leaf development
Dotaz
Zobrazit nápovědu
The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.
- MeSH
- Arabidopsis genetika růst a vývoj fyziologie MeSH
- cytokininy metabolismus MeSH
- genová ontologie MeSH
- listy rostlin genetika růst a vývoj fyziologie MeSH
- proliferace buněk MeSH
- proteom * MeSH
- regulátory růstu rostlin metabolismus MeSH
- signální transdukce * MeSH
- transkriptom * MeSH
- zvětšování buněk MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Spring drought is becoming a frequently occurring stress factor in temperate forests. However, the understanding of tree resistance and resilience to the spring drought remains insufficient. In this study, European beech (Fagus sylvatica L.) seedlings at the early stage of leaf development were moderately and severely drought stressed for 1 month and then subjected to a 2-week recovery period after rewatering. The study aimed to disentangle the complex relationships between leaf gas exchange, vascular anatomy, tree morphology and patterns of biomass allocation. Stomatal conductance decreased by 80 and 85% upon moderate and severe drought stress, respectively, which brought about a decline in net photosynthesis. However, drought did not affect the indices of slow chlorophyll fluorescence, indicating no permanent damage to the light part of the photosynthetic apparatus. Stem hydraulic conductivity decreased by more than 92% at both drought levels. Consequently, the cambial activity of stressed seedlings declined, which led to lower stem biomass, reduced tree ring width and a lower number of vessels in the current tree ring, these latter also with smaller dimensions. In contrast, the petiole structure was not affected, but at the cost of reduced leaf biomass. Root biomass was reduced only by severe drought. After rewatering, the recovery of gas exchange and regrowth of the current tree ring were observed, all delayed by several days and by lower magnitudes in severely stressed seedlings. The reduced stem hydraulic conductivity inhibited the recovery of gas exchange, but xylem function started to recover by regrowth and refilling of embolized vessels. Despite the damage to conductive xylem, no mortality occurred. These results suggest the low resistance but high resilience of European beech to spring drought. Nevertheless, beech resilience could be weakened if the period between drought events is short, as the recovery of severely stressed seedlings took longer than 14 days.
- MeSH
- buk (rod) * MeSH
- fotosyntéza MeSH
- listy rostlin MeSH
- období sucha * MeSH
- semenáček MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. METHODS: Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. KEY RESULTS: SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. CONCLUSIONS: It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.
- MeSH
- Arabidopsis cytologie účinky léků MeSH
- buk (rod) cytologie účinky léků MeSH
- dehydratace MeSH
- Helianthus cytologie účinky léků MeSH
- kotyledon účinky léků fyziologie MeSH
- Lepidium cytologie účinky léků MeSH
- oxid uhličitý farmakologie MeSH
- počet buněk MeSH
- průduchy rostlin cytologie účinky léků MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese landraces are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.
- MeSH
- celogenomová asociační studie MeSH
- chromozomy rostlin genetika MeSH
- fenotyp MeSH
- genotyp MeSH
- jedlá semena genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- listy rostlin genetika MeSH
- lokus kvantitativního znaku genetika MeSH
- mapování chromozomů metody MeSH
- rýže (rod) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Vietnam MeSH
Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.
- MeSH
- Arabidopsis účinky léků genetika fyziologie MeSH
- buněčné dělení účinky léků MeSH
- chlorofyl metabolismus MeSH
- chloroplasty účinky léků metabolismus ultrastruktura MeSH
- cytokininy farmakologie MeSH
- dusík nedostatek MeSH
- fotosyntéza * účinky léků MeSH
- geneticky modifikované rostliny MeSH
- listy rostlin účinky léků růst a vývoj fyziologie ultrastruktura MeSH
- proteiny 14-3-3 genetika metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné geny MeSH
- trans-aktivátory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fungi are considered the primary decomposers of dead plant biomass in terrestrial ecosystems. However, current knowledge regarding the successive changes in fungal communities during litter decomposition is limited. Here we explored the development of the fungal community over 24 months of litter decomposition in a temperate forest with dominant Quercus petraea using 454-pyrosequencing of the fungal internal transcribed spacer (ITS) region and cellobiohydrolase I (cbhI) genes, which encode exocellulases, to specifically address cellulose decomposers. To quantify the involvement of phyllosphere fungi in litter decomposition, the fungal communities in live leaves and leaves immediately before abscission were also analysed. The results showed rapid succession of fungi with dramatic changes in the composition of the fungal community. Furthermore, most of the abundant taxa only temporarily dominated in the substrate. Fungal diversity was lowest at leaf senescence, increased until month 4 and did not significantly change during subsequent decomposition. Highly diverse community of phyllosphere fungi inhabits live oak leaves 2 months before abscission, and these phyllosphere taxa comprise a significant share of the fungal community during early decomposition up to the fourth month. Sequences assigned to the Ascomycota showed highest relative abundances in live leaves and during the early stages of decomposition. In contrast, the relative abundance of sequences assigned to the Basidiomycota phylum, particularly basidiomycetous yeasts, increased with time. Although cellulose was available in the litter during all stages of decomposition, the community of cellulolytic fungi changed substantially over time. The results indicate that litter decomposition is a highly complex process mediated by various fungal taxa.
- MeSH
- analýza hlavních komponent MeSH
- biodiverzita * MeSH
- celulosa-1,4-beta-cellobiosidasa genetika MeSH
- dub (rod) mikrobiologie MeSH
- fylogeneze MeSH
- houby klasifikace genetika růst a vývoj fyziologie MeSH
- listy rostlin mikrobiologie MeSH
- mezerníky ribozomální DNA genetika MeSH
- půdní mikrobiologie MeSH
- stromy mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Leaf area index (LAI) is an essential canopy variable describing the amount of foliage in an ecosystem. The parameter serves as the interface between green components of plants and the atmosphere, and many physiological processes occur there, primarily photosynthetic uptake, respiration, and transpiration. LAI is also an input parameter for many models involving carbon, water, and the energy cycle. Moreover, ground-based in situ measurements serve as the calibration method for LAI obtained from remote sensing products. Therefore, straightforward indirect optical methods are necessary for making precise and rapid LAI estimates. The methodological approach, advantages, controversies, and future perspectives of the newly developed LP 110 optical device based on the relation between radiation transmitted through the vegetation canopy and canopy gaps were discussed in the protocol. Furthermore, the instrument was compared to the world standard LAI-2200 Plant Canopy Analyzer. The LP 110 enables more rapid and more straightforward processing of data acquired in the field, and it is more affordable than the Plant Canopy Analyzer. The new instrument is characterized by its ease of use for both above- and below-canopy readings due to its greater sensor sensitivity, in-built digital inclinometer, and automatic logging of readings at the correct position. Therefore, the hand-held LP 110 device is a suitable gadget for performing LAI estimation in forestry, ecology, horticulture, and agriculture based on the representative results. Moreover, the same device also enables the user to take accurate measurements of incident photosynthetically active radiation (PAR) intensity.
The pselaphine Bergrothia saulcyi shows features seemingly linked with life in deep soil layers, such as greatly reduced and non-functional compound eyes, a sensorium of long tactile setae, long appendages, and flightlessness. However, the tiny beetles occur in forest leaf litter, together with a community of beetles with wings and well-developed eyes. We hypothesize that B. saulcyi moves into deep soil under dry conditions, and returns to upper layers when humidity increases again. Despite the evolutionary cost of a reduced dispersal capacity, this life strategy may be more efficient and less hazardous than moving to different habitats using flight and the visual sense in an environment periodically drying out. We also discuss cephalic features with potential phylogenetic relevance. Plesiomorphies of B. saulcyi include the presence of anterior tentorial arms, well-developed labral retractors, and a full set of extrinsic maxillary and premental muscles. Apomorphic cephalic features support clades Protopselaphinae + Pselaphinae, and Pselaphinae. A conspicuous derived condition, the clypeo-ocular carina, is a possible synapomorphy of Batrisitae and genera assigned to Goniaceritae. A complex triple set of cephalic glands found in B. saulcyi is similar to a complex identified in the strict myrmecophile Claviger testaceus (Clavigeritae). It is conceivable that glands linked with food uptake in free-living pselaphines were genetically re-programmed in ancestors of inquilines, to enable them to appease the host ants. We suggest that behavioral studies are necessary to understand the poorly known life habits of B. saulcyi. Additional information is required to explain why a species with irreversibly reduced visual sense and other adaptations typical of endogean or cave-dwelling beetles was only collected from the upper leaf litter layer.
- MeSH
- brouci * MeSH
- Formicidae * MeSH
- fylogeneze MeSH
- jeskyně MeSH
- listy rostlin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In the previous study, the artichoke leaf extract showed effective inhibition of AKR1B1, the first enzyme of polyol pathway, which reduces high level of glucose to osmotically active sorbitol, important for development of chronic diabetic complications. In the present study, the effect of artichoke leaf extract and of several participating phenols (caffeic acid, chlorogenic acid, quinic acid, and luteolin) was tested on sorbitol level in rat lenses exposed to high glucose ex vivo, on cytotoxicity as well as on oxidative stress in C2C12 muscle cell line induced by high glucose in vitro. The concentration of sorbitol was determined by enzymatic analysis, the cytotoxicity was provided by WST-1 test and intracellular content of reactive oxygen species was determined by fluorescence of 2'-7'-dichlorofluorescein probe. The extract and the compounds tested showed significant protection against toxic effects of high concentration of glucose in both models. On balance, the artichoke leaf extract thus represents a prospective preventive agent of development of chronic diabetic complications, probably due to phenols content, concerning preclinical and clinical studies.
- MeSH
- aldehydreduktasa antagonisté a inhibitory MeSH
- Cynara scolymus chemie MeSH
- glukosa farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- listy rostlin chemie MeSH
- myši MeSH
- oční čočka účinky léků metabolismus MeSH
- orgánové kultury - kultivační techniky MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- sorbitol metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Occurrence of stomata on both leaf surfaces (amphistomaty) promotes higher stomatal conductance and photosynthesis while simultaneously increasing exposure to potential disease agents in black cottonwood (Populus trichocarpa). A genome-wide association study (GWAS) with 2.2M single nucleotide polymorphisms generated through whole-genome sequencing found 280 loci associated with variation in adaxial stomatal traits, implicating genes regulating stomatal development and behavior. Strikingly, numerous loci regulating plant growth and response to biotic and abiotic stresses were also identified. The most significant locus was a poplar homologue of SPEECHLESS (PtSPCH1). Individuals possessing PtSPCH1 alleles associated with greater adaxial stomatal density originated primarily from environments with shorter growing seasons (e.g. northern latitudes, high elevations) or with less precipitation. PtSPCH1 was expressed in developing leaves but not developing stem xylem. In developing leaves, RNA sequencing showed patterns of coordinated expression between PtSPCH1 and other GWAS-identified genes. The breadth of our GWAS results suggests that the evolution of amphistomaty is part of a larger, complex response in plants. Suites of genes underpin this response, retrieved through genetic association to adaxial stomata, and show coordinated expression during development. We propose that the occurrence of amphistomaty in P. trichocarpa involves PtSPCH1 and reflects selection for supporting rapid growth over investment in immunity.
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- druhová specificita MeSH
- fenotyp MeSH
- genotyp MeSH
- imunita rostlin genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kvantitativní znak dědičný MeSH
- podnebí MeSH
- Populus genetika růst a vývoj imunologie fyziologie MeSH
- průduchy rostlin genetika fyziologie MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- rozvržení tělního plánu * MeSH
- vývoj rostlin MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH