Fluorescence activated cell sorting-A selective tool for plant cell isolation and analysis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
34028996
DOI
10.1002/cyto.a.24461
Knihovny.cz E-zdroje
- Klíčová slova
- autofluorescence, best practices, plant flow cytometry and sorting, protoplasts, viability and integrity,
- MeSH
- protoplasty * MeSH
- průtoková cytometrie MeSH
- separace buněk MeSH
- suspenze MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- suspenze MeSH
Instrumentation for flow cytometry and sorting is designed around the assumption that samples are single-cell suspensions. However, with few exceptions, higher plants comprise complex multicellular tissues and organs, in which the individual cells are held together by shared cell walls. Single-cell suspensions can be obtained through digestion of the cells walls and release of the so-called protoplasts (plants without their cell wall). Here we describe best practices for protoplast preparation, and for analysis through flow cytometry and cell sorting. Finally, the numerous downstream applications involving sorted protoplasts are discussed.
Zobrazit více v PubMed
Cocking EC. A method for the isolation of plant protoplasts and vacuoles. Nature. 1960;187:962-3.
Mazarei M, Al-Ahmad H, Rudis MR, Stewart CN Jr. Protoplast isolation and transient gene expression in switchgrass, Panicum virgatum L. Biotechnol J. 2008;3:354-9.
Priyadarshani SVGN, Hu B, Li W, Ali H, Jia H, Zhao L, et al. Simple protoplast isolation system for gene expression and protein interaction studies in pineapple (Ananas comosus L.). Plant Methods. 2018;14:95.
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc. 2007;2:1565-72.
Davey MR, Anthony P, Power JB, Lowe KC. Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv. 2005;23:131-71.
Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J. Progress in plant protoplast research. Planta. 2013;238:991-1003.
Davey M, Anthony P, Patel D, Power J. Plant protoplasts: isolation, culture and plant regeneration. In: Davey M, Anthony P, editors. Plant cell culture: essential methods. New York, NY: John Wiley & Sons Inc.; 2010. p. 153-73.
Harkins KR, Jefferson RA, Kavanagh TA, Bevan MW, Galbraith DW. Expression of photosynthesis related gene fusions is restricted by cell type in transgenic plants and in transfected protoplasts. Proc Natl Acad Sci U S A. 1990;87:816-20.
Yadav RK, Girke T, Pasala S, Xie M, Reddy GV. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A. 2009;106:4941-6.
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, et al. A gene expression map of the Arabidopsis root. Science. 2003;302:1956-60.
Antoniadi I, Plačková L, Simonovik B, Doležal K, Turnbull C, Ljung K, et al. Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell. 2015;27:1955-67.
Petersson SV, Johansson AI, Kowalczyk M, Makoveychuk A, Wang JY, Moritz T, et al. An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell. 2009;21:1659-68.
Galbraith DW, Mauch TJ. Identification of fusion of plant protoplasts II. Z Pflanzenphysiol. 1980;98:129-40.
Harkins KR, Galbraith DW. Flow sorting and culture of plant protoplasts. Physiol Plant. 1984;60:43-52.
Novák O, Antoniadi I, Ljung K. High-resolution cell-type specific analysis of Cytokinins in sorted root cell populations of Arabidopsis thaliana. In: Kleine-Vehn J, Sauer M, editors. Plant hormones: methods and protocols: 1497. New York, NY: Human Press; 2016. p. 231-48.
Galbraith DW, Shields BA. The effects of inhibitors of cell wall synthesis on tobacco protoplast development. Physiol Plant. 1982;55:25-30.
Jones KH, Senft JA. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem. 1985;33:77-9.
Huang CN, Cornejo MJ, Bush DS, Jones RL. Estimating viability of plant protoplasts using double and single staining. Protoplasma. 1986;135:80-7.
Graham JM. Purification of intact plant protoplasts by flotation at 1g. Sci World J. 2002;2:1397-9.
Donaldson L. Autofluorescence in plants. Molecules. 2020;25:2393.
Talamond P, Verdeil JL, Conéjéro G. Secondary metabolite localization by autofluorescence in living plant cells. Molecules. 2015;20:5024-37.
Afonso CL, Harkins KR, Thomas-Compton M, Krejci A, Galbraith DW. Production of somatic hybrid plants through fluorescence activated sorting of protoplasts. Nat Biotechnol. 1985;3:811-6.
Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR. In vivo imaging of membrane-associated glycans in developing zebrafish. Science. 2008;320:664-7.
Pařízková B, Žukauskaitė A, Vain T, Grones P, Raggi S, Kubeš MF, et al. New fluorescent auxin probes visualise tissue-specific and subcellular distributions of auxin in Arabidopsis. New Phytol. 2021;230:535-49.
Vira S, Mekhedov E, Humphrey G, Blank PS. Fluorescent-labeled antibodies: balancing functionality and degree of labeling. Anal Biochem. 2010;402:146-50.
Mair F, Prlic M. OMIP-044: 28-color immunophenotyping of the human dendritic cell compartment. Cytometry A. 2018;93:402-5.
Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. CellMarker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2018;47:D721-D728.
Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith DW. Green fluorescent protein as a new vital marker in plant cells. Plant J. 1995;8:777-84.
Galbraith DW, Grebenok RJ, Lambert GM, Sheen J. Flow cytometric analysis of transgene expression in higher plants: green fluorescent protein. Methods Cell Biol. 1995;50:3-12.
Mardanova ES, Blokhina EA, Tsybalova LM, Peyret H, Lomonossoff GP, Ravin NV. Efficient transient expression of recombinant proteins in plants by the novel pEff vector based on the genome of potato virus X. Front Plant Sci. 2017;8:247.
Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, et al. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. Plant Methods. 2019;15:144.
Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, et al. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318:801-6.
Harkins KR, Galbraith DW. Factors governing the flow cytometric analysis and sorting of large biological particles. Cytometry. 1987;8:60-71.
Galbraith DW. Isolation and flow cytometric characterization of plant protoplasts. In: Darzynkiewicz Z, Crissman HA, editors. Methods in cell biology; London: Academic Press. 1990. p. 527-47.
Galbraith DW, Bartos J, Dolezel J. Flow cytometry and cell sorting in plant biotechnology. In: Sklar LA, editor. Flow cytometry in biotechnology. New York, NY: Oxford University Press; 2005. p. 291-322.
Galbraith DW, Harkins KR, Jefferson RA. Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry A. 1988;9:75-83.
Lan P, Li W, Lin WD, Santi S, Schmidt W. Mapping gene activity of Arabidopsis root hairs. Genome Biol. 2013;14:R67.
Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, et al. The protein expression landscape of the Arabidopsis root. Proc Nat Acad Sci U S A. 2012;109:6811-8.
Ip PL, Birnbaum KD. Tissue-specific gene expression profiling by cell sorting. In: Alonso J, Stepanova A, editors. Plant functional genomics: methods in molecular biology, 1284. New York, NY: Humana Press; 2015. p. 175-83.
Moussaieff A, Rogachev I, Brodsky L, Malitsky S, Toal TW, Belcher H, et al. High-resolution metabolic mapping of cell types in plant roots. Proc Nat Acad Sci U S A. 2013;110:E1232-E1241.
Villarino GH, Hu Q, Manrique S, Flores-Vergara M, Sehra B, Robles L, et al. Transcriptomic signature of the SHATTERPROOF2 expression domain reveals the meristematic nature of Arabidopsis Gynoecial medial domain. Plant Physiol. 2016;171:42-61.
Grønlund JT, Eyres A, Kumar S, Buchanan-Wollaston V, Gifford ML. Cell specific analysis of Arabidopsis leaves using fluorescence activated cell sorting. J Vis Exp. 2012;68:4214.
Bruex A, Kainkaryam RM, Wieckowski Y, Kang YH, Bernhardt C, Xia Y, et al. A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet. 2012;8:e1002446.
Slane D, Kong J, Berendzen KW, Kilian J, Henschen A, Kolb M, et al. Cell type-specific transcriptome analysis in the early Arabidopsis thaliana embryo. Development. 2014;141:4831-40.
Huang L, Shi X, Wang W, Ryu KH, Schiefelbein J. Diversification of root hair development genes in vascular plants. Plant Physiol. 2017;174:1697-712.
Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, Davies KA, et al. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev Cell. 2015;33:107-18.
Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, et al. Cell-surface receptors enable perception of extracellular cytokinins. Nat Commun. 2020;11:4284.
Pencík A, Simonovik B, Petersson SV, Henyková E, Simon S, Greenham K, et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the indole-3-acetic acid catabolite 2-oxindole-3-acetic acid. Plant Cell. 2013 Oct;25:3858-70.
Coker TL, Cevik V, Beynon JL, Gifford ML. Spatial dissection of the Arabidopsis thaliana transcriptional response to downy mildew using fluorescence activated cell sorting. Front Plant Sci. 2015;6:527.
Rich C, Reitz M, Eichmann R, Jacobs S, Jenkins DJ, Esteban E, et al. Cell type identity determines transcriptomic immune responses in Arabidopsis thaliana roots. BioRxiv. 2018;2018:30244.
Evrard A, Bargmann BO, Birnbaum KD, Tester M, Baumann U, Johnson AA. Fluorescence-activated cell sorting for analysis of cell type-specific responses to salinity stress in Arabidopsis and rice. Methods Mol Biol. 2012;913:265-76.
Gifford ML, Dean A, Gutierrez RA, Coruzzi GM, Birnbaum KD. Cell-specific nitrogen responses mediate developmental plasticity. Proc Nat Acad Sci U S A. 2008;105:803-8.
Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science. 2008;320:942-5.
Warnasooriya SN, Montgomery BL. Investigating tissue- and organ-specific phytochrome responses using FACS-assisted cell-type specific expression profiling in Arabidopsis thaliana. J Vis Exp. 2010;39:1925.
Petersson SV, Lindén P, Moritz T, Ljung K. Cell-type specific metabolic profiling of Arabidopsis thaliana protoplasts as a tool for plant systems biology. Metabolomics. 2015;11:1679-89.
Birnbaum K, Jung JW, Wang JY, Lambert GM, Hirst JA, Galbraith DW, et al. Cell type-specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat Methods. 2005;2:615-9.