In situ separation and visualization of isomeric auxin derivatives in Arabidopsis by ion mobility mass spectrometry imaging
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_PrF_2023_016
Internal Grant Agency of Palacký University Olomouc
IGA_PrF_2023_031
Internal Grant Agency of Palacký University Olomouc
PubMed
37872415
DOI
10.1007/s00216-023-04996-x
PII: 10.1007/s00216-023-04996-x
Knihovny.cz E-zdroje
- Klíčová slova
- Auxin, Desorption electrospray ionization, Ion mobility, Isomer, Mass spectrometry imaging, Metabolite,
- MeSH
- Arabidopsis * MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací metody MeSH
- isomerie MeSH
- kyseliny indoloctové analýza MeSH
- molekulární struktura MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
In situ separation and visualization of synthetic and naturally occurring isomers from heterogeneous plant tissues, especially when they share similar molecular structures, are a challenging task. In this study, we combined the ion mobility separation with desorption electrospray ionization mass spectrometry imaging (DESI-IM-MSI) to achieve a direct separation and visualization of two synthetic auxin derivatives, auxinole and its structural isomer 4pTb-MeIAA, as well as endogenous auxins from Arabidopsis samples. Distinct distribution of these synthetic isomers and endogenous auxins in Arabidopsis primary roots and hypocotyls was achieved in the same imaging analysis from both individually treated and cotreated samples. We also observed putative metabolites of synthetic auxin derivatives, i.e. auxinole amino acid conjugates and hydrolysed 4pTb-MeIAA product - 4pTb-IAA, based on their unique drifting ion intensity patterns. Furthermore, DESI-IM-MSI-revealed abundance of endogenous auxins and synthetic isomers was validated by liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that DESI-IM-MSI could be used as a robust technique for detecting endogenous and exogenous isomers and provide a spatiotemporal evaluation of hormonomics profiles in plants.
Zobrazit více v PubMed
Davies PJ. The plant hormones: their nature, occurrence, and functions. In: Davies PJ, editor. Plant hormones: biosynthesis, signal transduction, action! Dordrecht: Springer Netherlands; 2010. p. 1-15.
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture. Biosci Biotechnol Biochem. 2018;82(8):1265–300. https://doi.org/10.1080/09168451.2018.1462693 . PubMed DOI
Prusinska J, Uzunova V, Schmitzer P, Weimer M, Bell J, Napier RM. The differential binding and biological efficacy of auxin herbicides. Pest Manag Sci. 2023;79(4):1305–15. https://doi.org/10.1002/ps.7294 . PubMed DOI
Nambara E, Van Wees SCM. Plant hormone functions and interactions in biological systems. Plant J. 2021;105(2):287–9. https://doi.org/10.1111/tpj.15151 . DOI
Pokorná E, Hluska T, Galuszka P, Hallmark HT, Dobrev PI, Záveská Drábková L, et al. Cytokinin N-glucosides: occurrence, metabolism and biological activities in plants. Biomolecules. 2021;11(1):24. https://doi.org/10.3390/biom11010024 . DOI
Balarynová J, Klčová B, Tarkowská D, Turečková V, Trněný O, Špundová M, et al. Domestication has altered the ABA and gibberellin profiles in developing pea seeds. Planta. 2023;258(2):25. https://doi.org/10.1007/s00425-023-04184-2 . PubMed DOI PMC
Hayashi K-i, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun. 2021;12(1):6752. https://doi.org/10.1038/s41467-021-27020-1.
Brunoni F, Pěnčík A, Žukauskaitė A, Ament A, Kopečná M, Collani S, et al. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 2023;238(6):2264–70. https://doi.org/10.1111/nph.18887 . PubMed DOI
Hayashi K, Neve J, Hirose M, Kuboki A, Shimada Y, Kepinski S, et al. Rational design of an auxin antagonist of the SCF(TIR1) auxin receptor complex. ACS Chem Biol. 2012;7(3):590–8. https://doi.org/10.1021/cb200404c . PubMed DOI
Isoda R, Yoshinari A, Ishikawa Y, Sadoine M, Simon R, Frommer WB, et al. Sensors for the quantification, localization and analysis of the dynamics of plant hormones. Plant J. 2021;105(2):542–57. https://doi.org/10.1111/tpj.15096 . PubMed DOI
Wells DM, Laplaze L, Bennett MJ, Vernoux T. Biosensors for phytohormone quantification: challenges, solutions, and opportunities. Trends Plant Sci. 2013;18(5):244–9. https://doi.org/10.1016/j.tplants.2012.12.005 . PubMed DOI
Gika HG, Theodoridis GA, Plumb RS, Wilson ID. Current practice of liquid chromatography–mass spectrometry in metabolomics and metabonomics. J Pharm Biomed Anal. 2014;87:12–25. https://doi.org/10.1016/j.jpba.2013.06.032 . PubMed DOI
Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez-Cadenas A. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography−electrospray tandem mass spectrometry. J Agric Food Chem. 2005;53(22):8437–42. https://doi.org/10.1021/jf050884b . PubMed DOI
Skalický V, Antoniadi I, Pěnčík A, Chamrád I, Lenobel R, Kubeš MF, et al. Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution. Plant J. 2023;n/a(n/a). https://doi.org/10.1111/tpj.16456.
Široká J, Brunoni F, Pěnčík A, Mik V, Žukauskaitė A, Strnad M, et al. High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods. 2022;18(1):122. https://doi.org/10.1186/s13007-022-00954-3 . PubMed DOI PMC
Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta. 2013;112:85–94. https://doi.org/10.1016/j.talanta.2013.03.068 . PubMed DOI
Šimura J, Antoniadi I, Široká J, Tarkowská De, Strnad M, Ljung K, et al. Plant hormonomics: multiple phytohormone profiling by targeted metabolomics. Plant Physiol. 2018;177(2):476–89. https://doi.org/10.1104/pp.18.00293.
Včelařová L, Skalický V, Chamrád I, Lenobel R, Kubeš MF, Pěnčík A, et al. Auxin metabolome profiling in the Arabidopsis endoplasmic reticulum using an optimised organelle isolation protocol. Int J Mol Sci. 2021;22(17):9370. https://doi.org/10.3390/ijms22179370 . PubMed DOI PMC
Yan Z, Maher N, Torres R, Cotto C, Hastings B, Dasgupta M, et al. Isobaric metabolite interferences and the requirement for close examination of raw data in addition to stringent chromatographic separations in liquid chromatography/tandem mass spectrometric analysis of drugs in biological matrix. Rapid Commun Mass Spectrom RCM. 2008;22(13):2021–8. https://doi.org/10.1002/rcm.3577 . PubMed DOI
Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev. 2016;15(3):445–88. https://doi.org/10.1007/s11101-015-9440-2 . PubMed DOI
Bjarnholt N, Li B, D’Alvise J, Janfelt C. Mass spectrometry imaging of plant metabolites – principles and possibilities. Nat Prod Rep. 2014;31(6):818–37. https://doi.org/10.1039/C3NP70100J . PubMed DOI
Parrot D, Papazian S, Foil D, Tasdemir D. Imaging the unimaginable: desorption electrospray ionization – imaging mass spectrometry (DESI-IMS) in natural product research. Planta Med. 2018;84(09/10):584–93. https://doi.org/10.1055/s-0044-100188 . PubMed DOI PMC
Žukauskaitė A, Saiz-Fernández I, Bieleszová K, Iškauskienė M, Zhang C, Smýkalová I, et al. New PEO-IAA-inspired anti-auxins: synthesis, biological activity, and possible application in hemp (Cannabis sativa L.) Micropropagation. J Plant Growth Regul. 2023. https://doi.org/10.1007/s00344-023-11031-x.
Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr. Ion mobility–mass spectrometry. J Mass Spectrom. 2008;43(1):1–22. https://doi.org/10.1002/jms.1383 . PubMed DOI
Hou J, Zhang Z, Zhang L, Wu W, Huang Y, Jia Z, et al. Spatial lipidomics of eight edible nuts by desorption electrospray ionization with ion mobility mass spectrometry imaging. Food Chem. 2022;371: 130893. https://doi.org/10.1016/j.foodchem.2021.130893 . PubMed DOI
Hinnenkamp V, Klein J, Meckelmann SW, Balsaa P, Schmidt TC, Schmitz OJ. Comparison of CCS values determined by traveling wave ion mobility mass spectrometry and drift tube ion mobility mass spectrometry. Anal Chem. 2018;90(20):12042–50. https://doi.org/10.1021/acs.analchem.8b02711 . PubMed DOI
Pěnčík A, Casanova-Sáez R, Pilařová V, Žukauskaitė A, Pinto R, Micol JL, et al. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J Exp Bot. 2018;69(10):2569–79. https://doi.org/10.1093/jxb/ery084 . PubMed DOI PMC
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. Front Plant Sci. 2023;14:1217421. https://doi.org/10.3389/fpls.2023.1217421.
Guo R, Zhou L, Chen X. Desorption electrospray ionization (DESI) source coupling ion mobility mass spectrometry for imaging fluoropezil (DC20) distribution in rat brain. Anal Bioanal Chem. 2021;413(23):5835–47. https://doi.org/10.1007/s00216-021-03563-6 . PubMed DOI
Hahsler M, Piekenbrock M, Doran D. dbscan: fast density-based clustering with R. J Stat Softw. 2019;91(1):1–30. https://doi.org/10.18637/jss.v091.i01.
Yu B, Zheng W, Persson S, Zhao Y. Protocol for analyzing root halotropism using split-agar system in Arabidopsis thaliana. STAR Protoc. 2023;4(2): 102157. https://doi.org/10.1016/j.xpro.2023.102157 . PubMed DOI PMC
Saiz-Fernández I, Černý M, Skalák J, Brzobohatý B. Split-root systems: detailed methodology, alternative applications, and implications at leaf proteome level. Plant Methods. 2021;17:1–19. https://doi.org/10.1186/s13007-020-00706-1 . DOI
Fukui K, Arai K, Tanaka Y, Aoi Y, Kukshal V, Jez JM, et al. Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci. 2022;119(32):e2206869119. https://doi.org/10.1073/pnas.2206869119.