Cell wall integrity modulates HOOKLESS1 and PHYTOCHROME INTERACTING FACTOR4 expression controlling apical hook formation

. 2024 Oct 01 ; 196 (2) : 1562-1578.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38976579

Grantová podpora
AR22117A5E76C7EE Sapienza University of Rome
A0375-2020-36720 Regione Lazio
Research Group Projects 2020
KAW 2016.0341 Knut and Alice Wallenberg Foundation
VINNOVA 2016-00504 Swedish Governmental Agency for Innovation Systems
VR-2020-03420 Vetenskapsrådet
Bio4Energy
Swedish Government'
Strategic Research Area initiative
Italian Ministry of University and Research
22-17435S Czech Science Foundation
Ministry of Education
Youth and Sports of the Czech Republic
CZ.02.01.01/00/22/_008/0004581 European Regional Development Fund
GAT3395 Gatsby Charitable trust
European Research Council - International
759282 European Union's Horizon 2020 research and innovation program
European Union Next-GenerationEU

Formation of the apical hook in etiolated dicot seedlings results from differential growth in the hypocotyl apex and is tightly controlled by environmental cues and hormones, among which auxin and gibberellins (GAs) play an important role. Cell expansion is tightly regulated by the cell wall, but whether and how feedback from this structure contributes to hook development are still unclear. Here, we show that etiolated seedlings of the Arabidopsis (Arabidopsis thaliana) quasimodo2-1 (qua2) mutant, defective in pectin biosynthesis, display severe defects in apical hook formation and maintenance, accompanied by loss of asymmetric auxin maxima and differential cell expansion. Moreover, qua2 seedlings show reduced expression of HOOKLESS1 (HLS1) and PHYTOCHROME INTERACTING FACTOR4 (PIF4), which are positive regulators of hook formation. Treatment of wild-type seedlings with the cellulose inhibitor isoxaben (isx) also prevents hook development and represses HLS1 and PIF4 expression. Exogenous GAs, loss of DELLA proteins, or HLS1 overexpression partially restore hook development in qua2 and isx-treated seedlings. Interestingly, increased agar concentration in the medium restores, both in qua2 and isx-treated seedlings, hook formation, asymmetric auxin maxima, and PIF4 and HLS1 expression. Analyses of plants expressing a Förster resonance energy transfer-based GA sensor indicate that isx reduces accumulation of GAs in the apical hook region in a turgor-dependent manner. Lack of the cell wall integrity sensor THESEUS 1, which modulates turgor loss point, restores hook formation in qua2 and isx-treated seedlings. We propose that turgor-dependent signals link changes in cell wall integrity to the PIF4-HLS1 signaling module to control differential cell elongation during hook formation.

Zobrazit více v PubMed

Abbas M, Alabadí D, Blázquez MA. Differential growth at the apical hook: all roads lead to auxin. Front Plant Sci. 2013:4:441. 10.3389/fpls.2013.00441 PubMed DOI PMC

An F, Zhang X, Zhu Z, Ji Y, He W, Jiang Z, Li M, Guo H. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. Cell Res. 2012:22(5):915–927. 10.1038/cr.2012.29 PubMed DOI PMC

Aryal B, Jonsson K, Baral A, Sancho-Andres G, Routier-Kierzkowska A-L, Kierzkowski D, Bhalerao RP. Interplay between cell wall and auxin mediates the control of differential cell elongation during apical hook development. Curr Biol. 2020:30(9):1733–1739.e3. 10.1016/j.cub.2020.02.055 PubMed DOI

Bacete L, Hamann T. The role of mechanoperception in plant cell wall integrity maintenance. Plants. 2020:9(5):574. 10.3390/plants9050574 PubMed DOI PMC

Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L, Yan G, Gerhold JM, Tichá T, Øvstebø C, Gigli-Bisceglia N, et al. . THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2022:119(1):e2119258119. 10.1073/pnas.2119258119 PubMed DOI PMC

Baral A, Aryal B, Jonsson K, Morris E, Demes E, Takatani S, Verger S, Xu T, Bennett M, Hamant O, et al. . External mechanical cues reveal a katanin-independent mechanism behind auxin-mediated tissue bending in plants. Dev Cell. 2021:56(1):67–80.e3. 10.1016/j.devcel.2020.12.008 PubMed DOI

Barbier de Reuille P, Routier-Kierzkowska A-L, Kierzkowski D, Bassel GW, Schüpbach T, Tauriello G, Bajpai N, Strauss S, Weber A, Kiss A, et al. . MorphoGraphX: a platform for quantifying morphogenesis in 4D. eLife. 2015:4:05864. 10.7554/eLife.05864 PubMed DOI PMC

Bethke G, Thao A, Xiong G, Li B, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M. Pectin biosynthesis is critical for cell wall integrity and immunity in Arabidopsis thaliana. Plant Cell. 2016:28(2):537–556. 10.1105/tpc.15.00404 PubMed DOI PMC

Bonin CP, Potter I, Vanzin GF, Reiter W-D. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDP-d-mannose-4,6-dehydratase, catalyzing the first step in the de novo synthesis of GDP-l-fucose. Proc Natl Acad Sci USA. 1997:94(5):2085–2090. 10.1073/pnas.94.5.2085 PubMed DOI PMC

Bouton S, Leboeuf E, Mouille G, Leydecker M-T, Talbotec J, Granier F, Lahaye M, Höfte H, Truong H-N. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell. 2002:14(10):2577–2590. 10.1105/tpc.004259 PubMed DOI PMC

Burget EG, Verma R, Molhoj M, Reiter WD. The biosynthesis of L-arabinose in plants: molecular cloning and characterization of a Golgi-localized UDP-d-xylose 4-epimerase encoded by the MUR4 gene of Arabidopsis. Plant Cell. 2003:15(2):523–531. 10.1105/tpc.008425 PubMed DOI PMC

Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005:6(11):850. 10.1038/nrm1746 PubMed DOI

de Lucas M, Davière J-M, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature. 2008:451(7177):480–484. 10.1038/nature06520 PubMed DOI

Desnos T, Orbovic V, Bellini C, Kronenberger J, Caboche M, Traas J, Hofte H. Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation, respectively in dark-and light-grown Arabidopsis seedlings. Development. 1996:122(2):683–693. 10.1242/dev.122.2.683 PubMed DOI

Desprez T, Vernhettes S, Fagard M, Refrégier G, Desnos T, Aletti E, Py N, Pelletier S, Höfte H. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 2002:128(2):482–490. 10.1104/pp.010822 PubMed DOI PMC

Du J, Kirui A, Huang S, Wang L, Barnes WJ, Kiemle SN, Zheng Y, Rui Y, Ruan M, Qi S, et al. . Mutations in the pectin methyltransferase QUASIMODO2 influence cellulose biosynthesis and wall integrity in Arabidopsis. Plant Cell. 2020:32(11):3576–3597. 10.1105/tpc.20.00252 PubMed DOI PMC

Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F, Van der Does D, Zipfel C, Hamann T. The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal. 2018:11(536):eaao3070. 10.1126/scisignal.aao3070 PubMed DOI

Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell. 2000:12(12):2409–2424. 10.1105/tpc.12.12.2409 PubMed DOI PMC

Feng S, Martinez C, Gusmaroli G, Wang Y, Zhou J, Wang F, Chen L, Yu L, Iglesias-Pedraz JM, Kircher S, et al. . Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature. 2008:451(7177):475–479. 10.1038/nature06448 PubMed DOI PMC

Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q, Liu M-C, Maman J, Steinhorst L, Schmitz-Thom I. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol. 2018:28(5):666–675.e5. 10.1016/j.cub.2018.01.023 PubMed DOI PMC

Ferrari S, Galletti R, Vairo D, Cervone F, De Lorenzo G. Antisense expression of the Arabidopsis thaliana AtPGIP1 gene reduces polygalacturonase-inhibiting protein accumulation and enhances susceptibility to Botrytis cinerea. Mol Plant Microbe Interact. 2006:19(8):931–936. 10.1094/MPMI-19-0931 PubMed DOI

Floková K, Tarkowská D, Miersch O, Strnad M, Wasternack C, Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014:105:147–157. 10.1016/j.phytochem.2014.05.015 PubMed DOI

Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, et al. . PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA. 2011:108(50):20231–20235. 10.1073/pnas.1110682108 PubMed DOI PMC

Freshour G, Bonin CP, Reiter W-D, Albersheim P, Darvill AG, Hahn MG. Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis. Plant Physiol. 2003:131(4):1602–1612. 10.1104/pp.102.016444 PubMed DOI PMC

Griffiths J, Rizza A, Tang B, Frommer WB, Jones AM. Gibberellin perception sensors 1 and 2 reveal cellular GA dynamics articulated by COP1 and GA20ox1 that are necessary but not sufficient to pattern hypocotyl cell elongation. bioRxiv 2023.11.06.565859. 2023. 10.1101/2023.11.06.565859 DOI

Guzmán P, Ecker JR. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell. 1990:2(6):513–523. 10.1105/tpc.2.6.513 PubMed DOI PMC

Hamann T, Bennett M, Mansfield J, Somerville C. Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J. 2009:57(6):1015–1026. 10.1111/j.1365-313X.2008.03744.x PubMed DOI

Hedden P, Phillips AL. Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci. 2000:5(12):523–530. 10.1016/S1360-1385(00)01790-8 PubMed DOI

Heim DR, Skomp JR, Tschabold EE, Larrinua IM. Isoxaben inhibits the synthesis of acid insoluble cell wall materials in Arabidopsis thaliana. Plant Physiol. 1990:93(2):695–700. 10.1104/pp.93.2.695 PubMed DOI PMC

Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol. 2005:15(21):1899–1911. 10.1016/j.cub.2005.09.052 PubMed DOI

Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J-P, Höfte H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol. 2007:17(11):922–931. 10.1016/j.cub.2007.05.018 PubMed DOI

Jonsson K, Hamant O, Bhalerao RP. Plant cell walls as mechanical signaling hubs for morphogenesis. Curr Biol. 2022:32(7):R334–R340. 10.1016/j.cub.2022.02.036 PubMed DOI

Jonsson K, Lathe RS, Kierzkowski D, Routier-Kierzkowska A-L, Hamant O, Bhalerao RP. Mechanochemical feedback mediates tissue bending required for seedling emergence. Curr Biol. 2021:31(6):1154–1164.e3. 10.1016/j.cub.2020.12.016 PubMed DOI

Krupková E, Immerzeel P, Pauly M, Schmülling T. The TUMOROUS SHOOT DEVELOPMENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J. 2007:50(4):735–750. 10.1111/j.1365-313X.2007.03123.x PubMed DOI

Lehman A, Black R, Ecker JR. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996:85(2):183–194. 10.1016/S0092-8674(00)81095-8 PubMed DOI

Li H, Johnson P, Stepanova A, Alonso JM, Ecker JR. Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev Cell. 2004:7(2):193–204. 10.1016/j.devcel.2004.07.002 PubMed DOI

Li K, Yu R, Fan L-M, Wei N, Chen H, Deng XW. DELLA-mediated PIF degradation contributes to coordination of light and gibberellin signalling in Arabidopsis. Nat Commun. 2016:7(1):11868. 10.1038/ncomms11868 PubMed DOI PMC

Lin W, Tang W, Pan X, Huang A, Gao X, Anderson CT, Yang Z. Arabidopsis pavement cell morphogenesis requires FERONIA binding to pectin for activation of ROP GTPase signaling. Curr Biol. 2022:32(3):497–507.e4. 10.1016/j.cub.2021.11.030 PubMed DOI

Lorrai R, Ferrari S. Host cell wall damage during pathogen infection: mechanisms of perception and role in plant-pathogen interactions. Plants. 2021:10(2):399. 10.3390/plants10020399 PubMed DOI PMC

Merz D, Richter J, Gonneau M, Sanchez-Rodriguez C, Eder T, Sormani R, Martin M, Hématy K, Höfte H, Hauser M-T. T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J Exp Bot. 2017:68(16):4583–4593. 10.1093/jxb/erx263 PubMed DOI PMC

Mielke S, Zimmer M, Meena MK, Dreos R, Stellmach H, Hause B, Voiniciuc C, Gasperini D. Jasmonate biosynthesis arising from altered cell walls is prompted by turgor-driven mechanical compression. Sci Adv. 2021:7(7):eabf0356. 10.1126/sciadv.abf0356 PubMed DOI PMC

Mølhøj M, Verma R, Reiter W-D. The biosynthesis of d-galacturonate in plants. Functional cloning and characterization of a membrane-anchored UDP-d-glucuronate 4-epimerase from Arabidopsis. Plant Physiol. 2004:135(3):1221–1230. 10.1104/pp.104.043745 PubMed DOI PMC

Mouille G, Ralet M-C, Cavelier C, Eland C, Effroy D, Hématy K, McCartney L, Truong HN, Gaudon V, Thibault J-F. Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J. 2007:50(4):605–614. 10.1111/j.1365-313X.2007.03086.x PubMed DOI

Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. A plasma membrane-bound putative endo-1,4-β-d-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J. 1998:17(19):5563–5576. 10.1093/emboj/17.19.5563 PubMed DOI PMC

Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001:29(9):e45. 10.1093/nar/29.9.e45 PubMed DOI PMC

Raggi S, Ferrarini A, Delledonne M, Dunand C, Ranocha P, De Lorenzo G, Cervone F, Ferrari S. The Arabidopsis class III peroxidase AtPRX71 negatively regulates growth under physiological conditions and in response to cell wall damage. Plant Physiol. 2015:169(4):2513–2525. 10.1104/pp.15.01464 PubMed DOI PMC

Ray PM, Green PB, Cleland R. Role of turgor in plant cell growth. Nature. 1972:239(5368):163–164. 10.1038/239163a0 DOI

Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Salliot-Maire I, Lemoine J, Reiter W-D, Lerouge P, Faye L. Characterization of N-glycans from Arabidopsis. Application to a fucose-deficient mutant1. Plant Physiol. 1999:119(2):725–734. 10.1104/pp.119.2.725 PubMed DOI PMC

Reiter W-D, Chapple CC, Somerville CR. Altered growth and cell walls in a fucose-deficient mutant of Arabidopsis. Science. 1993:261(5124):1032–1035. 10.1126/science.261.5124.1032 PubMed DOI

Reiter W-D, Chapple C, Somerville CR. Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 1997:12(2):335–345. 10.1046/j.1365-313X.1997.12020335.x PubMed DOI

Rizza A, Walia A, Lanquar V, Frommer WB, Jones AM. In vivo gibberellin gradients visualized in rapidly elongating tissues. Nat Plants. 2017:3(10):803–813. 10.1038/s41477-017-0021-9 PubMed DOI

Rouet M-A, Mathieu Y, Barbier-Brygoo H, Laurière C. Characterization of active oxygen-producing proteins in response to hypo-osmolarity in tobacco and Arabidopsis cell suspensions: identification of a cell wall peroxidase. J Exp Bot. 2006:57(6):1323–1332. 10.1093/jxb/erj107 PubMed DOI

Rowe J, Grangé-Guermente M, Exposito-Rodriguez M, Wimalasekera R, Lenz MO, Shetty KN, Cutler SR, Jones AM. Next-generation ABACUS biosensors reveal cellular ABA dynamics driving root growth at low aerial humidity. Nat Plants. 2023:9(7):1103–1115. 10.1038/s41477-023-01447-4 PubMed DOI PMC

Rowe JH, Rizza A, Jones AM. Quantifying phytohormones in vivo with FRETFörster resonance energy transfer (FRET)BiosensorsBiosensors and the FRETENATOR analysis toolset. In: Duque P, Szakonyi D, editors. Environmental responses in plants: methods and protocols. New York (NY): Springer US; 2022. p. 239–253.

Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol. 2020:225(4):1428–1439. 10.1111/nph.16166 PubMed DOI

Shen X, Li Y, Pan Y, Zhong S. Activation of HLS1 by mechanical stress via ethylene-stabilized EIN3 is crucial for seedling soil emergence. Front Plant Sci. 2016:7:1571. 10.3389/fpls.2016.01571 PubMed DOI PMC

Silk WK, Erickson RO. Kinematics of hypocotyl curvature. Am J Bot. 1978:65(3):310–319. 10.1002/j.1537-2197.1978.tb06072.x DOI

Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ, Grolimund D, Begerow D, Neumann U, Haydon MJ, et al. . Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. Curr Biol. 2017:27(22):3403–3418.e7. 10.1016/j.cub.2017.09.063 PubMed DOI

Široká J, Brunoni F, Pěnčík A, Mik V, Žukauskaitė A, Strnad M, Novák O, Floková K. High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods. 2022:18(1):122. 10.1186/s13007-022-00954-3 PubMed DOI PMC

Song S, Huang H, Gao H, Wang J, Wu D, Liu X, Yang S, Zhai Q, Li C, Qi T, et al. . Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis. Plant Cell. 2014:26(1):263–279. 10.1105/tpc.113.120394 PubMed DOI PMC

Sun T. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book. 2008:6:e0103. 10.1199/tab.0103 PubMed DOI PMC

Vaahtera L, Schulz J, Hamann T. Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants. 2019:5(9):924–932. 10.1038/s41477-019-0502-0 PubMed DOI

Verger S, Long Y, Boudaoud A, Hamant O. A tension-adhesion feedback loop in plant epidermis. Elife. 2018:7:e34460. 10.7554/eLife.34460 PubMed DOI PMC

Wasternack C, Hause B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot. 2013:111(6):1021–1058. 10.1093/aob/mct067 PubMed DOI PMC

Willis L, Refahi Y, Wightman R, Landrein B, Teles J, Huang KC, Meyerowitz EM, Jönsson H. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc Natl Acad Sci USA. 2016:113(51):E8238–E8246. 10.1073/pnas.1616768113 PubMed DOI PMC

Wolf S, Hématy K, Höfte H. Growth control and cell wall signaling in plants. Annu Rev Plant Biol. 2012:63(1):381–407. 10.1146/annurev-arplant-042811-105449 PubMed DOI

Zhang B, Holmlund M, Lorrain S, Norberg M, Bakó L, Fankhauser C, Nilsson O. BLADE-ON-PETIOLE proteins act in an E3 ubiquitin ligase complex to regulate PHYTOCHROME INTERACTING FACTOR 4 abundance. eLife. 2017:6:e26759. 10.7554/eLife.26759 PubMed DOI PMC

Zhang X, Ji Y, Xue C, Ma H, Xi Y, Huang P, Wang H, An F, Li B, Wang Y, et al. . Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell. 2018:30(9):1971–1988. 10.1105/tpc.18.00018 PubMed DOI PMC

Zhang X, Zhu Z, An F, Hao D, Li P, Song J, Yi C, Guo H. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell. 2014:26(3):1105–1117. 10.1105/tpc.113.122002 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...