Comparative analysis of wild-type and chloroplast MCU-deficient plants reveals multiple consequences of chloroplast calcium handling under drought stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37692417
PubMed Central
PMC10485843
DOI
10.3389/fpls.2023.1228060
Knihovny.cz E-zdroje
- Klíčová slova
- calcium channel, calcium sensor, chloroplast, comparative proteomics, drought stress,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Chloroplast calcium homeostasis plays an important role in modulating the response of plants to abiotic and biotic stresses. One of the greatest challenges is to understand how chloroplast calcium-permeable pathways and sensors are regulated in a concerted manner to translate specific information into a calcium signature and to elucidate the downstream effects of specific chloroplast calcium dynamics. One of the six homologs of the mitochondrial calcium uniporter (MCU) was found to be located in chloroplasts in the leaves and to crucially contribute to drought- and oxidative stress-triggered uptake of calcium into this organelle. METHODS: In the present study we integrated comparative proteomic analysis with biochemical, genetic, cellular, ionomic and hormone analysis in order to gain an insight into how chloroplast calcium channels are integrated into signaling circuits under watered condition and under drought stress. RESULTS: Altogether, our results indicate for the first time a link between chloroplast calcium channels and hormone levels, showing an enhanced ABA level in the cmcu mutant already in well-watered condition. Furthermore, we show that the lack of cMCU results in an upregulation of the calcium sensor CAS and of enzymes of chlorophyll synthesis, which are also involved in retrograde signaling upon drought stress, in two independent KO lines generated in Col-0 and Col-4 ecotypes. CONCLUSIONS: These observations point to chloroplasts as important signaling hubs linked to their calcium dynamics. Our results obtained in the model plant Arabidopsis thaliana are discussed also in light of our limited knowledge regarding organellar calcium signaling in crops and raise the possibility of an involvement of such signaling in response to drought stress also in crops.
Department of Biology University of Padua Padua Italy
European Molecular Biology Laboratory Heidelberg Germany
Plant Cell Biology Institute of Cellular and Molecular Botany University of Bonn Bonn Germany
Zobrazit více v PubMed
Antoniadi I., Plačková L., Simonovik B., Doležal K., Turnbull C., Ljung K., et al. . (2015). Cell-type-specific cytokinin distribution within the arabidopsis primary root apex. Plant Cell 27, 1955–1967. doi: 10.1105/tpc.15.00176 PubMed DOI PMC
Asakura Y., Galarneau E., Watkins K. P., Barkan A., van Wijk K. J. (2012). Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 159, 961–974. doi: 10.1104/pp.112.197525 PubMed DOI PMC
Austin S., Tavakoli M., Pfeiffer C., Seifert J., Mattarei A., De Stefani D., et al. . (2017). LETM1-mediated K(+) and na(+) homeostasis regulates mitochondrial ca(2+) efflux. Front. Physiol. 8. doi: 10.3389/fphys.2017.00839 PubMed DOI PMC
Bhagat P. K., Verma D., Sharma D., Sinha A. K. (2021). HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis. Plant Mol. Biol. 107, 117–127. doi: 10.1007/s11103-021-01187-z PubMed DOI
Bölter B., Sharma R., Soll J. (2007). Localisation of arabidopsis NDPK2–revisited. Planta 226, 1059–1065. doi: 10.1007/s00425-007-0549-4 PubMed DOI
Breitenbach H. H., Wenig M., Wittek F., Jordá L., Maldonado-Alconada A. M., Sarioglu H., et al. . (2014). Contrasting roles of the apoplastic aspartyl protease APOPLASTIC, ENHANCED DISEASE SUSCEPTIBILITY1-DEPENDENT1 and LEGUME LECTIN-LIKE PROTEIN1 in arabidopsis systemic acquired resistance. Plant Physiol. 165, 791–809. doi: 10.1104/pp.114.239665 PubMed DOI PMC
Carraretto L., Teardo E., Checchetto V., Finazzi G., Uozumi N., Szabo I. (2016). Ion channels in plant bioenergetic organelles chloroplast and mitochondria: from molecular identification to function. Mol. Plant. 9(3):371–395. doi: 10.1016/j.molp.2015.12.004 PubMed DOI
Chakraborty J., von Stockum S., Marchesan E., Caicci F., Ferrari V., Rakovic A., et al. . (2018). USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO molecular medicine 10:(11):e9014. doi: 10.15252/emmm.201809014 PubMed DOI PMC
Chen K., Gao J., Sun S., Zhang Z., Yu B., Li J., et al. . (2020). BONZAI proteins control global osmotic stress responses in plants. Curr. Biol. CB 30, 4815–4825.e4814. doi: 10.1016/j.cub.2020.09.016 PubMed DOI
Chen Z., Zhou M., Newman I. A., Mendham N. J., Zhang G., Shabala S. (2007). Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct. Plant Biol. FPB 34, 150–162. doi: 10.1071/fp06237 PubMed DOI
Costa A., Navazio L., Szabo I. (2018). The contribution of organelles to plant intracellular Calcium signalling. J. Exp. Bot. 69, 4175–4193. doi: 10.1093/jxb/ery185 PubMed DOI
Cutolo E., Parvin N., Ruge H., Pirayesh N., Roustan V., Weckwerth W., et al. . (2019). The high light response in arabidopsis requires the calcium sensor protein CAS, a target of STN7- and STN8-mediated phosphorylation. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00974 PubMed DOI PMC
D'Oria A., Jing L., Arkoun M., Pluchon S., Pateyron S., Trouverie J., et al. . (2022). Transcriptomic, Metabolomic and Ionomic Analyses Reveal Early Modulation of Leaf Mineral Content in Brassica napus under Mild or Severe Drought. Int. J. Mol. Sci. 23(2):781. doi: 10.3390/ijms23020781 PubMed DOI PMC
de Souza A., Wang J. Z., Dehesh K. (2017). Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu. Rev. Plant Biol. 68, 85–108. doi: 10.1146/annurev-arplant-042916-041007 PubMed DOI
De Stefani D., Raffaello A., Teardo E., Szabo I., Rizzuto R. A. (2011). forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340. doi: 10.1038/nature10230 PubMed DOI PMC
DeTar R. A., Barahimipour R., Manavski N., Schwenkert S., Höhner R., Bölter B., et al. . (2021). Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. Plant Cell 33, 2479–2505. doi: 10.1093/plcell/koab123 PubMed DOI PMC
Du S. Y., Zhang X. F., Lu Z., Xin Q., Wu Z., Jiang T., et al. . (2012). Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol. Biol. 80, 519–537. doi: 10.1007/s11103-012-9965-3 PubMed DOI PMC
Estavillo G. M., Crisp P. A., Pornsiriwong W., Wirtz M., Collinge D., Carrie C., et al. . (2011). Evidence for a SAL1-PAP chloroplast retrograde pathway that functions in drought and high light signaling in Arabidopsis. Plant Cell 23, 3992–4012. doi: 10.1105/tpc.111.091033 PubMed DOI PMC
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. (2014). UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 105, 147–157. doi: 10.1016/j.phytochem.2014.05.015 PubMed DOI
Flores-Herrera C., Preciado-Linares G., Gonzalez-Vizueth I., Corona de la Peña N., Gutiérrez-Aguilar M. (2019). In situ assessment of mitochondrial calcium transport in tobacco pollen tubes. Protoplasma 256, 503–509. doi: 10.1007/s00709-018-1316-z PubMed DOI
Frank J., Happeck R., Meier B., Hoang M. T. T., Stribny J., Hause G., et al. . (2019). Chloroplast-localized BICAT proteins shape stromal calcium signals and are required for efficient photosynthesis. New Phytol. 221, 866–880. doi: 10.1111/nph.15407 PubMed DOI
Guo H., Feng P., Chi W., Sun X., Xu X., Li Y., et al. . (2016). Plastid-nucleus communication involves calcium-modulated MAPK signalling. Nat. Commun. 7, 12173. doi: 10.1038/ncomms12173 PubMed DOI PMC
Huber W., von Heydebreck A., Sültmann H., Poustka A., Vingron M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics. 18 Suppl 1:S96–104. doi: 10.1093/bioinformatics/18.suppl_1.s96 PubMed DOI
Jin H., Hong Z., Su W., Li J. A. (2009). plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc. Natl. Acad. Sci. United States America 106, 13612–13617. doi: 10.1073/pnas.0906144106 PubMed DOI PMC
Jung C., Seo J. S., Han S. W., Koo Y. J., Kim C. H., Song S. I., et al. . (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 146, 623–635. doi: 10.1104/pp.107.110981 PubMed DOI PMC
Kanno Y., Jikumaru Y., Hanada A., Nambara E., Abrams S. R., Kamiya Y., et al. . (2010). Comprehensive hormone profiling in developing arabidopsis seeds: examination of the site of ABA biosynthesis, ABA transport and hormone interactions. Plant Cell Physiol. 51, 1988–2001. doi: 10.1093/pcp/pcq158 PubMed DOI
Keshishian E. A., Cliver B. R., McLaughlin W. F., Hallmark H. T., Plačková L., Goertzen L. R., et al. . (2022). CYTOKININ RESPONSE FACTOR 2 is involved in modulating the salt stress response. Plant J. Cell Mol. Biol. 110, 1097–1110. doi: 10.1111/tpj.15726 PubMed DOI
Kmiecik P., Leonardelli M., Teige M. (2016). Novel connections in plant organellar signalling link different stress responses and signalling pathways. J. Exp. Bot. 67(13):3793–807. doi: 10.1093/jxb/erw136 PubMed DOI
Kovács H., Aleksza D., Baba A. I., Hajdu A., Király A. M., Zsigmond L., et al. . (2019). Light control of salt-induced proline accumulation is mediated by ELONGATED HYPOCOTYL 5 in arabidopsis. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01584 PubMed DOI PMC
Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., et al. . (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23, 1647–1656. doi: 10.1038/sj.emboj.7600121 PubMed DOI PMC
Lee K. H., Park J., Williams D. S., Xiong Y., Hwang I., Kang B. H. (2013). Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. Plant J. Cell Mol. Biol. 73, 720–732. doi: 10.1111/tpj.12055 PubMed DOI
Lee K. H., Piao H. L., Kim H. Y., Choi S. M., Jiang F., Hartung W., et al. . (2006). Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126, 1109–1120. doi: 10.1016/j.cell.2006.07.034 PubMed DOI
Leschevin M., Marcelo P., Ismael M., San-Clemente H., Jamet E., Rayon C., et al. . (2021). Tandem Mass Tags (TMTs) labeling approach highlights differences between the shoot proteome of two Arabidopsis thaliana ecotypes, Col-0 and Ws. Proteomics 21, e2000293. doi: 10.1002/pmic.202000293 PubMed DOI
Li B., Hou L., Song C., Wang Z., Xue Q., Li Y., et al. . (2022). Biological function of calcium-sensing receptor (CAS) and its coupling calcium signaling in plants. Plant Physiol. Biochem. PPB 180, 74–80. doi: 10.1016/j.plaphy.2022.03.032 PubMed DOI
Li J., Sun M., Liu Y., Sun X., Yin K. (2022). Genome-wide identification of wild soybean mitochondrial calcium uniporter family genes and their responses to cold and carbonate alkaline stresses. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.867503 PubMed DOI PMC
Li Y., Xiong R., Bernards M., Wang A. (2016). Recruitment of arabidopsis RNA helicase atRH9 to the viral replication complex by viral replicase to promote turnip mosaic virus replication. Sci. Rep. 6, 30297. doi: 10.1038/srep30297 PubMed DOI PMC
Littlejohn G. R., Breen S., Smirnoff N., Grant M. (2021). Chloroplast immunity illuminated. New Phytol. 229, 3088–3107. doi: 10.1111/nph.17076 PubMed DOI
Liu L., Li J. (2019). Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants. Front. Plant Sci. 10:749. doi: 10.3389/fpls.2019.00749 PubMed DOI PMC
Liu Y., Liu Y., Tong C., Cong P., Shi X., Shi L., et al. . (2020). Quantitative analysis of the global proteome in lung from mice with blast injury. Exp. Lung Res. 46, 308–319. doi: 10.1080/01902148.2020.1801896 PubMed DOI
Liu C., Wang H., Zhang Y., Cheng H., Hu Z., Pei Z. M., et al. . (2022). Systematic characterization of the OSCA family members in soybean and validation of their functions in osmotic stress. Int. J. Mol. Sci. 23. doi: 10.3390/ijms231810570 PubMed DOI PMC
Loro G., Wagner S., Doccula F. G., Behera S., Weinl S., Kudla J., et al. . (2016). Chloroplast-specific in vivo Ca2+ Imaging using yellow cameleon fluorescent protein sensors reveals organelle-autonomous ca2+ Signatures in the stroma. Plant Physiol. 171, 2317–2330. doi: 10.1104/pp.16.00652 PubMed DOI PMC
Luhua S., Hegie A., Suzuki N., Shulaev E., Luo X., Cenariu D., et al. . (2013). Linking genes of unknown function with abiotic stress responses by high-throughput phenotype screening. Physiol. plantarum 148, 322–333. doi: 10.1111/ppl.12013 PubMed DOI
McAinsh M. R., Pittman J. K. (2009). Shaping the calcium signature. New Phytol. 181, 275–294. doi: 10.1111/j.1469-8137.2008.02682.x PubMed DOI
Mergner J., Frejno M., List M., Papacek M., Chen X., Chaudhary A., et al. . (2020). Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 579, 409–414. doi: 10.1038/s41586-020-2094-2 PubMed DOI
Moon H., Lee B., Choi G., Shin D., Prasad D. T., Lee O., et al. . (2003). NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc. Natl. Acad. Sci. United States America 100, 358–363. doi: 10.1073/pnas.252641899 PubMed DOI PMC
Navazio L., Formentin E., Cendron L., Szabò I. (2020). Chloroplast calcium signaling in the spotlight. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00186 PubMed DOI PMC
Nawaz G., Kang H. (2017). Chloroplast- or mitochondria-targeted DEAD-box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.00871 PubMed DOI PMC
Nomura H., Komori T., Kobori M., Nakahira Y., Shiina T. (2008). Evidence for chloroplast control of external Ca2+-induced cytosolic Ca2+ transients and stomatal closure. Plant J. Cell Mol. Biol. 53, 988–998. doi: 10.1111/j.1365-313X.2007.03390.x PubMed DOI
Nomura H., Komori T., Uemura S., Kanda Y., Shimotani K., Nakai K., et al. . (2012). Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3, 926. doi: 10.1038/ncomms1926 PubMed DOI
Nomura H., Shiina T. (2014). Calcium signaling in plant endosymbiotic organelles: mechanism and role in physiology. Mol. Plant 7, 1094–1104. doi: 10.1093/mp/ssu020 PubMed DOI
Ono S., Suzuki S., Ito D., Tagawa S., Shiina T., Masuda S. (2021). Plastidial (p)ppGpp synthesis by the ca2+-dependent relA-spoT homolog regulates the adaptation of chloroplast gene expression to darkness in arabidopsis. Plant Cell Physiol. 61, 2077–2086. doi: 10.1093/pcp/pcaa124 PubMed DOI
Paieri F., Tadini L., Manavski N., Kleine T., Ferrari R., Morandini P., et al. . (2018). The DEAD-box RNA helicase RH50 is a 23S-4.5S rRNA maturation factor that functionally overlaps with the plastid signaling factor GUN1. Plant Physiol. 176, 634–648. doi: 10.1104/pp.17.01545 PubMed DOI PMC
Phua S. Y., Yan D., Chan K. X., Estavillo G. M., Nambara E., Pogson B. J. (2018). The arabidopsis SAL1-PAP pathway: A case study for integrating chloroplast retrograde, light and hormonal signaling in modulating plant growth and development? Front. Plant Sci. 9. doi: 10.3389/fpls.2018.01171 PubMed DOI PMC
Pornsiriwong W., Estavillo G. M., Chan K. X., Tee E. E., Ganguly D., Crisp P. A., et al. . (2017). A chloroplast retrograde signal, 3'-phosphoadenosine 5'-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. eLife 6:e23361. doi: 10.7554/eLife.23361 PubMed DOI PMC
Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta (BBA) - Bioener. 975, 384–394. doi: 10.1016/S0005-2728(89)80347-0 DOI
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., et al. . (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7):e47. doi: 10.1093/nar/gkv007 PubMed DOI PMC
Rizzuto R., De Stefani D., Raffaello A., Mammucari C. (2012). Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578. doi: 10.1038/nrm3412 PubMed DOI
Rocha A. G., Vothknecht U. C. (2012). The role of calcium in chloroplasts–an intriguing and unresolved puzzle. Protoplasma 249, 957–966. doi: 10.1007/s00709-011-0373-3 PubMed DOI
Ruberti C., Feitosa-Araujo E., Xu Z., Wagner S., Grenzi M., Darwish E., et al. . (2022). MCU proteins dominate in vivo mitochondrial Ca2+ uptake in Arabidopsis roots. Plant Cell 34, 4428–4452. doi: 10.1093/plcell/koac242 PubMed DOI PMC
Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M. P., Nicolas C., Lorenzo O., et al. . (2004). Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J. Cell Mol. Biol. 37, 354–369. doi: 10.1046/j.1365-313x.2003.01966.x PubMed DOI
Sai J., Johnson C. H. (2002). Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291. doi: 10.1105/tpc.000653 PubMed DOI PMC
Schneider A., Steinberger I., Herdean A., Gandini C., Eisenhut M., Kurz S., et al. . (2016). The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in arabidopsis. Plant Cell 28, 892–910. doi: 10.1105/tpc.15.00812 PubMed DOI PMC
Schwacke R., Schneider A., van der Graaff E., Fischer K., Catoni E., Desimone M., et al. . (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16–26. doi: 10.1104/pp.011577 PubMed DOI PMC
Seiler C., Harshavardhan V. T., Rajesh K., Reddy P. S., Strickert M., Rolletschek H., et al. . (2011). ABA biosynthesis and degradation contributing to ABA homeostasis during barley seed development under control and terminal drought-stress conditions. J. Exp. Bot. 62, 2615–2632. doi: 10.1093/jxb/erq446 PubMed DOI
Selles B., Michaud C., Xiong T. C., Leblanc O., Ingouff M. (2018). Arabidopsis pollen tube germination and growth depend on the mitochondrial calcium uniporter complex. New Phytol. 219, 58–65. doi: 10.1111/nph.15189 PubMed DOI
Sello S., Moscatiello R., Mehlmer N., Leonardelli M., Carraretto L., Cortese E., et al. . (2018). Chloroplast Ca(2+) Fluxes into and across Thylakoids Revealed by Thylakoid-Targeted Aequorin Probes. Plant Physiol. 177, 38–51. doi: 10.1104/pp.18.00027 PubMed DOI PMC
Sello S., Perotto J., Carraretto L., Szabo I., Vothknecht U. C., Navazio L. (2016). Dissecting stimulus-specific Ca2+ signals in amyloplasts and chloroplasts of Arabidopsis thaliana cell suspension cultures. J. Exp. Bot. 67, 3965–3974. doi: 10.1093/jxb/erw038 PubMed DOI PMC
Široká J., Brunoni F., Pěnčík A., Mik V., Žukauskaitė A., Strnad M., et al. . (2022). High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods 18, 122. doi: 10.1186/s13007-022-00954-3 PubMed DOI PMC
Stael S., Wurzinger B., Mair A., Mehlmer N., Vothknecht U. C., Teige M. (2012). Plant organellar calcium signalling: an emerging field. J. Exp. Bot. 63, 1525–1542. doi: 10.1093/jxb/err394 PubMed DOI PMC
Stevanato P., Broccanello C., Moliterni V. M. C., Mandolino G., Barone V., Lucini L., et al. . (2018). Innovative approaches to evaluate sugar beet responses to changes in sulfate availability. Front. Plant Sci. 9. doi: 10.3389/fpls.2018.00014 PubMed DOI PMC
Sugliani M., Abdelkefi H., Ke H., Bouveret E., Robaglia C., Caffarri S., et al. . (2016). An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in arabidopsis. Plant Cell 28, 661–679. doi: 10.1105/tpc.16.00045 PubMed DOI PMC
Tanaka Y., Sano T., Tamaoki M., Nakajima N., Kondo N., Hasezawa S. (2006). Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 57, 2259–2266. doi: 10.1093/jxb/erj193 PubMed DOI
Teardo E., Carraretto L., De Bortoli S., Costa A., Behera S., Wagner R., et al. . (2015). Alternative splicing-mediated targeting of the Arabidopsis GLUTAMATE RECEPTOR3.5 to mitochondria affects organelle morphology. Plant Physiology 167, 216–227. doi: 10.1104/pp.114.242602 PubMed DOI PMC
Teardo E., Carraretto L., Moscatiello R., Cortese E., Vicario M., Festa M., et al. . (2019). A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat. Plants 5, 581–588. doi: 10.1038/s41477-019-0434-8 PubMed DOI
Teardo E., Formentin E., Segalla A., Giacometti G. M., Marin O., Zanetti M., et al. . (2011). Dual localization of plant glutamate receptor AtGLR3.4 to plastids and plasmamembrane. Biochim. Biophys. Acta 1807, 359–367. doi: 10.1016/j.bbabio.2010.11.008 PubMed DOI
Thelin L., Mutwil M., Sommarin M., Persson S. (2011). Diverging functions among calreticulin isoforms in higher plants. Plant Signaling Behav. 6, 905–910. doi: 10.4161/psb.6.6.15339 PubMed DOI PMC
Thor K., Jiang S., Michard E., George J., Scherzer S., Huang S., et al. . (2020). The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity. Nature 585, 569–573. doi: 10.1038/s41586-020-2702-1 PubMed DOI PMC
Tsou P. L., Lee S. Y., Allen N. S., Winter-Sederoff H., Robertson D. (2012). An ER-targeted calcium-binding peptide confers salt and drought tolerance mediated by CIPK6 in Arabidopsis. Planta 235, 539–552. doi: 10.1007/s00425-011-1522-9 PubMed DOI
Tsuzuki T., Takahashi K., Tomiyama M., Inoue S., Kinoshita T. (2013). Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Front. Plant Sci. 4. doi: 10.3389/fpls.2013.00440 PubMed DOI PMC
Völkner C., Holzner L. J., Day P. M., Ashok A. D., Vries J., Bölter B., et al. . (2021). Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release. Plant Physiol. 187, 2110–2125. doi: 10.1093/plphys/kiab424 PubMed DOI PMC
Wagner S., De Bortoli S., Schwarzlander M., Szabo I. (2016). Regulation of mitochondrial calcium in plants versus animals. J. Exp. Bot. 67, 3809–3829. doi: 10.1093/jxb/erw100 PubMed DOI
Wang C., Chen S., Dong Y., Ren R., Chen D., Chen X. (2020). Chloroplastic Os3BGlu6 contributes significantly to cellular ABA pools and impacts drought tolerance and photosynthesis in rice. New Phytol. 226, 1042–1054. doi: 10.1111/nph.16416 PubMed DOI
Wang L., Wang L., Chen Q., Chen G., Zhang S., Wu J., et al. . (2018). Identification and comparative analysis of the MCU gene family in pear and its functions during fruit ripening. J. Plant Physiol. 229, 53–62. doi: 10.1016/j.jplph.2018.07.001 PubMed DOI
Weinl S., Held K., Schlucking K., Steinhorst L., Kuhlgert S., Hippler M., et al. . (2008). A plastid protein crucial for Ca2+-regulated stomatal responses. New Phytol. 179, 675–686. doi: 10.1111/j.1469-8137.2008.02492.x PubMed DOI
Wellburn A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers at different resolution. J. Plant Physiol. 144.
Xu Z. Y., Lee K. H., Dong T., Jeong J. C., Jin J. B., Kanno Y., et al. . (2012). A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. Plant Cell 24, 2184–2199. doi: 10.1105/tpc.112.095935 PubMed DOI PMC
Xu X., Wan W., Jiang G., Xi Y., Huang H., Cai J., et al. . (2019). Nucleocytoplasmic trafficking of the arabidopsis WD40 repeat protein XIW1 regulates ABI5 stability and abscisic acid responses. Mol. Plant 12, 1598–1611. doi: 10.1016/j.molp.2019.07.001 PubMed DOI
Yuan F., Yang H., Xue Y., Kong D., Ye R., Li C., et al. . (2014). OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371. doi: 10.1038/nature13593 PubMed DOI
Zavaliev R., Levy A., Gera A., Epel B. L. (2013). Subcellular dynamics and role of Arabidopsis β-1,3-glucanases in cell-to-cell movement of tobamoviruses. Mol. Plant-Microbe Interact. MPMI 26, 1016–1030. doi: 10.1094/mpmi-03-13-0062-r PubMed DOI
Zhai Y., Wen Z., Han Y., Zhuo W., Wang F., Xi C., et al. . (2020). Heterogeneous expression of plasma-membrane-localised OsOSCA1.4 complements osmotic sensing based on hyperosmolality and salt stress in Arabidopsis osca1 mutant. Cell calcium 91, 102261. doi: 10.1016/j.ceca.2020.102261 PubMed DOI
Zhang X., Ma C., Bao X., Zhang S., Zayed O., Zhang Z., et al. . (2022). Perturbation of mitochondrial Ca2+ homeostasis activates cross-compartmental proteostatic response in Arabidopsis. BioRxiv. doi: 10.1101/2022.10.02.510489 DOI
Zhao X., Xu M., Wei R., Liu Y. (2015). Expression of osCAS (Calcium-sensing receptor) in an arabidopsis mutant increases drought tolerance. PloS One 10, e0131272. doi: 10.1371/journal.pone.0131272 PubMed DOI PMC
Zhigang L., Cao Y., Zhang J., Chen S. (2008). Characterization of Arabidopsis calreticulin mutants in response to calcium and salinity stresses. Prog. Natural Sci. 18, 1219–1224.
Zhu J. K. (2016). Abiotic stress signaling and responses in plants. Cell 167, 313–324. doi: 10.1016/j.cell.2016.08.029 PubMed DOI PMC