Investigating NFE2L1 activators for targeted protein aggregate clearance: a follow-up study
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41235158
PubMed Central
PMC12606464
DOI
10.1039/d5md00584a
PII: d5md00584a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Disruption of protein homeostasis (proteostasis), whether by acute proteotoxic stress or chronic expression of mutant proteins, can lead to the accumulation of toxic protein aggregates. Such aggregation is a hallmark of numerous diseases and is often associated with impaired protein clearance mechanisms. The transcription factor nuclear factor erythroid 2-related factor 1 (encoded by NFE2L1, also known as Nrf1) plays a central role in restoring proteostasis by increasing proteasome synthesis. Therefore, pharmacological activation of NFE2L1 under non-stress conditions represents a promising therapeutic strategy for neurodegenerative and other proteostasis-related diseases. In our previous study, we identified bis(phenylmethylene)cycloalkanone derivatives as NFE2L1 activators capable of inducing proteasome subunit expression, increasing heat shock protein levels, and stimulating autophagy. Building upon these findings, we have now developed a new library of structurally related compounds to identify novel more potent NFE2L1 activators. By systematically examining how specific chemical substitutions affect NFE2L1 activation, this work advances our understanding of the structure-activity relationships within this pathway.
Zobrazit více v PubMed
Klaips C. L. Jayaraj G. G. Hartl F. U. Pathways of cellular proteostasis in aging and disease. J. Cell Biol. 2018;217(1):51–63. doi: 10.1083/jcb.201709072. PubMed DOI PMC
Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973;181(4096):223–230. doi: 10.1126/science.181.4096.223. PubMed DOI
Balchin D. Hayer-Hartl M. Hartl F. U. In vivo aspects of protein folding and quality control. Science. 2016;353(6294):aac4354. doi: 10.1126/science.aac4354. PubMed DOI
Chiti F. Dobson C. M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017;86:27–68. doi: 10.1146/annurev-biochem-061516-045115. PubMed DOI
Dikic I. Proteasomal and Autophagic Degradation Systems. Annu. Rev. Biochem. 2017;86:193–224. doi: 10.1146/annurev-biochem-061516-044908. PubMed DOI
Pohl C. Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 2019;366(6467):818–822. doi: 10.1126/science.aax3769. PubMed DOI
Collins G. A. Goldberg A. L. The Logic of the 26S Proteasome. Cell. 2017;169(5):792–806. doi: 10.1016/j.cell.2017.04.023. PubMed DOI PMC
Limanaqi F. Biagioni F. Gambardella S. Familiari P. Frati A. Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int. J. Mol. Sci. 2020;21(8):3028. doi: 10.3390/ijms21083028. PubMed DOI PMC
Upadhyay A. Joshi V. Amanullah A. Mishra R. Arora N. Prasad A. et al., E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front. Mol. Neurosci. 2017;10:151. doi: 10.3389/fnmol.2017.00151. PubMed DOI PMC
Ciechanover A. Kwon Y. T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp. Mol. Med. 2015;47:e147. doi: 10.1038/emm.2014.117. PubMed DOI PMC
Graham S. H. Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res. Rev. 2017;34:30–38. doi: 10.1016/j.arr.2016.09.011. PubMed DOI PMC
Haass C. Selkoe D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 2007;8(2):101–112. doi: 10.1038/nrm2101. PubMed DOI
Liu Y. Y. Qiao F. F. Leiferman P. C. Ross A. Schlenker E. H. Wang H. M. FOXOs modulate proteasome activity in human-induced pluripotent stem cells of Huntington's disease and their derived neural cells. Hum. Mol. Genet. 2017;26(22):4416–4428. doi: 10.1093/hmg/ddx327. PubMed DOI PMC
Luk K. C. Kehm V. Carroll J. Zhang B. O'Brien P. Trojanowski J. Q. et al., Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Nontransgenic Mice. Science. 2012;338(6109):949–953. doi: 10.1126/science.1227157. PubMed DOI PMC
Murphy M. P. LeVine 3rd. H. Alzheimer's disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010;19(1):311–323. PubMed PMC
Imai Y. Soda M. Takahashi R. Parkin suppresses unfolded protein stress-induced cell death through its E3 ubiquitin-protein ligase activity. J. Biol. Chem. 2000;275(46):35661–35664. doi: 10.1074/jbc.C000447200. PubMed DOI
Shimura H. Hattori N. Kubo S. Mizuno Y. Asakawa S. Minoshima S. et al., Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 2000;25(3):302–305. doi: 10.1038/77060. PubMed DOI
Zhang Y. Gao J. Chung K. K. K. Huang H. Dawson V. L. Dawson T. M. Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc. Natl. Acad. Sci. U. S. A. 2000;97(24):13354–13359. doi: 10.1073/pnas.240347797. PubMed DOI PMC
Watts G. D. J. Wymer J. Kovach M. J. Mehta S. G. Mumm S. Darvish D. et al., Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 2004;36(4):377–381. doi: 10.1038/ng1332. PubMed DOI
Weihl C. C. Dalal S. Pestronk A. Hanson P. I. Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum. Mol. Genet. 2006;15(2):189–199. doi: 10.1093/hmg/ddi426. PubMed DOI
Keller J. N. Huang F. F. Markesbery W. R. Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience. 2000;98(1):149–156. doi: 10.1016/S0306-4522(00)00067-1. PubMed DOI
Radhakrishnan S. K. Lee C. S. Young P. Beskow A. Chan J. Y. Deshaies R. J. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol. Cell. 2010;38(1):17–28. doi: 10.1016/j.molcel.2010.02.029. PubMed DOI PMC
Radhakrishnan S. K. den Besten W. Deshaies R. J. p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife. 2014;3:e01856. doi: 10.7554/eLife.01856. PubMed DOI PMC
Ward M. A. Vangala J. R. Kaya H. E. K. Byers H. A. Hosseini N. Diaz A. et al., Transcription factor Nrf1 regulates proteotoxic stress-induced autophagy. J. Cell Biol. 2024;223(6):e202306150. doi: 10.1083/jcb.202306150. PubMed DOI PMC
Schmidt M. Finley D. Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta, Mol. Cell Res. 2014;1843(1):13–25. doi: 10.1016/j.bbamcr.2013.08.012. PubMed DOI PMC
Tomlin F. M. Gerling-Driessen U. I. M. Liu Y. C. Flynn R. A. Vangala J. R. Lentz C. S. et al., Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent. Sci. 2017;3(11):1143–1155. doi: 10.1021/acscentsci.7b00224. PubMed DOI PMC
Vangala J. R. Radhakrishnan S. K. Nrf1-mediated transcriptional regulation of the proteasome requires a functional TIP60 complex. J. Biol. Chem. 2019;294(6):2036–2045. doi: 10.1074/jbc.RA118.006290. PubMed DOI PMC
Ibrahim L. Mesgarzadeh J. Xu I. Powers E. T. Wiseman R. L. Bollong M. J. Defining the Functional Targets of Cap'n'collar Transcription Factors NRF1, NRF2, and NRF3. Antioxidants. 2020;9(10):1025. doi: 10.3390/antiox9101025. PubMed DOI PMC
Koizumi S. Irie T. Hirayama S. Sakurai Y. Yashiroda H. Naguro I. et al., The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife. 2016;5:e18357. doi: 10.7554/eLife.18357. PubMed DOI PMC
Hatanaka A. Nakada S. Matsumoto G. Satoh K. Aketa I. Watanabe A. et al., The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Sci. Rep. 2023;13(1):14405. doi: 10.1038/s41598-023-41492-9. PubMed DOI PMC
Sivá M. Svoboda M. Veverka V. Trempe J. F. Hofmann K. Kozísek M. et al., Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Sci. Rep. 2016;6:30443. doi: 10.1038/srep30443. PubMed DOI PMC
Biswas M. Chan J. Y. Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol. Appl. Pharmacol. 2010;244(1):16–20. doi: 10.1016/j.taap.2009.07.034. PubMed DOI PMC
Kobayashi A. Tsukide T. Miyasaka T. Morita T. Mizoroki T. Saito Y. et al., Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes Cells. 2011;16(6):692–703. doi: 10.1111/j.1365-2443.2011.01522.x. PubMed DOI
Lee C. S. Lee C. Hu T. Nguyen J. M. Zhang J. S. Martin M. V. et al., Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc. Natl. Acad. Sci. U. S. A. 2011;108(20):8408–8413. doi: 10.1073/pnas.1019209108. PubMed DOI PMC
Asahina M. Fujinawa R. Nakamura S. Yokoyama K. Tozawa R. Suzuki T. Ngly1−/− rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum. Mol. Genet. 2020;29(10):1635–1647. doi: 10.1093/hmg/ddaa059. PubMed DOI PMC
Lam C. Ferreira C. Krasnewich D. Toro C. Latham L. Zein W. M. et al., Prospective phenotyping of NGLY1-CDDG, the first congenital disorder of deglycosylation. Genet. Med. 2017;19(2):160–168. doi: 10.1038/gim.2016.75. PubMed DOI PMC
Mueller W. F. Jakob P. Sun H. Clauder-Munster S. Ghidelli-Disse S. Ordonez D. et al., Loss of N-Glycanase 1 Alters Transcriptional and Translational Regulation in K562 Cell Lines. G3: Genes, Genomes, Genet. 2020;10(5):1585–1597. doi: 10.1534/g3.119.401031. PubMed DOI PMC
Villaescusa J. C. Li B. S. Toledo E. M. Cervo P. R. D. Yang S. Z. Stott S. R. W. et al., A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. EMBO J. 2016;35(18):1963–1978. doi: 10.15252/embj.201593725. PubMed DOI PMC
Meiners S. Heyken D. Weller A. Ludwig A. Stangl K. Kloetzel P. M. et al., Inhibition of proteasome activity induces concerted expression of proteasome genes and formation of mammalian proteasomes. J. Biol. Chem. 2003;278(24):21517–21525. doi: 10.1074/jbc.M301032200. PubMed DOI
Steffen J. Seeger M. Koch A. Krüger E. Proteasomal Degradation Is Transcriptionally Controlled by TCF11 via an ERAD-Dependent Feedback Loop. Mol. Cell. 2010;40(1):147–158. doi: 10.1016/j.molcel.2010.09.012. PubMed DOI
Bott L. C. Badders N. M. Chen K. L. Harmison G. G. Bautista E. Shih C. C. Y. et al., A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 2016;25(10):1979–1989. doi: 10.1093/hmg/ddw073. PubMed DOI PMC
Wu Y. L. Chang J. C. Chao Y. C. Chan H. R. Hsieh M. L. Liu C. S. In Vitro Efficacy and Molecular Mechanism of Curcumin Analog in Pathological Regulation of Spinocerebellar Ataxia Type 3. Antioxidants. 2022;11(7):1389. doi: 10.3390/antiox11071389. PubMed DOI PMC
Sedlacek J. Smahelova Z. Adamek M. Subova D. Svobodova L. Kadlecova A. et al., Small-molecule activators of NRF1 transcriptional activity prevent protein aggregation. Biomed. Pharmacother. 2025;183:117864. doi: 10.1016/j.biopha.2025.117864. PubMed DOI
Svobodova L. Sedlacek J. Smahelova Z. Majer P. Machara A. Grantz Saskova K. Targeting NFEL2L1 with small molecules to protect against Ferroptosis. Bioorg. Med. Chem. Letters. 2026:130425. doi: 10.1016/j.bmcl.2025.130425. PubMed DOI
Iaconelli J. Ibrahim L. Chen E. Hull M. Schultz P. G. Bollong M. J. Small-Molecule Stimulators of NRF1 Transcriptional Activity. ChemBioChem. 2020;21(13):1816–1819. doi: 10.1002/cbic.201900487. PubMed DOI
Fassmannová D. Sedlák F. Sedlácek J. Spicka I. Saskova K. G. Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma. Cancers. 2020;12(5):1065. doi: 10.3390/cancers12051065. PubMed DOI PMC
Tannous B. A. luciferase reporter assay for monitoring biological processes in culture and. Nat. Protoc. 2009;4(4):582–591. doi: 10.1038/nprot.2009.28. PubMed DOI PMC
Calfon M. Zeng H. Q. Urano F. Till J. H. Hubbard S. R. Harding H. P. et al., IRE1 couples endoplasmic reticulum load to secretory capacity by processing the mRNA. Nature. 2002;415(6867):92–96. doi: 10.1038/415092a. PubMed DOI
Jurkin J. Henkel T. Nielsen A. F. Minnich M. Popow J. Kaufmann T. et al., The mammalian tRNA ligase complex mediates splicing of mRNA and controls antibody secretion in plasma cells. EMBO J. 2014;33(24):2922–2936. doi: 10.15252/embj.201490332. PubMed DOI PMC
Ong G. Ragetli R. Mnich K. Doble B. W. Kammouni W. Logue S. E. IRE1 signaling increases PERK expression during chronic ER stress. Cell Death Dis. 2024;15(4):276. doi: 10.1038/s41419-024-06663-0. PubMed DOI PMC
Kracht M. J. L. de Koning E. J. P. Hoeben R. C. Roep B. O. Zaldumbide A. Bioluminescent reporter assay for monitoring ER stress in human beta cells. Sci. Rep. 2018;8:17738. doi: 10.1038/s41598-018-36142-4. PubMed DOI PMC
Plate L. Cooley C. B. Chen J. J. Paxman R. J. Gallagher C. M. Madoux F. et al., Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation. eLife. 2016;5:e15550. doi: 10.7554/eLife.15550. PubMed DOI PMC
Calamini B. Silva M. C. Madoux F. Hutt D. M. Khanna S. Chalfant M. A. et al., Small-molecule proteostasis regulators for protein conformational diseases. Nat. Chem. Biol. 2012;8(2):185–196. doi: 10.1038/nchembio.763. PubMed DOI PMC
Wang A. M. Miyata Y. Klinedinst S. Peng H. M. Chua J. P. Komiyama T. et al., Activation of Hsp70 reduces neurotoxicity by promoting polyglutamine protein degradation. Nat. Chem. Biol. 2013;9(2):112–118. doi: 10.1038/nchembio.1140. PubMed DOI PMC
Waza M. Adachi H. Katsuno M. Minamiyama M. Sang C. Tanaka F. et al., 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat. Med. 2005;11(10):1088–1095. doi: 10.1038/nm1298. PubMed DOI
Cyran A. M. Zhitkovich A. HIF1, HSF1, and NRF2: Oxidant-Responsive Trio Raising Cellular Defenses and Engaging Immune System. Chem. Res. Toxicol. 2022;35(10):1690–1700. PubMed PMC
Naidu S. D. Kostov R. V. Dinkova-Kostova A. T. Transcription factors Hsf1 and Nrf2 engage in crosstalk for cytoprotection. Trends Pharmacol. Sci. 2015;36(1):6–14. doi: 10.1016/j.tips.2014.10.011. PubMed DOI
Hensen S. M. M. Heldens L. van Genesen S. T. Pruijn G. J. M. Lubsen N. H. A delayed antioxidant response in heat-stressed cells expressing a non-DNA binding HSF1 mutant. Cell Stress Chaperones. 2013;18(4):455–473. doi: 10.1007/s12192-012-0400-0. PubMed DOI PMC
Sha Z. Schnell H. M. Ruoff K. Goldberg A. Rapid induction of p62 and GAB ARA PL1 upon proteasome inhibition promotes survival before autophagy activation. J. Cell Biol. 2018;217(5):1757–1776. doi: 10.1083/jcb.201708168. PubMed DOI PMC
Kabeya Y. Mizushima N. Uero T. Yamamoto A. Kirisako T. Noda T. et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–5728. doi: 10.1093/emboj/19.21.5720. PubMed DOI PMC
Myeku N. Figueiredo-Pereira M. E. Dynamics of the Degradation of Ubiquitinated Proteins by Proteasomes and Autophagy. J. Biol. Chem. 2011;286(25):22426–22440. doi: 10.1074/jbc.M110.149252. PubMed DOI PMC
Pankiv S. Clausen T. H. Lamark T. Brech A. Bruun J. A. Outzen H. et al., p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007;282(33):24131–24145. doi: 10.1074/jbc.M702824200. PubMed DOI
Tanida I. Ueno T. Kominami E. LC3 and Autophagy. Methods Mol. Biol. 2008;445:77–88. doi: 10.1007/978-1-59745-157-4_4. PubMed DOI
Seibenhener M. L. Geetha T. Wooten M. W. Sequestosome 1/p62--more than just a scaffold. FEBS Lett. 2007;581(2):175–179. doi: 10.1016/j.febslet.2006.12.027. PubMed DOI PMC
Wu J. X. Dang Y. J. Su W. Liu C. Ma H. J. Shan Y. X. et al., Molecular cloning and characterization of rat: Two novel markers of autophagosome. Biochem. Biophys. Res. Commun. 2006;339(1):437–442. doi: 10.1016/j.bbrc.2005.10.211. PubMed DOI
Kabeya Y. Mizushima N. Yamamoto A. Oshitani-Okamoto S. Ohsumi Y. Yoshimori T. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci. 2004;117(13):2805–2812. doi: 10.1242/jcs.01131. PubMed DOI
Pereira P. J. B. Manso J. A. Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr. Opin. Struct. Biol. 2023;80:102607. doi: 10.1016/j.sbi.2023.102607. PubMed DOI
Lajoie P. Snapp E. L. Formation and Toxicity of Soluble Polyglutamine Oligomers in Living Cells. PLoS One. 2010;5(12):e15245. doi: 10.1371/journal.pone.0015245. PubMed DOI PMC
Lajoie P. Snapp E. L. Detecting soluble polyQ oligomers and investigating their impact on living cells using split-GFP. Methods Mol. Biol. 2013;1017:229–239. doi: 10.1007/978-1-62703-438-8_17. PubMed DOI PMC
Nath S. R. Yu Z. Gipson T. A. Marsh G. B. Yoshidome E. Robins D. M. et al., Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J. Clin. Invest. 2018;128(8):3630–3641. doi: 10.1172/JCI99042. PubMed DOI PMC
Raiss C. C. Braun T. S. Konings I. B. M. Grabmayr H. Hassink G. C. Sidhu A. et al., Functionally different α-synuclein inclusions yield insight into Parkinson's disease pathology. Sci. Rep. 2016;6:23116. doi: 10.1038/srep23116. PubMed DOI PMC
Uversky V. N. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res. 2004;318(1):225–241. doi: 10.1007/s00441-004-0937-z. PubMed DOI
Sedlacek J. Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs. ACS Pharmacol. Transl. Sci. 2024;8(1):21–35. doi: 10.1021/acsptsci.4c00408. PubMed DOI PMC
Robles V. Riesco M. F. Martínez-Vázquez J. M. Valcarce D. G. Flow Cytometry and Confocal Microscopy for ROS Evaluation in Fish and Human Spermatozoa. React. Oxygen Species. 2021;2202:93–102. PubMed
Vaneev A. N. Gorelkin P. V. Garanina A. S. Lopatukhina H. V. Vodopyanov S. S. Alova A. V. et al., In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Anal. Chem. 2020;92(12):8010–8014. doi: 10.1021/acs.analchem.0c01256. PubMed DOI
Yu D. L. Zha Y. Y. Zhong Z. Ruan Y. M. Li Z. W. Sun L. L. et al., Improved detection of reactive oxygen species by DCFH-DA: New insight into self-amplification of fluorescence signal by light irradiation. Sens. Actuators, B. 2021;339:129878. doi: 10.1016/j.snb.2021.129878. DOI
Glover-Cutter K. M. Lin S. Blackwell K. Integration of the Unfolded Protein and Oxidative Stress Responses through SKN-1/Nrf. PLoS Genet. 2013;9(9):e1003701. doi: 10.1371/journal.pgen.1003701. PubMed DOI PMC
Lehrbach N. J. Ruvkun G. Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife. 2016;5:e17721. doi: 10.7554/eLife.17721. PubMed DOI PMC
Blackwell T. K. Steinbaugh M. J. Hourihan J. M. Ewald C. Y. Isik M. SKN-1/Nrf, stress responses, and aging in. Free Radical Biol. Med. 2015;88:290–301. doi: 10.1016/j.freeradbiomed.2015.06.008. PubMed DOI PMC
Lehrbach N. J. Breen P. C. Ruvkun G. Protein Sequence Editing of SKN-1A/Nrf1 by Peptide:N-Glycanase Controls Proteasome Gene Expression. Cell. 2019;177(3):737–750. doi: 10.1016/j.cell.2019.03.035. PubMed DOI PMC
Lehrbach N. J. Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. eLife. 2019;8:e44425. doi: 10.7554/eLife.44425. PubMed DOI PMC
Boocholez H. Marques F. C. Levine A. Roitenberg N. Siddiqui A. A. Zhu H. D. et al., Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Rep. 2022;38(6):110350. doi: 10.1016/j.celrep.2022.110350. PubMed DOI
Morley J. F. Brignull H. R. Weyers J. J. Morimoto R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in. Proc. Natl. Acad. Sci. U. S. A. 2002;99(16):10417–10422. doi: 10.1073/pnas.152161099. PubMed DOI PMC
Senchuk M. M. Dues D. J. Van Raamsdonk J. M. Measuring Oxidative Stress in Caenorhabditis elegans: Paraquat and Juglone Sensitivity Assays. Bio-Protoc. 2017;7(1):e2086. PubMed PMC