Auxin Metabolome Profiling in the Arabidopsis Endoplasmic Reticulum Using an Optimised Organelle Isolation Protocol
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-21581Y
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827
European Regional Development Fund
IGA_PrF_2021_016
Univerzita Palackého v Olomouci
PubMed
34502279
PubMed Central
PMC8431077
DOI
10.3390/ijms22179370
PII: ijms22179370
Knihovny.cz E-zdroje
- Klíčová slova
- auxin, density gradient centrifugation, endoplasmic reticulum, mass spectrometry, subcellular fractionation,
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- metabolom MeSH
- metabolomika metody MeSH
- proteiny huseníčku analýza metabolismus MeSH
- proteomika metody MeSH
- rostlinné buňky MeSH
- semenáček cytologie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny huseníčku MeSH
The endoplasmic reticulum (ER) is an extensive network of intracellular membranes. Its major functions include proteosynthesis, protein folding, post-transcriptional modification and sorting of proteins within the cell, and lipid anabolism. Moreover, several studies have suggested that it may be involved in regulating intracellular auxin homeostasis in plants by modulating its metabolism. Therefore, to study auxin metabolome in the ER, it is necessary to obtain a highly enriched (ideally, pure) ER fraction. Isolation of the ER is challenging because its biochemical properties are very similar to those of other cellular endomembranes. Most published protocols for ER isolation use density gradient ultracentrifugation, despite its suboptimal resolving power. Here we present an optimised protocol for ER isolation from Arabidopsis thaliana seedlings for the subsequent mass spectrometric determination of ER-specific auxin metabolite profiles. Auxin metabolite analysis revealed highly elevated levels of active auxin form (IAA) within the ER compared to whole plants. Moreover, samples prepared using our optimised isolation ER protocol are amenable to analysis using various "omics" technologies including analyses of both macromolecular and low molecular weight compounds from the same sample.
Zobrazit více v PubMed
Chen J., Doyle C., Qi X., Zheng H. The endoplasmic reticulum: A social network in plant cells. J. Integr. Plant Biol. 2012;54:840–850. doi: 10.1111/j.1744-7909.2012.01176.x. PubMed DOI
Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 2013;5:a013391. doi: 10.1101/cshperspect.a013391. PubMed DOI PMC
Hawes C., Kiviniemi P., Kriechbaumer V. The endoplasmic reticulum: A dynamic and well-connected organelle. J. Integr. Plant Biol. 2015;57:50–62. doi: 10.1111/jipb.12297. PubMed DOI
Dashek W.V. Endoplasmic reticulum. In: Dashek W.V., Miglani G.S., editors. Plant Cells and their Organelles. 1st ed. Wiley; Hoboken, NJ, USA: 2017. pp. 42–60. DOI
Mravec J., Skůpa P., Bailly A., Hoyerová K., Křeček P., Bielach A., Petrášek J., Zhang J., Gaykova V., Stierhof Y.-D., et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–1140. doi: 10.1038/nature08066. PubMed DOI
Ding Z., Wang B., Moreno I., Dupláková N., Simon S., Carraro N., Reemmer J., Pěnčík A., Chen X., Tejos R., et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 2012;3:941. doi: 10.1038/ncomms1941. PubMed DOI
Bosco C.D., Dovzhenko A., Liu X., Woerner N., Rensch T., Eismann M., Eimer S., Hegermann J., Paponov I.A., Ruperti B., et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 2012;71:860–870. doi: 10.1111/j.1365-313X.2012.05037.x. PubMed DOI
Barbez E., Kleine-Vehn J. Divide et Impera—Cellular auxin compartmentalization. Curr. Opin. Plant Biol. 2013;16:78–84. doi: 10.1016/j.pbi.2012.10.005. PubMed DOI
Middleton A.M., Dal Bosco C., Chlap P., Bensch R., Harz H., Ren F., Bergmann S., Wend S., Weber W., Hayashi K.-I., et al. Data-Driven Modeling of Intracellular Auxin Fluxes Indicates a Dominant Role of the ER in Controlling Nuclear Auxin Uptake. Cell Rep. 2018;22:3044–3057. doi: 10.1016/j.celrep.2018.02.074. PubMed DOI
Caesar K., Thamm A.M.K., Witthöft J., Elgass K., Huppenberger P., Grefen C., Horak J., Harter K. Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J. Exp. Bot. 2011;62:5571–5580. doi: 10.1093/jxb/err238. PubMed DOI PMC
Wulfetange K., Lomin S.N., Romanov G.A., Stolz A., Heyl A., Schmülling T. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 2011;156:1808–1818. doi: 10.1104/pp.111.180539. PubMed DOI PMC
Chen Y.-F., Randlett M.D., Findell J.L., Schaller G.E. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 2002;277:19861–19866. doi: 10.1074/jbc.M201286200. PubMed DOI
Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI
Feraru E., Feraru M.I., Barbez E., Waidmann S., Sun L., Gaidora A., Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2019;116:3893–3898. doi: 10.1073/pnas.1814015116. PubMed DOI PMC
Ranocha P., Dima O., Nagy R., Felten J., Corratgé-Faillie C., Novák O., Morreel K., Lacombe B., Martinez Y., Pfrunder S., et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 2013;4:2625. doi: 10.1038/ncomms3625. PubMed DOI PMC
Béziat C., Barbez E., Feraru M.I., Lucyshyn D., Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat. Plants. 2017;3:17105. doi: 10.1038/nplants.2017.105. PubMed DOI PMC
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC
Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente L.M., Xie D.Y., Doležal K., Schlereth A., Jürgens G., Alonso J.M. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI
Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176. doi: 10.1016/j.cell.2008.01.049. PubMed DOI PMC
Kim J.I., Sharkhuu A., Jin J.B., Li P., Jeong J.C., Baek D., Lee S.Y., Blakeslee J.J., Murphy A.S., Bohnert H.J., et al. yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol. 2007;145:722–735. doi: 10.1104/pp.107.104935. PubMed DOI PMC
Kriechbaumer V., Botchway S.W., Hawes C. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. J. Exp. Bot. 2016;67:4195–4207. doi: 10.1093/jxb/erw195. PubMed DOI
Kubeš M., Napier R. Non-canonical auxin signalling: Fast and curious. J. Exp. Bot. 2019;70:2609–2614. doi: 10.1093/jxb/erz111. PubMed DOI PMC
Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC
Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC
Zhang J., Lin J.E., Harris C., Campos Mastrotti Pereira F., Wu F., Blakeslee J.J., Peer W.A. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:11010–11015. doi: 10.1073/pnas.1604769113. PubMed DOI PMC
Jin S.-H., Ma X.-M., Han P., Wang B., Sun Y.-G., Zhang G.-Z., Li Y.-J., Hou B.-K. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS ONE. 2013;8:e61705. doi: 10.1371/annotation/457d7567-fc12-421c-9d79-880950ab10e1. PubMed DOI PMC
Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldonado M.T., Maldonado M.C., Suza W. Characterization of an Arabidopsis Enzyme Family that Conjugates Amino Acids to Indole-3-Acetic Acid. Plant Cell. 2005;17:616–627. doi: 10.1105/tpc.104.026690. PubMed DOI PMC
Cano A., Sánchez-García A.B., Albacete A., González-Bayón R., Justamante M.S., Ibáñez S., Acosta M., Pérez-Pérez J.M. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings. Front. Plant Sci. 2018;9:566. doi: 10.3389/fpls.2018.00566. PubMed DOI PMC
Ostin A., Kowalczyk M., Bhalerao R., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC
Rampey R.A., LeClere S., Kowalczyk M., Ljung K., Sandberg G., Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135:978–988. doi: 10.1104/pp.104.039677. PubMed DOI PMC
Sanchez Carranza A.P., Singh A., Steinberger K., Panigrahi K., Palme K., Dovzhenko A., Dal Bosco C. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci. Rep. 2016;6:24212. doi: 10.1038/srep24212. PubMed DOI PMC
Di Mambro R., Svolacchia N., Dello Ioio R., Pierdonati E., Salvi E., Pedrazzini E., Vitale A., Perilli S., Sozzani R., Benfey P.N., et al. The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size. Curr. Biol. 2019;29:1199–1205. doi: 10.1016/j.cub.2019.02.022. PubMed DOI
Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC
Kai K., Horita J., Wakasa K., Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry. 2007;68:1651–1663. doi: 10.1016/j.phytochem.2007.04.030. PubMed DOI
Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., Robert S., Frébort I. Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnol. 2016;33:735–742. doi: 10.1016/j.nbt.2015.12.010. PubMed DOI
Polanská L., Vičánková A., Nováková M., Malbeck J., Dobrev P.I., Brzobohatý B., Vaňková R., Macháčková I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI
Benková E., Witters E., Van Dongen W., Kolář J., Motyka V., Brzobohatý B., Van Onckelen H.A., Macháčková I. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiol. 1999;121:245–252. doi: 10.1104/pp.121.1.245. PubMed DOI PMC
Thibivilliers S., Anderson D., Libault M. Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. Curr. Protoc. Plant Biol. 2020;5:e20120. doi: 10.1002/cppb.20120. PubMed DOI
Somerville C.R., Somerville S.C., Ogren W.L. Isolation of photosynthetically active protoplasts and chloroplastids from Arabidopsis thaliana. Plant Sci. Lett. 1981;21:89–96. doi: 10.1016/0304-4211(81)90073-0. DOI
Saxena P.K., Fowke L.C., King J. An efficient procedure for isolation of nuclei from plant protoplasts. Protoplasma. 1985;128:184–189. doi: 10.1007/BF01276340. DOI
Antoniadi I., Skalický V., Sun G., Ma W., Galbraith D.W., Novák O., Ljung K. Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytom. Part A. 2021 doi: 10.1002/cyto.a.24461. PubMed DOI
Muñoz P., Norambuena L., Orellana A. Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol. 1996;112:1585–1594. doi: 10.1104/pp.112.4.1585. PubMed DOI PMC
Robert S., Zouhar J., Carter C.J., Raikhel N. Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplasts. Nat. Protoc. 2007;2:259–262. doi: 10.1038/nprot.2007.26. PubMed DOI
Keech O., Dizengremel P., Gardeström P. Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol. Plant. 2005;124:403–409. doi: 10.1111/j.1399-3054.2005.00521.x. DOI
Seigneurin-Berny D., Salvi D., Dorne A.-J., Joyard J., Rolland N. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol. Biochem. 2008;46:951–955. doi: 10.1016/j.plaphy.2008.06.009. PubMed DOI
Lee Y.H., Tan H.T., Chung M.C.M. Subcellular fractionation methods and strategies for proteomics. Proteomics. 2010;10:3935–3956. doi: 10.1002/pmic.201000289. PubMed DOI
De Araùjo M., Huber L.A., Stasyk T. Isolation of endocitic organelles by density gradient centrifugation. Methods Mol. Biol. 2008;424:317–331. doi: 10.1007/978-1-60327-064-9_25. PubMed DOI
Petrovská B., Jeřábková H., Chamrád I., Vrána J., Lenobel R., Uřinovská J., Šebela M., Doležel J. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 2014;143:78–86. doi: 10.1159/000365311. PubMed DOI
Kuhnert F., Stefanski A., Overbeck N., Drews L., Reichert A.S., Stühler K., Weber A.P.M. Rapid single-step affinity purification of HA-tagged plant mitochondria. Plant Physiol. 2020;182:692–706. doi: 10.1104/pp.19.00732. PubMed DOI PMC
Niehaus M., Straube H., Künzler P., Rugen N., Hegermann J., Giavalisco P., Eubel H., Witte C.P., Herde M. Rapid Affinity Purification of Tagged Plant Mitochondria (Mito-AP) for Metabolome and Proteome Analyses. Plant Physiol. 2020;182:1194–1210. doi: 10.1104/pp.19.00736. PubMed DOI PMC
Deal R.B., Henikoff S. The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 2011;6:56–68. doi: 10.1038/nprot.2010.175. PubMed DOI PMC
Boussardon C., Przybyla-Toscano J., Carrie C., Keech O. Tissue-Specific Isolation of Arabidopsis/plant Mitochondria—IMTACT (Isolation of Mitochondria Tagged in specific Cell Types) Plant J. 2020;103:459–473. doi: 10.1111/tpj.14723. PubMed DOI
Schwanhüusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. PubMed DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaitė A., Pinto R., Luis Micol J., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC
Song Y., Hao Y., Sun A., Li T., Li W., Guo L., Yan Y., Geng C., Chen N., Zhong F., et al. Sample preparation project for the subcellular proteome of mouse liver. Proteomics. 2006;6:5269–5277. doi: 10.1002/pmic.200500893. PubMed DOI
Vertommen A., Panis B., Swennen R., Carpentier S.C. Challenges and solutions for the identification of membrane proteins in non-model plants. J. Proteom. 2011;74:1165–1181. doi: 10.1016/j.jprot.2011.02.016. PubMed DOI
Parsons H.T., Christiansen K., Knierim B., Carroll A., Ito J., Batth T.S., Smith-Moritz A.M., Morrison S., McInerney P., Hadi M.Z., et al. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis. Plant Physiol. 2012;159:12–26. doi: 10.1104/pp.111.193151. PubMed DOI PMC
Viotti C., Kruger F., Krebs M., Neubert C., Fink F., Lupanga U., Scheuring D., Boutte Y., Frescatada-Rosa M., Wolfenstetter S., et al. The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in Arabidopsis. Plant Cell. 2013;25:3434–3449. doi: 10.1105/tpc.113.114827. PubMed DOI PMC
Hooper C.M., Castleden I.R., Tanz S.K., Aryamanesh N., Millar A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017;45:D1064–D1074. doi: 10.1093/nar/gkw1041. PubMed DOI PMC
Biała W., Jasiński M. The Phenylpropanoid Case—It Is Transport that Matters. Front. Plant Sci. 2018;9:1610. doi: 10.3389/fpls.2018.01610. PubMed DOI PMC
Leon I.R., Schwammle V., Jensen O.N., Sprenger R.R. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol. Cell. Proteom. 2013;12:2992–3005. doi: 10.1074/mcp.M112.025585. PubMed DOI PMC
Bassal M., Abukhalaf M., Majovsky P., Thieme D., Herr T., Ayash M., Tabassum N., Al Shweiki M.R., Proksch C., Hmedat A., et al. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. Mol. Plant. 2020;13:1709–1732. doi: 10.1016/j.molp.2020.09.024. PubMed DOI
Franc V., Šebela M., Řehulka P., Končitíková R., Lenobel R., Madzak C., Kopečný D. Analysis of N-glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI-TOF/TOF mass spectrometry. J. Proteom. 2012;75:4027–4037. doi: 10.1016/j.jprot.2012.05.013. PubMed DOI
Chamrád I., Simerský R., Bérešová L., Strnad M., Šebela M., Lenobel R. Proteomic Identification of a Candidate Sequence of Wheat Cytokinin-Binding Protein 1. J. Plant Growth Regul. 2014;33:896–902. doi: 10.1007/s00344-014-9419-z. DOI
Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI
Beck S., Michalski A., Raether O., Lubeck M., Kaspar S., Goedecke N., Baessmann C., Hornburg D., Meier F., Paron I., et al. The impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteom. 2015;14:2014–2029. doi: 10.1074/mcp.M114.047407. PubMed DOI PMC
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI
Pierleoni A., Martelli P.L., Fariselli P., Casadio R. BaCelLo: A balanced subcellular localization predictor. Bioinformatics. 2006;22:e408–e416. doi: 10.1093/bioinformatics/btl222. PubMed DOI
Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18:298–305. doi: 10.1093/bioinformatics/18.2.298. PubMed DOI
Bodén M., Hawkins J. Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics. 2005;21:2279–2286. doi: 10.1093/bioinformatics/bti372. PubMed DOI
Petsalaki E.I., Bagos P.G., Litou Z.I., Hamodrakas S.J. PredSL: A tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom. Proteom. Bioinform. 2006;4:48–55. doi: 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC
Tamura T., Akutsu T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition. BMC Bioinform. 2007;8:466. doi: 10.1186/1471-2105-8-466. PubMed DOI PMC
Matsuda S., Vert J.-P., Saigo H., Ueda N., Toh H., Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 2005;14:2804–2813. doi: 10.1110/ps.051597405. PubMed DOI PMC
Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI
Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Darwin C., Darwin F. The Power of Movement in Plants. John Murray; London, UK: 1880.
Novák O., Napier R., Ljung K. Zooming in on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annu. Rev. Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI
Can plant hormonomics be built on simple analysis? A review
On the trail of auxin: Reporters and sensors
Auxin Metabolite Profiling in Isolated and Intact Plant Nuclei