Transcriptome and Hormone Analysis Revealed Jasmonic Acid-Mediated Immune Responses of Potato (Solanum tuberosum) to Potato Spindle Tuber Viroid Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IP-2019-04-9915
Croatian Science Foundation
22-17435S
Czech Science Foundation
PubMed
41596144
PubMed Central
PMC12838034
DOI
10.3390/antiox15010086
PII: antiox15010086
Knihovny.cz E-zdroje
- Klíčová slova
- MeJA, PSTVd, RNA-Seq, antioxidant responses, basal defense responses, biotic stress, growth–defense trade-off, hormone crosstalk, jasmonic acid, potato,
- Publikační typ
- časopisecké články MeSH
Potato is a globally important non-cereal crop in which infection with potato spindle tuber viroid (PSTVd) can cause stunted growth and significantly reduce tuber yield. We previously showed that PSTVd induces accumulation of the plant hormone jasmonic acid (JA) and alters antioxidant responses in potato plants. To clarify the role of JA in response to PSTVd, we analyzed disease development in transgenic JA-deficient opr3 and JA-insensitive coi1 lines compared to the wild-type. Transcriptomic analysis using RNA-Seq revealed that most genotype-specific differentially expressed genes (DEGs) in all comparisons were enriched in plant hormone signal transduction, plant-pathogen interaction, and MAPK signaling pathways, although the number of DEGs varied. These differences were confirmed by independent data from RT-qPCR, hormone, and hydrogen peroxide (H2O2) analyses. After PSTVd infection, opr3 plants showed enhanced JA signaling and increased abscisic acid (ABA) and auxin (AUX) content. In contrast, coi1 plants showed reduced ABA, AUX, and salicylic acid content. Both opr3 and coi1 plants showed reduced JA and H2O2 content and lower expression of defense-related genes, resulting in milder symptoms but increased viroid accumulation. In addition, treatment with methyl jasmonate alleviated symptoms in infected wild-type plants. Together, these results indicate a modulatory role for JA and JA signaling in basal immune responses and symptom development in the potato-PSTVd interaction.
Centre for Plant Protection Croatian Agency for Agriculture and Food Gorice 68b 10000 Zagreb Croatia
Division of Molecular Biology Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
Zobrazit více v PubMed
Ferranti P., Berry E., Anderson J.R. Encyclopedia of Food Security and Sustainability. Elsevier; Amsterdam, The Netherlands: 2018. 1894p.
Mackie A.E., Barbetti M.J., Rodoni B., McKirdy S.J., Jones R.A.C. Effects of a potato spindle tuber viroid tomato strain on the symptoms, biomass, and yields of classical indicator and currently grown potato and tomato cultivars. Plant Dis. 2019;103:3009–3017. doi: 10.1094/PDIS-02-19-0312-RE. PubMed DOI
Navarro B., Flores R., Di Serio F. Advances in viroid-host interactions. Annu. Rev. Virol. 2021;8:305–325. doi: 10.1146/annurev-virology-091919-092331. PubMed DOI
Sano T. Progress in 50 years of viroid research-molecular structure, pathogenicity, and host adaptation. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2021;97:371–401. doi: 10.2183/pjab.97.020. PubMed DOI PMC
Alazem M., Lin N. Roles of plant hormones in the regulation of host–virus interactions. Mol. Plant Pathol. 2014;16:529–540. doi: 10.1111/mpp.12204. PubMed DOI PMC
Aerts N., Pereira Mendes M., Van Wees S.C.M. Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J. 2020;105:489–504. doi: 10.1111/tpj.15124. PubMed DOI PMC
Antico C.J., Colon C., Banks T., Ramonell K.M. Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front. Biol. 2012;7:48–56. doi: 10.1007/s11515-011-1171-1. DOI
Tamaoki D., Seo S., Yamada S., Kano A., Miyamoto A., Shishido H., Miyoshi S., Taniguchi S., Akimitsu K., Gomi K. Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav. 2013;8:e24260. doi: 10.4161/psb.24260. PubMed DOI PMC
Guerreiro A., Figueiredo J., Sousa Silva M., Figueiredo A. Linking jasmonic acid to grapevine resistance against the biotrophic oomycete Plasmopara viticola. Front. Plant Sci. 2016;7:565. doi: 10.3389/fpls.2016.00565. PubMed DOI PMC
García-Marcos A., Pacheco R., Manzano A., Aguilar E., Tenllado F. Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and tomato spotted wilt virus. J. Virol. 2013;87:5769–5783. doi: 10.1128/JVI.03573-12. PubMed DOI PMC
Zhang C., Ding Z., Wu K., Yang L., Li Y., Yang Z., Shi S., Liu X., Zhao S., Yang Z., et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice. Mol. Plant. 2016;9:1302–1314. doi: 10.1016/j.molp.2016.06.014. PubMed DOI
Chakraborty N., Basak J. Exogenous application of methyl jasmonate induces defense response and develops tolerance against mungbean yellow mosaic India virus in Vigna mungo. Funct. Plant Biol. 2018;46:69–81. doi: 10.1071/FP18168. PubMed DOI
Wasternack C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 2007;100:681–697. doi: 10.1093/aob/mcm079. PubMed DOI PMC
Howe G.A., Major I.T., Koo A.J. Modularity in jasmonate signaling for multistress resilience. Annu. Rev. Plant Biol. 2018;69:387–415. doi: 10.1146/annurev-arplant-042817-040047. PubMed DOI
Song C., Cao Y., Dai J., Li G., Manzoor M.A., Chen C., Deng H. The multifaceted roles of MYC2 in plants: Toward transcriptional reprogramming and stress tolerance by jasmonate signaling. Front. Plant Sci. 2022;13:868874. doi: 10.3389/fpls.2022.868874. PubMed DOI PMC
Owens R.A., Tech K.B., Shao J.Y., Sano T., Baker C.J. Global analysis of tomato gene expression during Potato spindle tuber viroid infection reveals a complex array of changes affecting hormone signaling. Mol. Plant Microbe Interact. 2012;25:582–598. doi: 10.1094/MPMI-09-11-0258. PubMed DOI
Więsyk A., Iwanicka-Nowicka R., Fogtman A., Zagórski-Ostoja W., Góra-Sochacka A. Time-course microarray analysis reveals differences between transcriptional changes in tomato leaves triggered by mild and severe variants of potato spindle tuber viroid. Viruses. 2018;10:257. doi: 10.3390/v10050257. PubMed DOI PMC
Góra-Sochacka A., Więsyk A., Fogtman A., Lirski M., Zagórski-Ostoja W. Root transcriptomic analysis reveals global changes induced by systemic infection of Solanum lycopersicum with mild and severe variants of potato spindle tuber viroid. Viruses. 2019;11:992. doi: 10.3390/v11110992. PubMed DOI PMC
Pokorn T., Radišek S., Javornik B., Štajner N., Jakše J. Development of hop transcriptome to support research into host-viroid interactions. PLoS ONE. 2017;12:e0184528. doi: 10.1371/journal.pone.0184528. PubMed DOI PMC
Xia C., Li S., Hou W., Fan Z., Xiao H., Lu M., Sano T., Zhang Z. Global transcriptomic changes induced by infection of cucumber (Cucumis sativus L.) with mild and severe variants of hop stunt viroid. Front. Microbiol. 2017;8:2427. doi: 10.3389/fmicb.2017.02427. PubMed DOI PMC
Wang Y., Wu J., Qiu Y., Atta S., Zhou C., Cao M. Global transcriptomic analysis reveals insights into the response of ‘Etrog’ citron (Citrus medica L.) to citrus exocortis viroid infection. Viruses. 2019;11:453. doi: 10.3390/v11050453. PubMed DOI PMC
Xu L., Zong X., Wang J., Wei H., Chen X., Liu Q. Transcriptomic analysis reveals insights into the response to hop stunt viroid (HSVd) in sweet cherry (Prunus avium L.) fruits. PeerJ. 2020;8:e10005. doi: 10.7717/peerj.10005. PubMed DOI PMC
Joubert M., van den Berg N., Theron J., Swart V. Transcriptomics advancement in the complex response of plants to viroid infection. Int. J. Mol. Sci. 2022;23:7677. doi: 10.3390/ijms23147677. PubMed DOI PMC
Takino H., Kitajima S., Hirano S., Oka M., Matsuura T., Ikeda Y., Kojima M., Takebayashi Y., Sakakibara H., Mino M. Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-SiRNAs. Plant Gene. 2019;18:100181. doi: 10.1016/j.plgene.2019.100181. DOI
Milanović J., Oklestkova J., Majdandžić A., Novák O., Mihaljević S. Organ-specific differences in endogenous phytohormone and antioxidative responses in potato upon PSTVd infection. J. Plant Physiol. 2019;232:107–114. doi: 10.1016/j.jplph.2018.10.027. PubMed DOI
Halim V.A., Altmann S., Ellinger D., Eschen-Lippold L., Miersch O., Scheel D., Rosahl S. PAMP-induced defense responses in potato require both salicylic acid and jasmonic jcid. Plant J. 2009;57:230–242. doi: 10.1111/j.1365-313X.2008.03688.x. PubMed DOI
Boonham N., Pérez L.G., Mendez M.S., Peralta E.L., Blockley A., Walsh K., Barker I., Mumford R.A. Development of a real-time RT-PCR assay for the detection of potato spindle tuber viroid. J. Virol. Methods. 2004;116:139–146. doi: 10.1016/j.jviromet.2003.11.005. PubMed DOI
European and Mediterranean Plant Protection Organization (EPPO) PM 7/138 (1) Pospiviroids (genus Pospiviroid) EPPO Bull. 2021;51:144–177. doi: 10.1111/epp.12717. DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Expósito-Rodríguez M., Borges A.A., Borges-Pérez A., Pérez J.A. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008;8:131. doi: 10.1186/1471-2229-8-131. PubMed DOI PMC
Alaux P.L., Naveau F., Declerck S., Cranenbrouck S. Common mycorrhizal network induced JA/ET genes expression in healthy potato plants connected to potato plants infected by Phytophthora infestans. Front. Plant Sci. 2020;11:602. doi: 10.3389/fpls.2020.00602. PubMed DOI PMC
Saubeau G., Perrin F., Marnet N., Andrivon D., Val F. Hormone signalling pathways are differentially involved in quantitative resistance of potato to Phytophthora infestans. Plant Pathol. 2016;65:342–352. doi: 10.1111/ppa.12420. DOI
Jiang H., Wang Y., Li C., Wang B., Ma L., Ren Y., Bi Y., Li Y., Xue H., Prusky D. The effect of benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) treatment on regulation of reactive oxygen species metabolism involved in wound healing of potato tubers during postharvest. Food Chem. 2020;309:125608. doi: 10.1016/j.foodchem.2019.125608. PubMed DOI
Kuźnicki D., Meller B., Arasimowicz-Jelonek M., Braszewska-Zalewska A., Drozda A., Floryszak-Wieczorek J. BABA-induced DNA methylome adjustment to intergenerational defense priming in potato to Phytophthora infestans. Front. Plant Sci. 2019;10:650. doi: 10.3389/fpls.2019.00650. PubMed DOI PMC
Weller S.A., Elphinstone J.G., Smith N.C., Boonham N., Stead D.E. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl. Environ. Microbiol. 2000;66:2853–2858. doi: 10.1128/AEM.66.7.2853-2858.2000. PubMed DOI PMC
The Potato Genome Sequencing Consortium Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–195. doi: 10.1038/nature10158. PubMed DOI
Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11:1650–1667. doi: 10.1038/nprot.2016.095. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Usadel B., Poree F., Nagel A., Lohse M., Czedik-Eysenberg A., Stitt M. A guide to using MapMan to visualize and compare omics data in plants: A case study in the crop species, Maize. Plant Cell Environ. 2009;32:1211–1229. doi: 10.1111/j.1365-3040.2009.01978.x. PubMed DOI
Jin J., Tian F., Yang D.-C., Meng Y.-Q., Kong L., Luo J., Gao G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45:D1040–D1045. doi: 10.1093/nar/gkw982. PubMed DOI PMC
Široká J., Brunoni F., Pěnčík A., Mik V., Žukauskaitė A., Strnad M., Novák O., Floková K. High-throughput interspecies profiling of acidic plant hormones using miniaturised sample processing. Plant Methods. 2022;18:122. doi: 10.1186/s13007-022-00954-3. PubMed DOI PMC
Floková K., Tarkowská D., Miersch O., Strnad M., Wasternack C., Novák O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Tarkowská D., Strnad M. Protocol for extraction and isolation of brassinosteroids from plant tissues. Methods Mol. Biol. 2017;1564:1–7. doi: 10.1007/978-1-4939-6813-8_1. PubMed DOI
Oklestkova J., Tarkowská D., Eyer L., Elbert T., Marek A., Smržová Z., Novák O., Fránek M., Zhabinskii V.N., Strnad M. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. 2017;170:432–440. doi: 10.1016/j.talanta.2017.04.044. PubMed DOI
Daudi A., O’brien J.A. Detection of hydrogen peroxide by dab staining in Arabidopsis leaves. Bio Protoc. 2012;2:e263. doi: 10.21769/BioProtoc.263. PubMed DOI PMC
Mukherjee S.P., Choudhuri M.A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 1983;58:166–170. doi: 10.1111/j.1399-3054.1983.tb04162.x. DOI
Xia X.-J., Zhou Y.-H., Shi K., Zhou J., Foyer C.H., Yu J.-Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015;66:2839–2856. doi: 10.1093/jxb/erv089. PubMed DOI
Jagodzik P., Tajdel-Zielinska M., Ciesla A., Marczak M., Ludwikow A. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 2018;9:1387. doi: 10.3389/fpls.2018.01387. PubMed DOI PMC
Dóczi R., Brader G., Pettkó-Szandtner A., Rajh I., Djamei A., Pitzschke A., Teige M., Hirt H. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell. 2007;19:3266–3279. doi: 10.1105/tpc.106.050039. PubMed DOI PMC
Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Ros Barceló A., Pedreño M.A. Class III peroxidases in plant defence reactions. J. Exp. Bot. 2008;60:377–390. doi: 10.1093/jxb/ern277. PubMed DOI
Huot B., Yao J., Montgomery B.L., He S.Y. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant. 2014;7:1267–1287. doi: 10.1093/mp/ssu049. PubMed DOI PMC
Savchenko T.V., Rolletschek H., Dehesh K. Jasmonates-mediated rewiring of central metabolism regulates adaptive responses. Plant Cell Physiol. 2019;60:2613–2620. doi: 10.1093/pcp/pcz181. PubMed DOI PMC
Wasternack C., Strnad M. Jasmonate signaling in plant stress responses and development—Active and inactive compounds. New Biotechnol. 2016;33:604–613. doi: 10.1016/j.nbt.2015.11.001. PubMed DOI
Wasternack C., Hause B. Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 Review in Annals of Botany. Ann. Bot. 2013;111:1021–1058. doi: 10.1093/aob/mct067. PubMed DOI PMC
Mazzoni-Putman S.M., Brumos J., Zhao C., Alonso J.M., Stepanova A.N. Auxin interactions with other hormones in plant development. Cold Spring Harb. Perspect. Biol. 2021;13:a039990. doi: 10.1101/cshperspect.a039990. PubMed DOI PMC
Bao D., Chang S., Li X., Qi Y. Advances in the study of auxin early response genes: Aux/IAA, GH3, and SAUR. Crop J. 2024;12:964–978. doi: 10.1016/j.cj.2024.06.011. DOI
Ding X., Cao Y., Huang L., Zhao J., Xu C., Li X., Wang S. Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell. 2008;20:228–240. doi: 10.1105/tpc.107.055657. PubMed DOI PMC
Cosgrove D.J. Loosening of plant cell walls by expansins. Nature. 2000;407:321–326. doi: 10.1038/35030000. PubMed DOI
Tang G., Ma J., Hause B., Nick P., Riemann M. Jasmonate is required for the response to osmotic stress in rice. Environ. Exp. Bot. 2020;175:104047. doi: 10.1016/j.envexpbot.2020.104047. DOI
Zhao W., Huang H., Wang J., Wang X., Xu B., Yao X., Sun L., Yang R., Wang J., Sun A., et al. Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato. Plant J. 2022;113:546–561. doi: 10.1111/tpj.16067. PubMed DOI
Wang F., Yang F., Zhu D., Saniboere B., Zhou B., Peng D. MYB44 plays key roles in regulating plant responses to abiotic and biotic stress, metabolism, and development. J. Plant Biochem. Biotechnol. 2023;33:462–473. doi: 10.1007/s13562-023-00864-y. DOI
Vieira J.G.P., Duarte G.T., Barrera-Rojas C.H., Matiolli C.C., Viana A.J.C., Campos R.d.A., Canesin L.E.D., Vicentini R., Nogueira F.T.S., Vincentz M. Regulation of abscisic acid receptor mRNA stability: Involvement of microRNA5628 in PYL6 transcript decay. Plant Physiol. 2024;197:kiae663. doi: 10.1093/plphys/kiae663. PubMed DOI
Yu Q., Hua X., Yao H., Zhang Q., He J., Peng L., Li D., Yang Y., Li X. Abscisic acid receptors are involves in the jasmonate signaling in Arabidopsis. Plant Signal Behav. 2021;16:1948243. doi: 10.1080/15592324.2021.1948243. PubMed DOI PMC
Lorenzo O., Piqueras R., Sánchez-Serrano J.J., Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell. 2003;15:165–178. doi: 10.1105/tpc.007468. PubMed DOI PMC
Wasternack C., Song S. Jasmonates: Biosynthesis, metabolism, and signaling by proteins activating and repressing transciption. J. Exp. Bot. 2017;68:1303–1321. doi: 10.1093/jxb/erw443. PubMed DOI
Coll A., Lukan T., Stare K., Zagorščak M., Mahkovec Povalej T., Baebler Š., Prat S., Coll N.S., Valls M., Petek M., et al. The StPti5 ethylene response factor acts as a susceptibility factor by negatively regulating the potato immune response to pathogens. New Phytol. 2024;244:202–218. doi: 10.1111/nph.20004. PubMed DOI
Su Z.-L., Li A.-M., Wang M., Qin C.-X., Pan Y.-Q., Liao F., Chen Z.-L., Zhang B.-Q., Cai W.-G., Huang D.-L. The role of AP2/ERF transcription factors in plant responses to biotic stress. Int. J. Mol. Sci. 2025;26:4921. doi: 10.3390/ijms26104921. PubMed DOI PMC
Katsarou K., Wu Y., Zhang R., Bonar N., Morris J., Hedley P.E., Bryan G.J., Kalantidis K., Hornyik C. Insight on genes affecting tuber development in potato upon potato spindle tuber viroid (PSTVd) infection. PLoS ONE. 2016;11:e0150711. doi: 10.1371/journal.pone.0150711. PubMed DOI PMC
Kappagantu M., Bullock J.M., Nelson M.E., Eastwell K.C. Hop stunt viroid: Effect on host (Humulus lupulus) transcriptome and its interactions with hop powdery mildew (Podospheara macularis) Mol. Plant Microbe Interact. 2017;30:842–851. doi: 10.1094/MPMI-03-17-0071-R. PubMed DOI
Mishra A.K., Kumar A., Mishra D., Nath V.S., Jakše J., Kocábek T., Killi U.K., Morina F., Matoušek J. Genome-wide transcriptomic analysis reveals insights into the response to citrus bark cracking viroid (CBCVd) in hop (Humulus lupulus L.) Viruses. 2018;10:570. doi: 10.3390/v10100570. PubMed DOI PMC
Prol F.V., López-Gresa M.P., Rodrigo I., Bellés J.M., Lisón P. Ethylene is involved in symptom development and ribosomal stress of tomato plants upon citrus exocortis viroid infection. Plants. 2020;9:582. doi: 10.3390/plants9050582. PubMed DOI PMC
Aviña-Padilla K., Rivera-Bustamante R., Kovalskaya N.Y., Hammond R.W. Pospiviroid infection of tomato regulates the expression of genes involved in flower and fruit development. Viruses. 2018;10:516. doi: 10.3390/v10100516. PubMed DOI PMC
Zhang S., Yang C., Peng J., Sun S., Wang X. GASA5, a regulator of flowering time and stem growth in Arabidopsis thaliana. Plant Mol. Biol. 2009;69:745–759. doi: 10.1007/s11103-009-9452-7. PubMed DOI
An B., Wang Q., Zhang X., Zhang B., Luo H., He C. Comprehensive transcriptional and functional analyses of HbGASA genes reveal their roles in fungal pathogen resistance in Hevea brasiliensis. Tree Genet. Genomes. 2018;14:41. doi: 10.1007/s11295-018-1256-y. DOI
Herbel V., Sieber-Frank J., Wink M. the antimicrobial peptide snakin-2 is upregulated in the defense response of tomatoes (Solanum lycopersicum) as part of the jasmonate-dependent signaling pathway. J. Plant Physiol. 2017;208:1–6. doi: 10.1016/j.jplph.2016.10.006. PubMed DOI
Yu D., Liu Y., Fan B., Klessig D.F., Chen Z. Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol. 1997;115:343–349. doi: 10.1104/pp.115.2.343. PubMed DOI PMC
Yang D.-L., Yang Y., He Z. Roles of plant hormones and their interplay in rice immunity. Mol. Plant. 2013;6:675–685. doi: 10.1093/mp/sst056. PubMed DOI
Mosher S., Kemmerling B. PSKR1 and PSY1R-mediated regulation of plant defense responses. Plant Signal Behav. 2013;8:e24119. doi: 10.4161/psb.24119. PubMed DOI PMC
Takahashi F., Yoshida R., Ichimura K., Mizoguchi T., Seo S., Yonezawa M., Maruyama K., Yamaguchi-Shinozaki K., Shinozaki K. The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. Plant Cell. 2007;19:805–818. doi: 10.1105/tpc.106.046581. PubMed DOI PMC
Brodersen P., Petersen M., Bjørn Nielsen H., Zhu S., Newman M., Shokat K.M., Rietz S., Parker J., Mundy J. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J. 2006;47:532–546. doi: 10.1111/j.1365-313X.2006.02806.x. PubMed DOI
Wu J., Wang J., Pan C., Guan X., Wang Y., Liu S., He Y., Chen J., Chen L., Lu G. Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response. PLoS ONE. 2014;9:e103032. doi: 10.1371/journal.pone.0103032. PubMed DOI PMC
Ortiz-Masia D., Perez-Amador M.A., Carbonell P., Aniento F., Carbonell J., Marcote M.J. Characterization of PsMPK2, the first C1 subgroup MAP kinase from pea (Pisum sativum L.) Planta. 2008;227:1333–1342. doi: 10.1007/s00425-008-0705-5. PubMed DOI
Zhang M., Zhang S. Mitogen-activated protein kinase cascades in plant signaling. J. Integr. Plant Biol. 2022;64:301–341. doi: 10.1111/jipb.13215. PubMed DOI
Wang B., Wang Y., He W., Huang M., Yu L., Cheng D., Du J., Song B., Chen H. StMLP1, as a kunitz trypsin inhibitor, enhances potato resistance and specifically expresses in vascular bundles during Ralstonia solanacearum infection. Plant J. 2023;116:1342–1354. doi: 10.1111/tpj.16428. PubMed DOI
Gamir J., Darwiche R., van’t Hof P., Choudhary V., Stumpe M., Schneiter R., Mauch F. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein. Plant J. 2017;89:502–509. doi: 10.1111/tpj.13398. PubMed DOI
Balasubramanian V., Vashisht D., Cletus J., Sakthivel N. Plant β-1,3-glucanases: Their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol. Lett. 2012;34:1983–1990. doi: 10.1007/s10529-012-1012-6. PubMed DOI
Leon-Reyes A., Du Y., Koornneef A., Proietti S., Körbes A.P., Memelink J., Pieterse C.M.J., Ritsema T. Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Mol. Plant Microbe Interact. 2010;23:187–197. doi: 10.1094/MPMI-23-2-0187. PubMed DOI
Aviña-Padilla K., Zambada-Moreno O., Jimenez-Limas M.A., Hammond R.W., Hernández-Rosales M. Dissecting the role of bHLH transcription factors in the potato spindle tuber viroid (PSTVd)-tomato pathosystem using network approaches. PLoS ONE. 2025;20:e0318573. doi: 10.1371/journal.pone.0318573. PubMed DOI PMC
Kadam S.B., Barvkar V.T. COI1 dependent jasmonic acid signalling positively modulates ROS scavenging system in transgenic hairy root culture of tomato. Plant Physiol. Biochem. 2024;206:108229. doi: 10.1016/j.plaphy.2023.108229. PubMed DOI
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–396. doi: 10.1104/pp.106.082040. PubMed DOI PMC
Zhu J., Chen H., Liu L., Xia X., Yan X., Mi X., Liu S., Wei C. JA-mediated MYC2/LOX/AOS feedback loop regulates osmotic stress response in tea plant. Hortic. Plant J. 2024;10:931–946. doi: 10.1016/j.hpj.2022.10.014. DOI
Denness L., McKenna J.F., Segonzac C., Wormit A., Madhou P., Bennett M., Mansfield J., Zipfel C., Hamann T. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156:1364–1374. doi: 10.1104/pp.111.175737. Erratum in Plant Physiol. 2015, 168, 1181–1182. PubMed DOI PMC
Myers R.J., Fichman Y., Zandalinas S.I., Mittler R. Jasmonic acid and salicylic acid modulate systemic reactive oxygen species signaling during stress responses. Plant Physiol. 2022;191:862–873. doi: 10.1093/plphys/kiac449. PubMed DOI PMC
Huang H., Ullah F., Zhou D.-X., Yi M., Zhao Y. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 2019;10:800. doi: 10.3389/fpls.2019.00800. PubMed DOI PMC
Xie M., Zhang J., Tschaplinski T.J., Tuskan G.A., Chen J.-G., Muchero W. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Front. Plant Sci. 2018;9:1427. doi: 10.3389/fpls.2018.01427. PubMed DOI PMC
Dong N., Lin H. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J. Integr. Plant Biol. 2021;63:180–209. doi: 10.1111/jipb.13054. PubMed DOI
Lavell A.A., Benning C. Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiol. 2019;60:1176–1183. doi: 10.1093/pcp/pcz016. PubMed DOI PMC
Philippe G., Sørensen I., Jiao C., Sun X., Fei Z., Domozych D.S., Rose J.K.C. Cutin and suberin: Assembly and origins of specialized lipidic cell wall scaffolds. Curr. Opin. Plant Biol. 2020;55:11–20. doi: 10.1016/j.pbi.2020.01.008. PubMed DOI
Chanda B., Venugopal S.C., Kulshrestha S., Navarre D.A., Downie B., Vaillancourt L., Kachroo A., Kachroo P. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis. Plant Physiol. 2008;147:2017–2029. doi: 10.1104/pp.108.121335. PubMed DOI PMC
Wan H., Qiu H., Li Z., Zhang X., Zhang J., Jiang D., Fernie A.R., Lyu Y., Cheng Y., Wen W. Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. aBIOTECH. 2022;3:250–266. doi: 10.1007/s42994-022-00085-2. PubMed DOI PMC
Li C., Xu M., Cai X., Han Z., Si J., Chen D. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. Int. J. Mol. Sci. 2022;23:3945. doi: 10.3390/ijms23073945. PubMed DOI PMC