. Biol. 2011;21:927–932. doi: 10.1016/j.cub.2011.04.049. PubMed DOI
Corbesier L., Prinsen E., Jacqmard A., Lejeune P., Van Onckelen H., Périlleux C., Bernier G. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 2003;54:2511–2517. doi: 10.1093/jxb/erg276. PubMed DOI
Hirose N., Takei K., Kuroha T., Kamada-Nobusada T., Hayashi H., Sakakibara H. Regulation of cytokinin biosynthesis, compartmentalization and translocation. J. Exp. Bot. 2008;59:75–83. doi: 10.1093/jxb/erm157. PubMed DOI
Matsumoto-Kitano M., Kusumoto T., Tarkowski P., Kinoshita-Tsujimura K., Václavíková K., Miyawaki K., Kakimoto T. Cytokinins are central regulators of cambial activity. Proc. Natl. Acad. Sci. USA. 2008;105:20027–20031. doi: 10.1073/pnas.0805619105. PubMed DOI PMC
Kudo T., Kiba T., Sakakibara H. Metabolism and long-distance translocation of cytokinins. J. Integr. Plant Biol. 2010;52:53–60. doi: 10.1111/j.1744-7909.2010.00898.x. PubMed DOI
James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning. Volume 6. Springer; New York, NY, USA: 2013.
Janečková H., Husičková A., Ferretti U., Prčina M., Pilařová E., Plačková L., Pospíšil P., Doležal K., Špundová M. The interplay between cytokinins and light during senescence in detached arabidopsis leaves. Plant Cell Environ. 2018;41:1870–1885. doi: 10.1111/pce.13329. PubMed DOI
Jin S.H., Ma X.M., Kojima M., Sakakibara H., Wang Y.W., Hou B.K. Overexpression of glucosyltransferase UGT85A1 influences trans-zeatin homeostasis and trans-zeatin responses likely through O-glucosylation. Planta. 2013;237:991–999. doi: 10.1007/s00425-012-1818-4. PubMed DOI
Hou B., Lim E.K., Higgins G.S., Bowles D.J. N-glucosylation of cytokinins by glycosyltransferases of arabidopsis thaliana. J. Biol. Chem. 2004;279:47822–47832. doi: 10.1074/jbc.M409569200. PubMed DOI
Wang J., Ma X.M., Kojima M., Sakakibara H., Hou B.K. Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in arabidopsis thaliana. Plant Physiol. Biochem. 2013;65:9–16. doi: 10.1016/j.plaphy.2013.01.012. PubMed DOI
Brzobohatý B., Moore I., Kristoffersen P., Bako L., Campos N., Schell J., Palme K. Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science. 1993;262:1051–1054. doi: 10.1126/science.8235622. PubMed DOI
Pernisová M., Klíma P., Horák J., Válková M., Malbeck J., Souček P., Reichman P., Hoyerová K., Dubová J., Friml J., et al. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc. Natl. Acad. Sci. USA. 2009;106:3609–3614. doi: 10.1073/pnas.0811539106. PubMed DOI PMC
Li P., Lei K., Li Y., He X., Wang S., Liu R., Ji L., Hou B. Identification and characterization of the first cytokinin glycosyltransferase from rice. Rice. 2019;12:19. doi: 10.1186/s12284-019-0279-9. PubMed DOI PMC
Bartrina I., Otto E., Strnad M., Werner T., Schmülling T. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell. 2011;23:69–80. doi: 10.1105/tpc.110.079079. PubMed DOI PMC
Ramireddy E., Hosseini S.A., Eggert K., Gillandt S., Gnad H., von Wirén N., Schmülling T. Root engineering in barley: Increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance. Plant Physiol. 2018;177:1078–1095. doi: 10.1104/pp.18.00199. PubMed DOI PMC
Skalák J., Vercruyssen L., Claeys H., Hradilová J., Černý M., Novák O., Plačková L., Saiz-Fernández I., Skaláková P., Coppens F., et al. Multifaceted activity of cytokinin in leaf development shapes its size and structure in arabidopsis. Plant J. 2019;97:805–824. doi: 10.1111/tpj.14285. PubMed DOI
Werner T., Holst K., Pörs Y., Guivarc’h A., Mustroph A., Chriqui D., Grimm B., Schmülling T. Cytokinin deficiency causes distinct changes of sink and source parameters in tobacco shoots and roots. J. Exp. Bot. 2008;59:2659–2672. doi: 10.1093/jxb/ern134. PubMed DOI PMC
Skalák J., Cerný M., Jedelský P., Dobrá J., Ge E., Novák J., Hronková M., Dobrev P., Vanková R., Brzobohatý B. Stimulation of ipt overexpression as a tool to elucidate the role of cytokinins in high temperature responses of arabidopsis thaliana. J. Exp. Bot. 2016;67:2861–2873. doi: 10.1093/jxb/erw129. PubMed DOI PMC
Wilkinson S., Kudoyarova G.R., Veselov D.S., Arkhipova T.N., Davies W.J. Plant hormone interactions: Innovative targets for crop breeding and management. J. Exp. Bot. 2012;63:3499–3509. doi: 10.1093/jxb/ers148. PubMed DOI
Chapin F.S. Integrated responses of plants to stress. Bioscience. 1991;41:29–36. doi: 10.2307/1311538. DOI
Dobrev P.I., Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Svačinová J., Novák O., Plačková L., Lenobel R., Holík J., Strnad M., Doležal K. A new approach for cytokinin isolation from arabidopsis tissues using miniaturized purification: Pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
de Winter J.C.F. Using the student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 2013;18:2.
Ruxton G.D. The unequal variance t-test is an underused alternative to Student’s t-test and the mann-whitney U test. Behav. Ecol. 2006;17:688–690. doi: 10.1093/beheco/ark016. DOI
Breiman L. Random forests. Mach. Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324. DOI
Team RStudio . RStudio: Integrated Development Environment for R. RStudio Inc.; Boston, MA, USA: 2015. [(accessed on 17 September 2019)]. Available online: http://www.rstudio.com.
El-Soda M., Kruijer W., Malosetti M., Koornneef M., Aarts M.G.M. Quantitative trait loci and candidate genes underlying genotype by environment interaction in the response of arabidopsis thaliana to drought. Plant Cell Environ. 2015;38:585–599. doi: 10.1111/pce.12418. PubMed DOI
Hothorn M., Dabi T., Chory J. Structural basis for cytokinin recognition by arabidopsis thaliana histidine kinase 4. Nat. Chem. Biol. 2011;7:766–768. doi: 10.1038/nchembio.667. PubMed DOI PMC
Bartrina I., Jensen H., Novák O., Strnad M., Werner T., Schmülling T. Gain-of-function mutants of the cytokinin receptors AHK2 and AHK3 regulate plant organ size, flowering time and plant longevity. Plant Physiol. 2017;173:1783–1797. doi: 10.1104/pp.16.01903. PubMed DOI PMC
Miwa K., Ishikawa K., Terada K., Yamada H., Suzuki T., Yamashino T., Mizuno T. Identification of amino acid substitutions that render the arabidopsis cytokinin receptor histidine kinase AHK4 constitutively active. Plant Cell Physiol. 2007;48:1809–1814. doi: 10.1093/pcp/pcm145. PubMed DOI
Yamada H., Suzuki T., Terada K., Takei K., Ishikawa K., Miwa K., Yamashino T., Mizuno T. The arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 2001;42:1017–1023. doi: 10.1093/pcp/pce127. PubMed DOI
Hošek P., Hoyerová K., Kiran N.S., Dobrev P.I., Zahajská L., Filepová R., Motyka V., Müller K., Kamínek M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in arabidopsis. New Phytol. 2019 doi: 10.1111/nph.16310. PubMed DOI
Signal Integration in Plant Abiotic Stress Responses via Multistep Phosphorelay Signaling