Investigating NFE2L1 activators for targeted protein aggregate clearance: a follow-up study

. 2025 Dec 10 ; 16 (12) : 6397-6411. [epub] 20251022

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41235158

Disruption of protein homeostasis (proteostasis), whether by acute proteotoxic stress or chronic expression of mutant proteins, can lead to the accumulation of toxic protein aggregates. Such aggregation is a hallmark of numerous diseases and is often associated with impaired protein clearance mechanisms. The transcription factor nuclear factor erythroid 2-related factor 1 (encoded by NFE2L1, also known as Nrf1) plays a central role in restoring proteostasis by increasing proteasome synthesis. Therefore, pharmacological activation of NFE2L1 under non-stress conditions represents a promising therapeutic strategy for neurodegenerative and other proteostasis-related diseases. In our previous study, we identified bis(phenylmethylene)cycloalkanone derivatives as NFE2L1 activators capable of inducing proteasome subunit expression, increasing heat shock protein levels, and stimulating autophagy. Building upon these findings, we have now developed a new library of structurally related compounds to identify novel more potent NFE2L1 activators. By systematically examining how specific chemical substitutions affect NFE2L1 activation, this work advances our understanding of the structure-activity relationships within this pathway.

Zobrazit více v PubMed

Klaips C. L. Jayaraj G. G. Hartl F. U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018;217(1):51–63. doi: 10.1083/jcb.201709072. PubMed DOI PMC

Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973;181(4096):223–230. doi: 10.1126/science.181.4096.223. PubMed DOI

Balchin D. Hayer-Hartl M. Hartl F. U. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354. doi: 10.1126/science.aac4354. PubMed DOI

Chiti F. Dobson C. M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017;86:27–68. doi: 10.1146/annurev-biochem-061516-045115. PubMed DOI

Dikic I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017;86:193–224. doi: 10.1146/annurev-biochem-061516-044908. PubMed DOI

Pohl C. Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818–822. doi: 10.1126/science.aax3769. PubMed DOI

Collins G. A. Goldberg A. L. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. doi: 10.1016/j.cell.2017.04.023. PubMed DOI PMC

Limanaqi F. Biagioni F. Gambardella S. Familiari P. Frati A. Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int. J. Mol. Sci. 2020;21(8):3028. doi: 10.3390/ijms21083028. PubMed DOI PMC

Upadhyay A. Joshi V. Amanullah A. Mishra R. Arora N. Prasad A. et al., E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front. Mol. Neurosci. 2017;10:151. doi: 10.3389/fnmol.2017.00151. PubMed DOI PMC

Ciechanover A. Kwon Y. T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 2015;47:e147. doi: 10.1038/emm.2014.117. PubMed DOI PMC

Graham S. H. Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res. Rev. 2017;34:30–38. doi: 10.1016/j.arr.2016.09.011. PubMed DOI PMC

Haass C. Selkoe D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007;8(2):101–112. doi: 10.1038/nrm2101. PubMed DOI

Liu Y. Y. Qiao F. F. Leiferman P. C. Ross A. Schlenker E. H. Wang H. M. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells. Hum. Mol. Genet. 2017;26(22):4416–4428. doi: 10.1093/hmg/ddx327. PubMed DOI PMC

Luk K. C. Kehm V. Carroll J. Zhang B. O'Brien P. Trojanowski J. Q. et al., Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science. 2012;338(6109):949–953. doi: 10.1126/science.1227157. PubMed DOI PMC

Murphy M. P. LeVine 3rd. H. Alzheimer's disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010;19(1):311–323. PubMed PMC

Imai Y. Soda M. Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000;275(46):35661–35664. doi: 10.1074/jbc.C000447200. PubMed DOI

Shimura H. Hattori N. Kubo S. Mizuno Y. Asakawa S. Minoshima S. et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000;25(3):302–305. doi: 10.1038/77060. PubMed DOI

Zhang Y. Gao J. Chung K. K. K. Huang H. Dawson V. L. Dawson T. M. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. U. S. A. 2000;97(24):13354–13359. doi: 10.1073/pnas.240347797. PubMed DOI PMC

Watts G. D. J. Wymer J. Kovach M. J. Mehta S. G. Mumm S. Darvish D. et al., Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 2004;36(4):377–381. doi: 10.1038/ng1332. PubMed DOI

Weihl C. C. Dalal S. Pestronk A. Hanson P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 2006;15(2):189–199. doi: 10.1093/hmg/ddi426. PubMed DOI

Keller J. N. Huang F. F. Markesbery W. R. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience. 2000;98(1):149–156. doi: 10.1016/S0306-4522(00)00067-1. PubMed DOI

Radhakrishnan S. K. Lee C. S. Young P. Beskow A. Chan J. Y. Deshaies R. J. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol. Cell. 2010;38(1):17–28. doi: 10.1016/j.molcel.2010.02.029. PubMed DOI PMC

Radhakrishnan S. K. den Besten W. Deshaies R. J. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife. 2014;3:e01856. doi: 10.7554/eLife.01856. PubMed DOI PMC

Ward M. A. Vangala J. R. Kaya H. E. K. Byers H. A. Hosseini N. Diaz A. et al., Transcription factor Nrf1 regulates proteotoxic stress-induced autophagy. J. Cell Biol. 2024;223(6):e202306150. doi: 10.1083/jcb.202306150. PubMed DOI PMC

Schmidt M. Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta, Mol. Cell Res. 2014;1843(1):13–25. doi: 10.1016/j.bbamcr.2013.08.012. PubMed DOI PMC

Tomlin F. M. Gerling-Driessen U. I. M. Liu Y. C. Flynn R. A. Vangala J. R. Lentz C. S. et al., Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent. Sci. 2017;3(11):1143–1155. doi: 10.1021/acscentsci.7b00224. PubMed DOI PMC

Vangala J. R. Radhakrishnan S. K. Nrf1-mediated transcriptional regulation of the proteasome requires a functional TIP60 complex. J. Biol. Chem. 2019;294(6):2036–2045. doi: 10.1074/jbc.RA118.006290. PubMed DOI PMC

Ibrahim L. Mesgarzadeh J. Xu I. Powers E. T. Wiseman R. L. Bollong M. J. Defining the Functional Targets of Cap'n'collar Transcription Factors NRF1, NRF2, and NRF3. Antioxidants. 2020;9(10):1025. doi: 10.3390/antiox9101025. PubMed DOI PMC

Koizumi S. Irie T. Hirayama S. Sakurai Y. Yashiroda H. Naguro I. et al., The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife. 2016;5:e18357. doi: 10.7554/eLife.18357. PubMed DOI PMC

Hatanaka A. Nakada S. Matsumoto G. Satoh K. Aketa I. Watanabe A. et al., The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Sci. Rep. 2023;13(1):14405. doi: 10.1038/s41598-023-41492-9. PubMed DOI PMC

Sivá M. Svoboda M. Veverka V. Trempe J. F. Hofmann K. Kozísek M. et al., Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Sci. Rep. 2016;6:30443. doi: 10.1038/srep30443. PubMed DOI PMC

Biswas M. Chan J. Y. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 2010;244(1):16–20. doi: 10.1016/j.taap.2009.07.034. PubMed DOI PMC

Kobayashi A. Tsukide T. Miyasaka T. Morita T. Mizoroki T. Saito Y. et al., Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes Cells. 2011;16(6):692–703. doi: 10.1111/j.1365-2443.2011.01522.x. PubMed DOI

Lee C. S. Lee C. Hu T. Nguyen J. M. Zhang J. S. Martin M. V. et al., Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 2011;108(20):8408–8413. doi: 10.1073/pnas.1019209108. PubMed DOI PMC

Asahina M. Fujinawa R. Nakamura S. Yokoyama K. Tozawa R. Suzuki T. Ngly1−/− rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum. Mol. Genet. 2020;29(10):1635–1647. doi: 10.1093/hmg/ddaa059. PubMed DOI PMC

Lam C. Ferreira C. Krasnewich D. Toro C. Latham L. Zein W. M. et al., Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet. Med. 2017;19(2):160–168. doi: 10.1038/gim.2016.75. PubMed DOI PMC

Mueller W. F. Jakob P. Sun H. Clauder-Munster S. Ghidelli-Disse S. Ordonez D. et al., Loss of N-Glycanase 1 Alters Transcriptional and Translational Regulation in K562 Cell Lines. G3: Genes, Genomes, Genet. 2020;10(5):1585–1597. doi: 10.1534/g3.119.401031. PubMed DOI PMC

Villaescusa J. C. Li B. S. Toledo E. M. Cervo P. R. D. Yang S. Z. Stott S. R. W. et al., A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. EMBO J. 2016;35(18):1963–1978. doi: 10.15252/embj.201593725. PubMed DOI PMC

Meiners S. Heyken D. Weller A. Ludwig A. Stangl K. Kloetzel P. M. et al., Inhibition of proteasome activity induces concerted expression of proteasome genes and formation of mammalian proteasomes. J. Biol. Chem. 2003;278(24):21517–21525. doi: 10.1074/jbc.M301032200. PubMed DOI

Steffen J. Seeger M. Koch A. Krüger E. Proteasomal Degradation Is Transcriptionally Controlled by TCF11 via an ERAD-Dependent Feedback Loop. Mol. Cell. 2010;40(1):147–158. doi: 10.1016/j.molcel.2010.09.012. PubMed DOI

Bott L. C. Badders N. M. Chen K. L. Harmison G. G. Bautista E. Shih C. C. Y. et al., A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2016;25(10):1979–1989. doi: 10.1093/hmg/ddw073. PubMed DOI PMC

Wu Y. L. Chang J. C. Chao Y. C. Chan H. R. Hsieh M. L. Liu C. S. In Vitro Efficacy and Molecular Mechanism of Curcumin Analog in Pathological Regulation of Spinocerebellar Ataxia Type 3. Antioxidants. 2022;11(7):1389. doi: 10.3390/antiox11071389. PubMed DOI PMC

Sedlacek J. Smahelova Z. Adamek M. Subova D. Svobodova L. Kadlecova A. et al., Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation. Biomed. Pharmacother. 2025;183:117864. doi: 10.1016/j.biopha.2025.117864. PubMed DOI

Svobodova L. Sedlacek J. Smahelova Z. Majer P. Machara A. Grantz Saskova K. Targeting NFEL2L1 with small molecules to protect against Ferroptosis. Bioorg. Med. Chem. Letters. 2026:130425. doi: 10.1016/j.bmcl.2025.130425. PubMed DOI

Iaconelli J. Ibrahim L. Chen E. Hull M. Schultz P. G. Bollong M. J. Small-Molecule Stimulators of NRF1 Transcriptional Activity. ChemBioChem. 2020;21(13):1816–1819. doi: 10.1002/cbic.201900487. PubMed DOI

Fassmannová D. Sedlák F. Sedlácek J. Spicka I. Saskova K. G. Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma. Cancers. 2020;12(5):1065. doi: 10.3390/cancers12051065. PubMed DOI PMC

Tannous B. A. luciferase reporter assay for monitoring biological processes in culture and. Nat. Protoc. 2009;4(4):582–591. doi: 10.1038/nprot.2009.28. PubMed DOI PMC

Calfon M. Zeng H. Q. Urano F. Till J. H. Hubbard S. R. Harding H. P. et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the mRNA. Nature. 2002;415(6867):92–96. doi: 10.1038/415092a. PubMed DOI

Jurkin J. Henkel T. Nielsen A. F. Minnich M. Popow J. Kaufmann T. et al., The mammalian tRNA ligase complex mediates splicing of mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33(24):2922–2936. doi: 10.15252/embj.201490332. PubMed DOI PMC

Ong G. Ragetli R. Mnich K. Doble B. W. Kammouni W. Logue S. E. IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis. 2024;15(4):276. doi: 10.1038/s41419-024-06663-0. PubMed DOI PMC

Kracht M. J. L. de Koning E. J. P. Hoeben R. C. Roep B. O. Zaldumbide A. Bioluminescent reporter assay for monitoring ER stress in human beta cells. Sci. Rep. 2018;8:17738. doi: 10.1038/s41598-018-36142-4. PubMed DOI PMC

Plate L. Cooley C. B. Chen J. J. Paxman R. J. Gallagher C. M. Madoux F. et al., Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife. 2016;5:e15550. doi: 10.7554/eLife.15550. PubMed DOI PMC

Calamini B. Silva M. C. Madoux F. Hutt D. M. Khanna S. Chalfant M. A. et al., Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2012;8(2):185–196. doi: 10.1038/nchembio.763. PubMed DOI PMC

Wang A. M. Miyata Y. Klinedinst S. Peng H. M. Chua J. P. Komiyama T. et al., Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat. Chem. Biol. 2013;9(2):112–118. doi: 10.1038/nchembio.1140. PubMed DOI PMC

Waza M. Adachi H. Katsuno M. Minamiyama M. Sang C. Tanaka F. et al., 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 2005;11(10):1088–1095. doi: 10.1038/nm1298. PubMed DOI

Cyran A. M. Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem. Res. Toxicol. 2022;35(10):1690–1700. PubMed PMC

Naidu S. D. Kostov R. V. Dinkova-Kostova A. T. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 2015;36(1):6–14. doi: 10.1016/j.tips.2014.10.011. PubMed DOI

Hensen S. M. M. Heldens L. van Genesen S. T. Pruijn G. J. M. Lubsen N. H. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones. 2013;18(4):455–473. doi: 10.1007/s12192-012-0400-0. PubMed DOI PMC

Sha Z. Schnell H. M. Ruoff K. Goldberg A. Rapid induction of p62 and GAB ARA PL1 upon proteasome inhibition promotes survival before autophagy activation. J. Cell Biol. 2018;217(5):1757–1776. doi: 10.1083/jcb.201708168. PubMed DOI PMC

Kabeya Y. Mizushima N. Uero T. Yamamoto A. Kirisako T. Noda T. et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–5728. doi: 10.1093/emboj/19.21.5720. PubMed DOI PMC

Myeku N. Figueiredo-Pereira M. E. Dynamics of the Degradation of Ubiquitinated Proteins by Proteasomes and Autophagy. J. Biol. Chem. 2011;286(25):22426–22440. doi: 10.1074/jbc.M110.149252. PubMed DOI PMC

Pankiv S. Clausen T. H. Lamark T. Brech A. Bruun J. A. Outzen H. et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007;282(33):24131–24145. doi: 10.1074/jbc.M702824200. PubMed DOI

Tanida I. Ueno T. Kominami E. LC3 and Autophagy. Methods Mol. Biol. 2008;445:77–88. doi: 10.1007/978-1-59745-157-4_4. PubMed DOI

Seibenhener M. L. Geetha T. Wooten M. W. Sequestosome 1/p62--more than just a scaffold. FEBS Lett. 2007;581(2):175–179. doi: 10.1016/j.febslet.2006.12.027. PubMed DOI PMC

Wu J. X. Dang Y. J. Su W. Liu C. Ma H. J. Shan Y. X. et al., Molecular cloning and characterization of rat: Two novel markers of autophagosome. Biochem. Biophys. Res. Commun. 2006;339(1):437–442. doi: 10.1016/j.bbrc.2005.10.211. PubMed DOI

Kabeya Y. Mizushima N. Yamamoto A. Oshitani-Okamoto S. Ohsumi Y. Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 2004;117(13):2805–2812. doi: 10.1242/jcs.01131. PubMed DOI

Pereira P. J. B. Manso J. A. Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr. Opin. Struct. Biol. 2023;80:102607. doi: 10.1016/j.sbi.2023.102607. PubMed DOI

Lajoie P. Snapp E. L. Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells. PLoS One. 2010;5(12):e15245. doi: 10.1371/journal.pone.0015245. PubMed DOI PMC

Lajoie P. Snapp E. L. Detecting soluble polyQ oligomers and investigating their impact on living cells using split-GFP. Methods Mol. Biol. 2013;1017:229–239. doi: 10.1007/978-1-62703-438-8_17. PubMed DOI PMC

Nath S. R. Yu Z. Gipson T. A. Marsh G. B. Yoshidome E. Robins D. M. et al., Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J. Clin. Invest. 2018;128(8):3630–3641. doi: 10.1172/JCI99042. PubMed DOI PMC

Raiss C. C. Braun T. S. Konings I. B. M. Grabmayr H. Hassink G. C. Sidhu A. et al., Functionally different α-synuclein inclusions yield insight into Parkinson's disease pathology. Sci. Rep. 2016;6:23116. doi: 10.1038/srep23116. PubMed DOI PMC

Uversky V. N. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. 2004;318(1):225–241. doi: 10.1007/s00441-004-0937-z. PubMed DOI

Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol. Transl. Sci. 2024;8(1):21–35. doi: 10.1021/acsptsci.4c00408. PubMed DOI PMC

Robles V. Riesco M. F. Martínez-Vázquez J. M. Valcarce D. G. Flow Cytometry and Confocal Microscopy for ROS Evaluation in Fish and Human Spermatozoa. React. Oxygen Species. 2021;2202:93–102. PubMed

Vaneev A. N. Gorelkin P. V. Garanina A. S. Lopatukhina H. V. Vodopyanov S. S. Alova A. V. et al., In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Anal. Chem. 2020;92(12):8010–8014. doi: 10.1021/acs.analchem.0c01256. PubMed DOI

Yu D. L. Zha Y. Y. Zhong Z. Ruan Y. M. Li Z. W. Sun L. L. et al., Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sens. Actuators, B. 2021;339:129878. doi: 10.1016/j.snb.2021.129878. DOI

Glover-Cutter K. M. Lin S. Blackwell K. Integration of the Unfolded Protein and Oxidative Stress Responses through SKN-1/Nrf. PLoS Genet. 2013;9(9):e1003701. doi: 10.1371/journal.pgen.1003701. PubMed DOI PMC

Lehrbach N. J. Ruvkun G. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife. 2016;5:e17721. doi: 10.7554/eLife.17721. PubMed DOI PMC

Blackwell T. K. Steinbaugh M. J. Hourihan J. M. Ewald C. Y. Isik M. SKN-1/Nrf, stress responses, and aging in. Free Radical Biol. Med. 2015;88:290–301. doi: 10.1016/j.freeradbiomed.2015.06.008. PubMed DOI PMC

Lehrbach N. J. Breen P. C. Ruvkun G. Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression. Cell. 2019;177(3):737–750. doi: 10.1016/j.cell.2019.03.035. PubMed DOI PMC

Lehrbach N. J. Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. eLife. 2019;8:e44425. doi: 10.7554/eLife.44425. PubMed DOI PMC

Boocholez H. Marques F. C. Levine A. Roitenberg N. Siddiqui A. A. Zhu H. D. et al., Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep. 2022;38(6):110350. doi: 10.1016/j.celrep.2022.110350. PubMed DOI

Morley J. F. Brignull H. R. Weyers J. J. Morimoto R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in. Proc. Natl. Acad. Sci. U. S. A. 2002;99(16):10417–10422. doi: 10.1073/pnas.152161099. PubMed DOI PMC

Senchuk M. M. Dues D. J. Van Raamsdonk J. M. Measuring Oxidative Stress in Caenorhabditis elegans: Paraquat and Juglone Sensitivity Assays. Bio-Protoc. 2017;7(1):e2086. PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...