Phospholipase Dα1 Acts as a Negative Regulator of High Mg2+-Induced Leaf Senescence in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34899793
PubMed Central
PMC8656112
DOI
10.3389/fpls.2021.770794
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, abscisic acid, jasmonic acid, leaf senescence, magnesium homeostasis, phospholipase D, proline, starch,
- Publikační typ
- časopisecké články MeSH
Magnesium (Mg2+) is a macronutrient involved in essential cellular processes. Its deficiency or excess is a stress factor for plants, seriously affecting their growth and development and therefore, its accurate regulation is essential. Recently, we discovered that phospholipase Dα1 (PLDα1) activity is vital in the stress response to high-magnesium conditions in Arabidopsis roots. This study shows that PLDα1 acts as a negative regulator of high-Mg2+-induced leaf senescence in Arabidopsis. The level of phosphatidic acid produced by PLDα1 and the amount of PLDα1 in the leaves increase in plants treated with high Mg2+. A knockout mutant of PLDα1 (pldα1-1), exhibits premature leaf senescence under high-Mg2+ conditions. In pldα1-1 plants, higher accumulation of abscisic and jasmonic acid (JA) and impaired magnesium, potassium and phosphate homeostasis were observed under high-Mg2+ conditions. High Mg2+ also led to an increase of starch and proline content in Arabidopsis plants. While the starch content was higher in pldα1-1 plants, proline content was significantly lower in pldα1-1 compared with wild type plants. Our results show that PLDα1 is essential for Arabidopsis plants to cope with the pleiotropic effects of high-Mg2+ stress and delay the leaf senescence.
Zobrazit více v PubMed
Aleksza D., Horváth G. V., Sándor G., Szabados L. (2017). Proline accumulation is regulated by transcription factors associated with phosphate starvation. Plant Physiol. 175, 555–567. doi: 10.1104/pp.17.00791, PMID: PubMed DOI PMC
Allu A. D., Soja A. M., Wu A., Szymanski J., Balazadeh S. (2014). Salt stress and senescence: identification of cross-talk regulatory components. J. Exp. Bot. 65, 3993–4008. doi: 10.1093/jxb/eru173, PMID: PubMed DOI PMC
Armengaud P., Breitling R., Amtmann A. (2004). The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol. 136, 2556–2576. doi: 10.1104/pp.104.046482, PMID: PubMed DOI PMC
Balazadeh S., Siddiqui H., Allu A. D., Matallana-Ramirez L. P., Caldana C., Mehrnia M., et al. . (2010). A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62, 250–264. doi: 10.1111/j.1365-313X.2010.04151.x PubMed DOI
Bargmann B. O. R., Laxalt A. M., ter Riet B., van Schooten B., Merquiol E., Testerink C., et al. . (2009). Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol. 50, 78–89. doi: 10.1093/pcp/pcn173, PMID: PubMed DOI PMC
Bates L. S., Waldren R. P., Teare I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207. doi: 10.1007/BF00018060 DOI
Bradshaw H. D., Jr. (2005). Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytol. 167, 81–88. doi: 10.1111/j.1469-8137.2005.01408.x PubMed DOI
Breeze E., Harrison E., McHattie S., Hughes L., Hickman R., Hill C., et al. . (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23, 873–894. doi: 10.1105/tpc.111.083345, PMID: PubMed DOI PMC
Bresson J., Bieker S., Riester L., Doll J., Zentgraf U. (2018). A guideline for leaf senescence analyses: from quantification to physiological and molecular investigations. J. Exp. Bot. 12, 769–786. doi: 10.1093/jxb/erx246 PubMed DOI
Cakmak I., Hengeler C., Marschner H. (1994). Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Exp. Bot. 45, 1245–1250. doi: 10.1093/jxb/45.9.1245 DOI
Cao S. Q., Su L., Fang Y. J. (2006). Evidence for involvement of jasmonic acid in the induction of leaf senescence by potassium deficiency in Arabidopsis. Can. J. Bot. 84, 328–333. doi: 10.1139/B06-001 DOI
Chen Z. C., Peng W. T., Li J., Liao H. (2018). Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 74, 142–152. doi: 10.1016/j.semcdb.2017.08.005, PMID: PubMed DOI
Cheng N. H., Pittman J. K., Barkla B. J., Shigaki T., Hirschi K. D. (2003). The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15, 347–364. doi: 10.1105/tpc.007385, PMID: PubMed DOI PMC
Choudhury S. R., Pandey S. (2016). The role of PLDα1 in providing specificity to signal-response coupling by heterotrimeric G-protein components in Arabidopsis. Plant J. 86, 50–61. doi: 10.1111/tpj.13151 PubMed DOI
Colaneri A. C., Tunc-Ozdemir M., Huang J. P., Jones A. M. (2014). Growth attenuation under saline stress is mediated by the heterotrimeric G protein complex. BMC Plant Biol. 14:129. doi: 10.1186/1471-2229-14-129, PMID: PubMed DOI PMC
Devaiah S. P., Pan X. Q., Hong Y. Y., Roth M., Welti R., Wang X. M. (2007). Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J. 50, 950–957. doi: 10.1111/j.1365-313X.2007.03103.x PubMed DOI
Dhar N., Caruana J., Erdem I., Subbarao K. V., Klosterman S. J., Raina R. (2020). The Arabidopsis SENESCENCE-ASSOCIATED GENE 13 regulates dark-induced senescence and plays contrasting roles in defense against bacterial and fungal pathogens. Mol. Plant-Microbe Interact. 33, 754–766. doi: 10.1094/MPMI-11-19-0329-R, PMID: PubMed DOI
Fan L., Zheng S., Wang X. (1997). Antisense suppression of phospholipase Dα retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9, 2183–2196. doi: 10.1105/tpc.9.12.2183, PMID: PubMed DOI PMC
Funck D., Eckard S., Müller G. (2010). Non-redundant functions of two proline dehydrogenase isoforms in Arabidopsis. BMC Plant Biol. 10:70. doi: 10.1186/1471-2229-10-70, PMID: PubMed DOI PMC
Gajdošová S., Spíchal L., Kamínek M., Hoyerová K., Novák O., Dobrev P. I., et al. . (2011). Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 62, 2827–2840. doi: 10.1093/jxb/erq457, PMID: PubMed DOI
Gan S., Amasino R. M. (1996). Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18, 557–565. doi: 10.1002/bies.950180707 DOI
Gao H., Wang C., Li L., Fu D., Zhang Y., Yang P., et al. . (2020). A novel role of the calcium sensor CBL1 in response to phosphate deficiency in Arabidopsis thaliana. J. Plant Physiol. 253:153266. doi: 10.1016/j.jplph.2020.153266, PMID: PubMed DOI
Gookin T. E., Assmann S. M. (2014). Significant reduction of BiFC non-specific assembly facilitates in planta assessment of heterotrimeric G-protein interactors. Plant J. 80, 553–567. doi: 10.1111/tpj.12639, PMID: PubMed DOI PMC
Guo W., Cong Y., Hussain N., Wang Y., Liu Z., Jiang L., et al. . (2014). The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. Plant Cell Physiol. 55, 1713–1726. doi: 10.1093/pcp/pcu102, PMID: PubMed DOI
Guo W. L., Nazim H., Liang Z. S., Yang D. F. (2016). Magnesium deficiency in plants: an urgent problem. Crop J. 4, 83–91. doi: 10.1016/j.cj.2015.11.003 DOI
Guo Y., Ren G., Zhang K., Li Z., Miao Y., Guo H. (2021). Leaf senescence: progression, regulation, and application. Mol. Hortic. 1:5. doi: 10.1186/s43897-021-00006-9 PubMed DOI PMC
He Y., Fukushige H., Hildebrand D. F., Gan S. (2002). Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128, 876–884. doi: 10.1104/pp.010843, PMID: PubMed DOI PMC
Hermans C., Conn S. J., Chen J., Xiao Q., Verbruggen N. (2013). An update on magnesium homeostasis mechanisms in plants. Metallomics 5, 1170–1183. doi: 10.1039/c3mt20223b, PMID: PubMed DOI
Hermans C., Hammond J. P., White P. J., Verbruggen N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 11, 610–617. doi: 10.1016/j.tplants.2006.10.007, PMID: PubMed DOI
Hong Y., Zhao J., Guo L., Kim S.-C., Deng X., Wang G., et al. . (2016). Plant phospholipases D and C and their diverse functions in stress responses. Prog. Lipid Res. 62, 55–74. doi: 10.1016/j.plipres.2016.01.002, PMID: PubMed DOI
Hu W., Coomer T. D., Loka D. A., Oosterhuis D. M., Zhou Z. (2017). Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 115, 408–417. doi: 10.1016/j.plaphy.2017.04.005, PMID: PubMed DOI
Hu W., Lv X. B., Yang J. S., Chen B. L., Zhao W. Q., Meng Y. L., et al. . (2016). Effects of potassium deficiency on antioxidant metabolism related to leaf senescence in cotton (Gossypium hirsutum L.). Field Crop Res. 191, 139–149. doi: 10.1016/j.fcr.2016.02.025 DOI
Huang J., Yan M., Zhu X., Zhang T., Shen W., Yu P., et al. . (2018). Gene mapping of starch accumulation and premature leaf senescence in the ossac3 mutant of rice. Euphytica 214:177. doi: 10.1007/s10681-018-2261-9 DOI
Jia Y. X., Tao F. Q., Li W. Q. (2013). Lipid profiling demonstrates that suppressing Arabidopsis phospholipase Dδ retards ABA-promoted leaf senescence by attenuating lipid degradation. PLoS One 8:e65687. doi: 10.1371/journal.pone.0065687, PMID: PubMed DOI PMC
John C. F., Morris K., Jordan B. R., Thomas B., A-H-Mackerness S. (2001). Ultraviolet-B exposure leads to up-regulation of senescence-associated genes in Arabidopsis thaliana. J. Exp. Bot. 52, 1367–1373. doi: 10.1093/jexbot/52.359.1367, PMID: PubMed DOI
Kaplan F., Guy C. L. (2004). β-Amylase induction and the protective role of maltose during temperature shock. Plant Physiol. 135, 1674–1684. doi: 10.1104/pp.104.040808, PMID: PubMed DOI PMC
Kaur G., Asthir B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant. 59, 609–619. doi: 10.1007/s10535-015-0549-3 DOI
Kocourková D., Krčková Z., Pejchar P., Kroumanová K., Podmanická T., Daněk M., et al. . (2020). Phospholipase Dα1 mediates the high-Mg2+ stress response partially through regulation of K+ homeostasis. Plant Cell Environ. 43, 2460–2475. doi: 10.1111/pce.13831 PubMed DOI
Kolesnikov Y. S., Nokhrina K. P., Kretynin S. V., Volotovski I. D., Martinec J., Romanov G. A., et al. . (2012). Molecular structure of phospholipase D and regulatory mechanisms of its activity in plant and animal cells. Biochemistry 77, 1–14. doi: 10.1134/S0006297912010014, PMID: PubMed DOI
Krckova Z., Kocourkova D., Danek M., Brouzdova J., Pejchar P., Janda M., et al. . (2018). The Arabidopsis thaliana non-specific phospholipase C2 is involved in the response to pseudomonas syringae attack. Ann. Bot. 121, 297–310. doi: 10.1093/aob/mcx160, PMID: PubMed DOI PMC
Li B., Wang Y., Zhang Z. Y., Wang B. M., Eneji A. E., Duan L. S., et al. . (2012). Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. J. Plant Physiol. 169, 327–335. doi: 10.1016/j.jplph.2011.10.009, PMID: PubMed DOI
Li Z., Zhao Y., Liu X., Jiang Z., Peng J., Jin J., et al. . (2017). “Construction of the leaf senescence database and functional assessment of senescence-associated genes,” in Plant Genomics Databases: Methods and Protocols. ed. van Dijk A. D. J. (New York, NY: Springer; ), 315–333. PubMed
Lim P. O., Kim H. J., Nam H. G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136. doi: 10.1146/annurev.arplant.57.032905.105316, PMID: PubMed DOI
McLoughlin F., Arisz S. A., Dekker H. L., Kramer G., de Koster C. G., Haring M. A., et al. . (2013). Identification of novel candidate phosphatidic acid-binding proteins involved in the salt-stress response of Arabidopsis thaliana roots. Biochem. J. 450, 573–581. doi: 10.1042/BJ20121639 PubMed DOI
Meng S., Peng J. S., He Y. N., Zhang G. B., Yi H. Y., Fu Y. L., et al. . (2016). Arabidopsis NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level. Mol. Plant 9, 461–470. doi: 10.1016/j.molp.2015.12.015, PMID: PubMed DOI
Mert-Turk F., Bennett M. H., Mansfield J. W., Holub E. B. (2003). Quantification of camalexin in several accessions of Arabidopsis thaliana following inductions with Peronospora parasitica and UV-B irradiation. Phytoparasitica 31:81. doi: 10.1007/BF02979770 DOI
Miller J. D., Arteca R. N., Pell E. J. (1999). Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis. Plant Physiol. 120, 1015–1024. doi: 10.1104/pp.120.4.1015, PMID: PubMed DOI PMC
Mishra G., Zhang W., Deng F., Zhao J., Wang X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science 312, 264–266. doi: 10.1126/science.1123769, PMID: PubMed DOI
Miura K., Tada Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 5:4. doi: 10.3389/fpls.2014.00004, PMID: PubMed DOI PMC
Mogami J., Fujita Y., Yoshida T., Tsukiori Y., Nakagami H., Nomura Y., et al. . (2015). Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Plant Physiol. 167, 1039–1057. doi: 10.1104/pp.114.249870, PMID: PubMed DOI PMC
Niu Y., Chen P., Zhang Y., Wang Z., Hu S., Jin G., et al. . (2018). Natural variation among Arabidopsis thaliana accessions in tolerance to high magnesium supply. Sci. Rep. 8:13640. doi: 10.1038/s41598-018-31950-0, PMID: PubMed DOI PMC
Niu Y., Jin G., Li X., Tang C., Zhang Y., Liang Y., et al. . (2015). Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. J. Exp. Bot. 66, 3841–3854. doi: 10.1093/jxb/erv181, PMID: PubMed DOI PMC
Oda-Yamamizo C., Mitsuda N., Sakamoto S., Ogawa D., Ohme-Takagi M., Ohmiya A. (2016). The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci. Rep. 6:23609. doi: 10.1038/srep23609, PMID: PubMed DOI PMC
Pangesti N., Reichelt M., van de Mortel J. E., Kapsomenou E., Gershenzon J., van Loon J. J. A., et al. . (2016). Jasmonic acid and ethylene signaling pathways regulate glucosinolate levels in plants during rhizobacteria-induced systemic resistance against a leaf-chewing herbivore. J. Chem. Ecol. 42, 1212–1225. doi: 10.1007/s10886-016-0787-7, PMID: PubMed DOI PMC
Pejchar P., Potocký M., Novotná Z., Veselková Š., Kocourková D., Valentová O., et al. . (2010). Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells. New Phytol. 188, 150–160. doi: 10.1111/j.1469-8137.2010.03349.x PubMed DOI
Pokotylo I., Kravets V., Martinec J., Ruelland E. (2018). The phosphatidic acid paradox: too many actions for one molecule class? Lessons from plants. Prog. Lipid Res. 71, 43–53. doi: 10.1016/j.plipres.2018.05.003, PMID: PubMed DOI
Prerostova S., Cerny M., Dobrev P. I., Motyka V., Hluskova L., Zupkova B., et al. . (2021). Light regulates the cytokinin-dependent cold stress responses in Arabidopsis. Front. Plant Sci. 11:608711. doi: 10.3389/fpls.2020.608711, PMID: PubMed DOI PMC
Qadir M., Schubert S., Oster J. D., Sposito G., Minhas P. S., Cheraghi S. A. M., et al. . (2018). High-magnesium waters and soils: emerging environmental and food security constraints. Sci. Total Environ. 642, 1108–1117. doi: 10.1016/j.scitotenv.2018.06.090 PubMed DOI
Ragel P., Ródenas R., García-Martín E., Andrés Z., Villalta I., Nieves-Cordones M., et al. . (2015). The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots. Plant Physiol. 169, 2863–2873. doi: 10.1104/pp.15.01401, PMID: PubMed DOI PMC
Rajashekar C. B., Zhou H.-E., Zhang Y., Li W., Wang X. (2006). Suppression of phospholipase Dα1 induces freezing tolerance in Arabidopsis: response of coldresponsive genes and osmolyte accumulation. J. Plant Physiol. 163, 916–926. doi: 10.1016/j.jplph.2005.08.006, PMID: PubMed DOI
Raza A., Charagh S., Zahid Z., Mubarik M. S., Javed R., Siddiqui M. H., et al. . (2020). Jasmonic acid: a key frontier in conferring abiotic stress tolerance in plants. Plant Cell Rep. 40, 1513–1541. doi: 10.1007/s00299-020-02614-z, PMID: PubMed DOI
Ritchie R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 89, 27–41. doi: 10.1007/s11120-006-9065-9, PMID: PubMed DOI
Ruelland E., Kravets V., Derevyanchuk M., Martinec J., Zachowski A., Pokotylo I. (2015). Role of phospholipid signaling in plant environmental responses. Environ. Exp. Bot. 114, 129–143. doi: 10.1016/j.envexpbot.2014.08.009 DOI
Sade N., Rubio-Wilhelmi M. D., Umnajkitikorn K., Blumwald E. (2018). Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot. 69, 845–853. doi: 10.1093/jxb/erx235, PMID: PubMed DOI
Sánchez-Barrena M. J., Chaves-Sanjuan A., Raddatz N., Mendoza I., Cortés Á., Gago F., et al. . (2020). Recognition and activation of the plant AKT1 potassium channel by the kinase CIPK23. Plant Physiol. 182, 2143–2153. doi: 10.1104/pp.19.01084, PMID: PubMed DOI PMC
Santos V. (2001). In situ and in vitro senescence induced by KCl stress: nutritional imbalance,lipid peroxidation and antioxidant metabolism. J. Exp. Bot. 52, 351–360. doi: 10.1093/jxb/52.355.351, PMID: PubMed DOI
Schaffer A. A., Nerson H., Zamski E. (1991). Premature leaf chlorosis in cucumber associated with high starch accumulation. J. Plant Physiol. 138, 186–190. doi: 10.1016/S0176-1617(11)80268-3 DOI
Seltmann M. A., Stingl N. E., Lautenschlaeger J. K., Krischke M., Mueller M. J., Berger S. (2010). Differential impact of lipoxygenase 2 and jasmonates on natural and stress-induced senescence in Arabidopsis. Plant Physiol. 152, 1940–1950. doi: 10.1104/pp.110.153114, PMID: PubMed DOI PMC
Singh S., Letham D. S., Palni L. M. S. (1992). Cytokinin biochemistry in relation to leaf senescence. VII. Endogenous cytokinin levels and exogenous applications of cytokinins in relation to sequential leaf senescence of tobacco. Physiol. Plant. 86, 388–397. doi: 10.1111/j.1399-3054.1992.tb01334.x DOI
Skirycz A., De Bodt S., Obata T., De Clercq I., Claeys H., De Rycke R., et al. . (2009). Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol. 152, 226–244. doi: 10.1104/pp.109.148965 PubMed DOI PMC
Szabados L., Savoure A. (2009). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89–97. doi: 10.1016/j.tplants.2009.11.009 PubMed DOI
Tang R. J., Zhao F. G., Garcia V. J., Kleist T. J., Yang L., Zhang H. X., et al. . (2015). Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. 112, 3134–3139. doi: 10.1073/pnas.1420944112, PMID: PubMed DOI PMC
Tanoi K., Kobayashi N. I. (2015). Leaf senescence by magnesium deficiency. Plan. Theory 4, 756–772. doi: 10.3390/plants4040756, PMID: PubMed DOI PMC
Testerink C., Dekker H. L., Lim Z. Y., Johns M. K., Holmes A. B., Koster C. G., et al. . (2004). Isolation and identification of phosphatidic acid targets from plants. Plant J. 39, 527–536. doi: 10.1111/j.1365-313X.2004.02152.x PubMed DOI
Testerink C., Larsen P. B., van der Does D., van Himbergen J. A. J., Munnik T. (2007). Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1. J. Exp. Bot. 58, 3905–3914. doi: 10.1093/jxb/erm243, PMID: PubMed DOI
Thiery L., Leprince A. S., Lefebvre D., Ali Ghars M., Debarbieux E., Savoure A. (2004). Phospholipase D is a negative regulator of proline biosynthesis in Arabidopsis thaliana. J. Biol. Chem. 279, 14812–14818. doi: 10.1074/jbc.M308456200 PubMed DOI
Uzelac B., Janošević D., Simonović A., Motyka V., Dobrev P. I., Budimir S. (2016). Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. Protoplasma 253, 259–275. doi: 10.1007/s00709-015-0802-9, PMID: PubMed DOI
Visscher A. M., Paul A. L., Kirst M., Guy C. L., Schuerger A. C., Ferl R. J. (2010). Growth performance and root transcriptome remodeling of Arabidopsis in response to Mars-like levels of magnesium sulfate. PLoS One 5:e12348. doi: 10.1371/journal.pone.0012348, PMID: PubMed DOI PMC
Wang C. Y., Cheng S. H., Kao C. H. (1982). Senescence of rice leaves: VII. Proline accumulation in senescing excised leaves. Plant Physiol. 69, 1348–1349. doi: 10.1104/pp.69.6.1348, PMID: PubMed DOI PMC
Wang X. M., Guo L., Wang G. L., Li M. Y. (2014). “PLD: phospholipase ds in plant signaling,” in Phospholipases in Plant Signaling. ed. Wang X. (Berlin: Springer-Verlag Berlin; ), 3–26.
Wang Y., Li B., Du M. W., Eneji A. E., Wang B. M., Duan L. S., et al. . (2012). Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. J. Exp. Bot. 63, 5887–5901. doi: 10.1093/jxb/ers238, PMID: PubMed DOI PMC
Weaver L. M., Gan S., Quirino B., Amasino R. M. (1998). A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455–469. doi: 10.1023/A:1005934428906, PMID: PubMed DOI
Xiao S., Gao W., Chen Q. F., Chan S. W., Zheng S. X., Ma J., et al. . (2010). Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22, 1463–1482. doi: 10.1105/tpc.110.075333, PMID: PubMed DOI PMC
Xiao L., Jiang S., Huang P., Chen F., Wang X., Cheng Z., et al. . (2020). Two Nucleoporin98 homologous genes jointly participate in the regulation of starch degradation to repress senescence in Arabidopsis. BMC Plant Biol. 20:292. doi: 10.1186/s12870-020-02494-1, PMID: PubMed DOI PMC
Yamanaka T., Nakagawa Y., Mori K., Nakano M., Imamura T., Kataoka H., et al. . (2010). MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol. 152, 1284–1296. doi: 10.1104/pp.109.147371, PMID: PubMed DOI PMC
Yan Y. W., Mao D. D., Yang L., Qi J. L., Zhang X. X., Tang Q. L., et al. . (2018). Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Front. Plant Sci. 9:274. doi: 10.3389/fpls.2018.00274, PMID: PubMed DOI PMC
Yang Y., Tang R. J., Mu B., Ferjani A., Shi J., Zhang H., et al. . (2018). Vacuolar proton pyrophosphatase is required for high magnesium tolerance in Arabidopsis. Int. J. Mol. Sci. 19:3617. doi: 10.3390/ijms19113617, PMID: PubMed DOI PMC
Yang T., Wang L., Li C., Liu Y., Zhu S., Qi Y., et al. . (2015). Receptor protein kinase FERONIA controls leaf starch accumulation by interacting with glyceraldehyde-3-phosphate dehydrogenase. Biochem. Biophys. Res. Commun. 465, 77–82. doi: 10.1016/j.bbrc.2015.07.132, PMID: PubMed DOI
Yao H. Y., Xue H. W. (2018). Phosphatidic acid plays key roles regulating plant development and stress responses. J. Integr. Plant Biol. 60, 851–863. doi: 10.1111/jipb.12655, PMID: PubMed DOI
Yu L., Nie J., Cao C., Jin Y., Yan M., Wang F., et al. . (2010). Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol. 188, 762–773. doi: 10.1111/j.1469-8137.2010.03422.x PubMed DOI
Yu H. Q., Yong T. M., Li H. J., Liu Y. P., Zhou S. F., Fu F. L., et al. . (2015). Overexpression of a phospholipase Dα gene from Ammopiptanthus nanus enhances salt tolerance of phospholipase Dα1-deficient Arabidopsis mutant. Planta 242, 1495–1509. doi: 10.1007/s00425-015-2390-5, PMID: PubMed DOI
Zhang L., Becker D. F. (2015). Connecting proline metabolism and signaling pathways in plant senescence. Front. Plant Sci. 6:552. doi: 10.3389/fpls.2015.00552, PMID: PubMed DOI PMC
Zhang W. H., Qin C. B., Zhao J., Wang X. M. (2004). Phospholipase Dα1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U. S. A. 101, 9508–9513. doi: 10.1073/pnas.0402112101, PMID: PubMed DOI PMC
Zhang K., Xia X., Zhang Y., Gan S.-S. (2012). An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J. 69, 667–678. doi: 10.1111/j.1365-313X.2011.04821.x PubMed DOI
Zhang Y., Zhao L., Zhao J., Li Y., Wang J., Guo R., et al. . (2017). S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiol. 175, 1082–1093. doi: 10.1104/pp.17.00695, PMID: PubMed DOI PMC
Zhang H., Zhou C. (2013). Signal transduction in leaf senescence. Plant Mol. Biol. 82, 539–545. doi: 10.1007/s11103-012-9980-4, PMID: PubMed DOI
Zhang Y. Y., Zhu H. Y., Zhang Q., Li M. Y., Yan M., Wang R., et al. . (2009). Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21, 2357–2377. doi: 10.1105/tpc.108.062992, PMID: PubMed DOI PMC
Zhao J., Wang X. M. (2004). Arabidopsis phospholipase Da1 interacts with the heterotrimeric G-protein a-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J. Biol. Chem. 279, 1794–1800. doi: 10.1074/jbc.M309529200 PubMed DOI
Zhao J., Williams C. C., Last R. L. (1998). Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor. Plant Cell 10, 359–370. doi: 10.1105/tpc.10.3.359, PMID: PubMed DOI PMC
Phosphatidic Acid in Plant Hormonal Signaling: From Target Proteins to Membrane Conformations