Auxin Metabolome Profiling in the Arabidopsis Endoplasmic Reticulum Using an Optimised Organelle Isolation Protocol

. 2021 Aug 29 ; 22 (17) : . [epub] 20210829

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34502279

Grantová podpora
17-21581Y Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund
IGA_PrF_2021_016 Univerzita Palackého v Olomouci

The endoplasmic reticulum (ER) is an extensive network of intracellular membranes. Its major functions include proteosynthesis, protein folding, post-transcriptional modification and sorting of proteins within the cell, and lipid anabolism. Moreover, several studies have suggested that it may be involved in regulating intracellular auxin homeostasis in plants by modulating its metabolism. Therefore, to study auxin metabolome in the ER, it is necessary to obtain a highly enriched (ideally, pure) ER fraction. Isolation of the ER is challenging because its biochemical properties are very similar to those of other cellular endomembranes. Most published protocols for ER isolation use density gradient ultracentrifugation, despite its suboptimal resolving power. Here we present an optimised protocol for ER isolation from Arabidopsis thaliana seedlings for the subsequent mass spectrometric determination of ER-specific auxin metabolite profiles. Auxin metabolite analysis revealed highly elevated levels of active auxin form (IAA) within the ER compared to whole plants. Moreover, samples prepared using our optimised isolation ER protocol are amenable to analysis using various "omics" technologies including analyses of both macromolecular and low molecular weight compounds from the same sample.

Zobrazit více v PubMed

Chen J., Doyle C., Qi X., Zheng H. The endoplasmic reticulum: A social network in plant cells. J. Integr. Plant Biol. 2012;54:840–850. doi: 10.1111/j.1744-7909.2012.01176.x. PubMed DOI

Spang A. Retrograde traffic from the Golgi to the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 2013;5:a013391. doi: 10.1101/cshperspect.a013391. PubMed DOI PMC

Hawes C., Kiviniemi P., Kriechbaumer V. The endoplasmic reticulum: A dynamic and well-connected organelle. J. Integr. Plant Biol. 2015;57:50–62. doi: 10.1111/jipb.12297. PubMed DOI

Dashek W.V. Endoplasmic reticulum. In: Dashek W.V., Miglani G.S., editors. Plant Cells and their Organelles. 1st ed. Wiley; Hoboken, NJ, USA: 2017. pp. 42–60. DOI

Mravec J., Skůpa P., Bailly A., Hoyerová K., Křeček P., Bielach A., Petrášek J., Zhang J., Gaykova V., Stierhof Y.-D., et al. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature. 2009;459:1136–1140. doi: 10.1038/nature08066. PubMed DOI

Ding Z., Wang B., Moreno I., Dupláková N., Simon S., Carraro N., Reemmer J., Pěnčík A., Chen X., Tejos R., et al. ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat. Commun. 2012;3:941. doi: 10.1038/ncomms1941. PubMed DOI

Bosco C.D., Dovzhenko A., Liu X., Woerner N., Rensch T., Eismann M., Eimer S., Hegermann J., Paponov I.A., Ruperti B., et al. The endoplasmic reticulum localized PIN8 is a pollen-specific auxin carrier involved in intracellular auxin homeostasis. Plant J. 2012;71:860–870. doi: 10.1111/j.1365-313X.2012.05037.x. PubMed DOI

Barbez E., Kleine-Vehn J. Divide et Impera—Cellular auxin compartmentalization. Curr. Opin. Plant Biol. 2013;16:78–84. doi: 10.1016/j.pbi.2012.10.005. PubMed DOI

Middleton A.M., Dal Bosco C., Chlap P., Bensch R., Harz H., Ren F., Bergmann S., Wend S., Weber W., Hayashi K.-I., et al. Data-Driven Modeling of Intracellular Auxin Fluxes Indicates a Dominant Role of the ER in Controlling Nuclear Auxin Uptake. Cell Rep. 2018;22:3044–3057. doi: 10.1016/j.celrep.2018.02.074. PubMed DOI

Caesar K., Thamm A.M.K., Witthöft J., Elgass K., Huppenberger P., Grefen C., Horak J., Harter K. Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J. Exp. Bot. 2011;62:5571–5580. doi: 10.1093/jxb/err238. PubMed DOI PMC

Wulfetange K., Lomin S.N., Romanov G.A., Stolz A., Heyl A., Schmülling T. The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol. 2011;156:1808–1818. doi: 10.1104/pp.111.180539. PubMed DOI PMC

Chen Y.-F., Randlett M.D., Findell J.L., Schaller G.E. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis. J. Biol. Chem. 2002;277:19861–19866. doi: 10.1074/jbc.M201286200. PubMed DOI

Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., Rosquete M.R., Zhu J., Dobrev P.I., Lee Y., et al. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature. 2012;485:119–122. doi: 10.1038/nature11001. PubMed DOI

Feraru E., Feraru M.I., Barbez E., Waidmann S., Sun L., Gaidora A., Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2019;116:3893–3898. doi: 10.1073/pnas.1814015116. PubMed DOI PMC

Ranocha P., Dima O., Nagy R., Felten J., Corratgé-Faillie C., Novák O., Morreel K., Lacombe B., Martinez Y., Pfrunder S., et al. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat. Commun. 2013;4:2625. doi: 10.1038/ncomms3625. PubMed DOI PMC

Béziat C., Barbez E., Feraru M.I., Lucyshyn D., Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat. Plants. 2017;3:17105. doi: 10.1038/nplants.2017.105. PubMed DOI PMC

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Casanova-Sáez R., Mateo-Bonmatí E., Ljung K. Auxin Metabolism in Plants. Cold Spring Harb. Perspect. Biol. 2021:a039867. doi: 10.1101/cshperspect.a039867. PubMed DOI PMC

Stepanova A.N., Robertson-Hoyt J., Yun J., Benavente L.M., Xie D.Y., Doležal K., Schlereth A., Jürgens G., Alonso J.M. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell. 2008;133:177–191. doi: 10.1016/j.cell.2008.01.047. PubMed DOI

Tao Y., Ferrer J.L., Ljung K., Pojer F., Hong F., Long J.A., Li L., Moreno J.E., Bowman M.E., Ivans L.J., et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell. 2008;133:164–176. doi: 10.1016/j.cell.2008.01.049. PubMed DOI PMC

Kim J.I., Sharkhuu A., Jin J.B., Li P., Jeong J.C., Baek D., Lee S.Y., Blakeslee J.J., Murphy A.S., Bohnert H.J., et al. yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol. 2007;145:722–735. doi: 10.1104/pp.107.104935. PubMed DOI PMC

Kriechbaumer V., Botchway S.W., Hawes C. Localization and interactions between Arabidopsis auxin biosynthetic enzymes in the TAA/YUC-dependent pathway. J. Exp. Bot. 2016;67:4195–4207. doi: 10.1093/jxb/erw195. PubMed DOI

Kubeš M., Napier R. Non-canonical auxin signalling: Fast and curious. J. Exp. Bot. 2019;70:2609–2614. doi: 10.1093/jxb/erz111. PubMed DOI PMC

Fendrych M., Akhmanova M., Merrin J., Glanc M., Hagihara S., Takahashi K., Uchida N., Torii K.U., Friml J. Rapid and reversible root growth inhibition by TIR1 auxin signalling. Nat. Plants. 2018;4:453–459. doi: 10.1038/s41477-018-0190-1. PubMed DOI PMC

Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC

Zhang J., Lin J.E., Harris C., Campos Mastrotti Pereira F., Wu F., Blakeslee J.J., Peer W.A. DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2016;113:11010–11015. doi: 10.1073/pnas.1604769113. PubMed DOI PMC

Jin S.-H., Ma X.-M., Han P., Wang B., Sun Y.-G., Zhang G.-Z., Li Y.-J., Hou B.-K. UGT74D1 is a novel auxin glycosyltransferase from Arabidopsis thaliana. PLoS ONE. 2013;8:e61705. doi: 10.1371/annotation/457d7567-fc12-421c-9d79-880950ab10e1. PubMed DOI PMC

Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldonado M.T., Maldonado M.C., Suza W. Characterization of an Arabidopsis Enzyme Family that Conjugates Amino Acids to Indole-3-Acetic Acid. Plant Cell. 2005;17:616–627. doi: 10.1105/tpc.104.026690. PubMed DOI PMC

Cano A., Sánchez-García A.B., Albacete A., González-Bayón R., Justamante M.S., Ibáñez S., Acosta M., Pérez-Pérez J.M. Enhanced Conjugation of Auxin by GH3 Enzymes Leads to Poor Adventitious Rooting in Carnation Stem Cuttings. Front. Plant Sci. 2018;9:566. doi: 10.3389/fpls.2018.00566. PubMed DOI PMC

Ostin A., Kowalczyk M., Bhalerao R., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC

Rampey R.A., LeClere S., Kowalczyk M., Ljung K., Sandberg G., Bartel B. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135:978–988. doi: 10.1104/pp.104.039677. PubMed DOI PMC

Sanchez Carranza A.P., Singh A., Steinberger K., Panigrahi K., Palme K., Dovzhenko A., Dal Bosco C. Hydrolases of the ILR1-like family of Arabidopsis thaliana modulate auxin response by regulating auxin homeostasis in the endoplasmic reticulum. Sci. Rep. 2016;6:24212. doi: 10.1038/srep24212. PubMed DOI PMC

Di Mambro R., Svolacchia N., Dello Ioio R., Pierdonati E., Salvi E., Pedrazzini E., Vitale A., Perilli S., Sozzani R., Benfey P.N., et al. The Lateral Root Cap Acts as an Auxin Sink that Controls Meristem Size. Curr. Biol. 2019;29:1199–1205. doi: 10.1016/j.cub.2019.02.022. PubMed DOI

Porco S., Pěnčík A., Rashed A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC

Kai K., Horita J., Wakasa K., Miyagawa H. Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry. 2007;68:1651–1663. doi: 10.1016/j.phytochem.2007.04.030. PubMed DOI

Jiskrová E., Novák O., Pospíšilová H., Holubová K., Karády M., Galuszka P., Robert S., Frébort I. Extra- and intracellular distribution of cytokinins in the leaves of monocots and dicots. New Biotechnol. 2016;33:735–742. doi: 10.1016/j.nbt.2015.12.010. PubMed DOI

Polanská L., Vičánková A., Nováková M., Malbeck J., Dobrev P.I., Brzobohatý B., Vaňková R., Macháčková I. Altered cytokinin metabolism affects cytokinin, auxin, and abscisic acid contents in leaves and chloroplasts, and chloroplast ultrastructure in transgenic tobacco. J. Exp. Bot. 2007;58:637–649. doi: 10.1093/jxb/erl235. PubMed DOI

Benková E., Witters E., Van Dongen W., Kolář J., Motyka V., Brzobohatý B., Van Onckelen H.A., Macháčková I. Cytokinins in tobacco and wheat chloroplasts. Occurrence and changes due to light/dark treatment. Plant Physiol. 1999;121:245–252. doi: 10.1104/pp.121.1.245. PubMed DOI PMC

Thibivilliers S., Anderson D., Libault M. Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. Curr. Protoc. Plant Biol. 2020;5:e20120. doi: 10.1002/cppb.20120. PubMed DOI

Somerville C.R., Somerville S.C., Ogren W.L. Isolation of photosynthetically active protoplasts and chloroplastids from Arabidopsis thaliana. Plant Sci. Lett. 1981;21:89–96. doi: 10.1016/0304-4211(81)90073-0. DOI

Saxena P.K., Fowke L.C., King J. An efficient procedure for isolation of nuclei from plant protoplasts. Protoplasma. 1985;128:184–189. doi: 10.1007/BF01276340. DOI

Antoniadi I., Skalický V., Sun G., Ma W., Galbraith D.W., Novák O., Ljung K. Fluorescence activated cell sorting—A selective tool for plant cell isolation and analysis. Cytom. Part A. 2021 doi: 10.1002/cyto.a.24461. PubMed DOI

Muñoz P., Norambuena L., Orellana A. Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol. 1996;112:1585–1594. doi: 10.1104/pp.112.4.1585. PubMed DOI PMC

Robert S., Zouhar J., Carter C.J., Raikhel N. Isolation of intact vacuoles from Arabidopsis rosette leaf–derived protoplasts. Nat. Protoc. 2007;2:259–262. doi: 10.1038/nprot.2007.26. PubMed DOI

Keech O., Dizengremel P., Gardeström P. Preparation of leaf mitochondria from Arabidopsis thaliana. Physiol. Plant. 2005;124:403–409. doi: 10.1111/j.1399-3054.2005.00521.x. DOI

Seigneurin-Berny D., Salvi D., Dorne A.-J., Joyard J., Rolland N. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. Plant Physiol. Biochem. 2008;46:951–955. doi: 10.1016/j.plaphy.2008.06.009. PubMed DOI

Lee Y.H., Tan H.T., Chung M.C.M. Subcellular fractionation methods and strategies for proteomics. Proteomics. 2010;10:3935–3956. doi: 10.1002/pmic.201000289. PubMed DOI

De Araùjo M., Huber L.A., Stasyk T. Isolation of endocitic organelles by density gradient centrifugation. Methods Mol. Biol. 2008;424:317–331. doi: 10.1007/978-1-60327-064-9_25. PubMed DOI

Petrovská B., Jeřábková H., Chamrád I., Vrána J., Lenobel R., Uřinovská J., Šebela M., Doležel J. Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet. Genome Res. 2014;143:78–86. doi: 10.1159/000365311. PubMed DOI

Kuhnert F., Stefanski A., Overbeck N., Drews L., Reichert A.S., Stühler K., Weber A.P.M. Rapid single-step affinity purification of HA-tagged plant mitochondria. Plant Physiol. 2020;182:692–706. doi: 10.1104/pp.19.00732. PubMed DOI PMC

Niehaus M., Straube H., Künzler P., Rugen N., Hegermann J., Giavalisco P., Eubel H., Witte C.P., Herde M. Rapid Affinity Purification of Tagged Plant Mitochondria (Mito-AP) for Metabolome and Proteome Analyses. Plant Physiol. 2020;182:1194–1210. doi: 10.1104/pp.19.00736. PubMed DOI PMC

Deal R.B., Henikoff S. The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 2011;6:56–68. doi: 10.1038/nprot.2010.175. PubMed DOI PMC

Boussardon C., Przybyla-Toscano J., Carrie C., Keech O. Tissue-Specific Isolation of Arabidopsis/plant Mitochondria—IMTACT (Isolation of Mitochondria Tagged in specific Cell Types) Plant J. 2020;103:459–473. doi: 10.1111/tpj.14723. PubMed DOI

Schwanhüusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. PubMed DOI

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaitė A., Pinto R., Luis Micol J., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC

Song Y., Hao Y., Sun A., Li T., Li W., Guo L., Yan Y., Geng C., Chen N., Zhong F., et al. Sample preparation project for the subcellular proteome of mouse liver. Proteomics. 2006;6:5269–5277. doi: 10.1002/pmic.200500893. PubMed DOI

Vertommen A., Panis B., Swennen R., Carpentier S.C. Challenges and solutions for the identification of membrane proteins in non-model plants. J. Proteom. 2011;74:1165–1181. doi: 10.1016/j.jprot.2011.02.016. PubMed DOI

Parsons H.T., Christiansen K., Knierim B., Carroll A., Ito J., Batth T.S., Smith-Moritz A.M., Morrison S., McInerney P., Hadi M.Z., et al. Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis. Plant Physiol. 2012;159:12–26. doi: 10.1104/pp.111.193151. PubMed DOI PMC

Viotti C., Kruger F., Krebs M., Neubert C., Fink F., Lupanga U., Scheuring D., Boutte Y., Frescatada-Rosa M., Wolfenstetter S., et al. The Endoplasmic Reticulum Is the Main Membrane Source for Biogenesis of the Lytic Vacuole in Arabidopsis. Plant Cell. 2013;25:3434–3449. doi: 10.1105/tpc.113.114827. PubMed DOI PMC

Hooper C.M., Castleden I.R., Tanz S.K., Aryamanesh N., Millar A.H. SUBA4: The interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res. 2017;45:D1064–D1074. doi: 10.1093/nar/gkw1041. PubMed DOI PMC

Biała W., Jasiński M. The Phenylpropanoid Case—It Is Transport that Matters. Front. Plant Sci. 2018;9:1610. doi: 10.3389/fpls.2018.01610. PubMed DOI PMC

Leon I.R., Schwammle V., Jensen O.N., Sprenger R.R. Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol. Cell. Proteom. 2013;12:2992–3005. doi: 10.1074/mcp.M112.025585. PubMed DOI PMC

Bassal M., Abukhalaf M., Majovsky P., Thieme D., Herr T., Ayash M., Tabassum N., Al Shweiki M.R., Proksch C., Hmedat A., et al. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. Mol. Plant. 2020;13:1709–1732. doi: 10.1016/j.molp.2020.09.024. PubMed DOI

Franc V., Šebela M., Řehulka P., Končitíková R., Lenobel R., Madzak C., Kopečný D. Analysis of N-glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI-TOF/TOF mass spectrometry. J. Proteom. 2012;75:4027–4037. doi: 10.1016/j.jprot.2012.05.013. PubMed DOI

Chamrád I., Simerský R., Bérešová L., Strnad M., Šebela M., Lenobel R. Proteomic Identification of a Candidate Sequence of Wheat Cytokinin-Binding Protein 1. J. Plant Growth Regul. 2014;33:896–902. doi: 10.1007/s00344-014-9419-z. DOI

Tyanova S., Temu T., Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016;11:2301–2319. doi: 10.1038/nprot.2016.136. PubMed DOI

Beck S., Michalski A., Raether O., Lubeck M., Kaspar S., Goedecke N., Baessmann C., Hornburg D., Meier F., Paron I., et al. The impact II, a very high-resolution quadrupole time-of-flight instrument (QTOF) for deep shotgun proteomics. Mol. Cell. Proteom. 2015;14:2014–2029. doi: 10.1074/mcp.M114.047407. PubMed DOI PMC

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Pierleoni A., Martelli P.L., Fariselli P., Casadio R. BaCelLo: A balanced subcellular localization predictor. Bioinformatics. 2006;22:e408–e416. doi: 10.1093/bioinformatics/btl222. PubMed DOI

Bannai H., Tamada Y., Maruyama O., Nakai K., Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18:298–305. doi: 10.1093/bioinformatics/18.2.298. PubMed DOI

Bodén M., Hawkins J. Prediction of subcellular localization using sequence-biased recurrent networks. Bioinformatics. 2005;21:2279–2286. doi: 10.1093/bioinformatics/bti372. PubMed DOI

Petsalaki E.I., Bagos P.G., Litou Z.I., Hamodrakas S.J. PredSL: A tool for the N-terminal sequence-based prediction of protein subcellular localization. Genom. Proteom. Bioinform. 2006;4:48–55. doi: 10.1016/S1672-0229(06)60016-8. PubMed DOI PMC

Tamura T., Akutsu T. Subcellular location prediction of proteins using support vector machines with alignment of block sequences utilizing amino acid composition. BMC Bioinform. 2007;8:466. doi: 10.1186/1471-2105-8-466. PubMed DOI PMC

Matsuda S., Vert J.-P., Saigo H., Ueda N., Toh H., Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 2005;14:2804–2813. doi: 10.1110/ps.051597405. PubMed DOI PMC

Emanuelsson O., Nielsen H., Brunak S., von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000;300:1005–1016. doi: 10.1006/jmbi.2000.3903. PubMed DOI

Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Darwin C., Darwin F. The Power of Movement in Plants. John Murray; London, UK: 1880.

Novák O., Napier R., Ljung K. Zooming in on Plant Hormone Analysis: Tissue- and Cell-Specific Approaches. Annu. Rev. Plant Biol. 2017;68:323–348. doi: 10.1146/annurev-arplant-042916-040812. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace