Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
27461074
PubMed Central
PMC4962041
DOI
10.1038/srep30443
PII: srep30443
Knihovny.cz E-resources
- MeSH
- Amino Acid Motifs MeSH
- Aspartic Acid Proteases chemistry metabolism MeSH
- HEK293 Cells MeSH
- Conserved Sequence MeSH
- Crystallography, X-Ray MeSH
- Humans MeSH
- Scattering, Small Angle MeSH
- Protein Interaction Mapping MeSH
- Evolution, Molecular MeSH
- Models, Molecular MeSH
- Protein Multimerization MeSH
- Polyubiquitin metabolism MeSH
- Protein Domains MeSH
- Proteolysis MeSH
- Solutions MeSH
- Saccharomyces cerevisiae Proteins chemistry metabolism MeSH
- Saccharomyces cerevisiae metabolism MeSH
- Amino Acid Sequence MeSH
- Sequence Analysis, Protein MeSH
- Structural Homology, Protein * MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aspartic Acid Proteases MeSH
- DDI2 protein, human MeSH Browser
- Polyubiquitin MeSH
- Solutions MeSH
- Saccharomyces cerevisiae Proteins MeSH
Although Ddi1-like proteins are conserved among eukaryotes, their biological functions remain poorly characterized. Yeast Ddi1 has been implicated in cell cycle regulation, DNA-damage response, and exocytosis. By virtue of its ubiquitin-like (UBL) and ubiquitin-associated (UBA) domains, it has been proposed to serve as a proteasomal shuttle factor. All Ddi1-like family members also contain a highly conserved retroviral protease-like (RVP) domain with unknown substrate specificity. While the structure and biological function of yeast Ddi1 have been investigated, no such analysis is available for the human homologs. To address this, we solved the 3D structures of the human Ddi2 UBL and RVP domains and identified a new helical domain that extends on either side of the RVP dimer. While Ddi1-like proteins from all vertebrates lack a UBA domain, we identify a novel ubiquitin-interacting motif (UIM) located at the C-terminus of the protein. The UIM showed a weak yet specific affinity towards ubiquitin, as did the Ddi2 UBL domain. However, the full-length Ddi2 protein is unable to bind to di-ubiquitin chains. While proteomic analysis revealed no activity, implying that the protease requires other factors for activation, our structural characterization of all domains of human Ddi2 sets the stage for further characterization.
1st Faculty of Medicine Charles University Prague Katerinska 32 121 08 Prague 2 Czech Republic
Institute for Genetics University of Cologne Zülpicher Str 47a 50647 Cologne Germany
See more in PubMed
Hershko A. & Ciechanover A. The ubiquitin system. Annu Rev Biochem 67, 425–479 (1998). PubMed
Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 79, 13–21 (1994). PubMed
Clarke D. J. et al. Dosage suppressors of pds1 implicate ubiquitin-associated domains in checkpoint control. Mol Cell Biol 21, 1997–2007 (2001). PubMed PMC
Elsasser S. & Finley D. Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7, 742–749 (2005). PubMed
Elsasser S. et al. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4, 725–730 (2002). PubMed
Gomez T. A., Kolawa N., Gee M., Sweredoski M. J. & Deshaies R. J. Identification of a functional docking site in the Rpn1 LRR domain for the UBA-UBL domain protein Ddi1. Bmc Biol 9 (2011). PubMed PMC
Saeki Y., Saitoh A., Toh-e A. & Yokosawa H. Ubiquitin-like proteins and Rpn10 play cooperative roles in ubiquitin-dependent proteolysis. Biochem Bioph Res Co 293, 986–992 (2002). PubMed
Husnjak K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008). PubMed PMC
Kaplun L. et al. The DNA damage-inducible UbL-UbA protein Ddi1 participates in Mec1-mediated degradation of Ho endonuclease. Mol Cell Biol 25, 5355–5362 (2005). PubMed PMC
Bertolaet B. L. et al. UBA domains of DNA damage-inducible proteins interact with ubiquitin. Nat Struct Biol 8, 417–422 (2001). PubMed
Gabriely G., Kama R., Gelin-Licht R. & Gerst J. E. Different domains of the UBL-UBA ubiquitin receptor, Ddi1/Vsm1, are involved in its multiple cellular roles. Mol Biol Cell 19, 3625–3637 (2008). PubMed PMC
Ivantsiv Y., Kaplun L., Tzirkin-Goldin R., Shabek N. & Raveh D. Unique role for the UbL-UbA protein Ddi1 in turnover of SCFUfo complexes. Mol Cell Biol 26, 1579–1588 (2006). PubMed PMC
Nowicka U. et al. DNA-Damage-Inducible 1 Protein (Ddi1) Contains an Uncharacteristic Ubiquitin-like Domain that Binds Ubiquitin. Structure 23, 542–557 (2015). PubMed PMC
Krylov D. M. & Koonin E. V. A novel family of predicted retroviral-like aspartyl proteases with a possible key role in eukaryotic cell cycle control. Curr Biol 11, R584–R587 (2001). PubMed
Liu Y. & Xiao W. Bidirectional regulation of two DNA-damage-inducible genes, MAG1 and DDI1, from Saccharomyces cerevisiae. Mol Microbiol 23, 777–789 (1997). PubMed
Diaz-Martinez L. A., Kang Y., Walters K. J. & Clarke D. J. Yeast UBL-UBA proteins have partially redundant functions in cell cycle control. Cell Div 1 (2006). PubMed PMC
Lustgarten V. & Gerst J. E. Yeast VSM1 encodes a v-SNARE binding protein that may act as a negative regulator of constitutive exocytosis. Mol Cell Biol 19, 4480–4494 (1999). PubMed PMC
Marash M. & Gerst J. E. Phosphorylation of the autoinhibitory domain of the Sso t-SNAREs promotes binding of the Vsm1 SNARE regulator in yeast. Mol Biol Cell 14, 3114–3125 (2003). PubMed PMC
Guthmueller K. L., Yoder M. L. & Holgado A. M. Determining genetic expression profiles in C. elegans using microarray and real-time PCR. J Vis Exp (2011). PubMed PMC
Morawe T., Honemann-Capito M., von Stein W. & Wodarz A. Loss of the extraproteasomal ubiquitin receptor Rings lost impairs ring canal growth in Drosophila oogenesis. J Cell Biol 193, 71–80 (2011). PubMed PMC
Franco M. I., Turin L., Mershin A. & Skoulakis E. M. Molecular vibration-sensing component in Drosophila melanogaster olfaction. Proc Natl Acad Sci USA 108, 3797–3802 (2011). PubMed PMC
Sirkis R., Gerst J. E. & Fass D. Ddi1, a eukaryotic protein with the retroviral protease fold. J Mol Biol 364, 376–387 (2006). PubMed
Trempe J. F. Structural studies of yeast DNA damage-inducible protein (Ddi1) reveal domain architecture of the Ddi eukaryotic protein family (2016). PubMed PMC
Trempe J. F. et al. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. Embo J 24, 3178–3189 (2005). PubMed PMC
Perteguer M. J. et al. Ddi1-like protein from Leishmania major is an active aspartyl proteinase. Cell Stress Chaperones 18, 171–181 (2013). PubMed PMC
White R. E., Dickinson J. R., Semple C. A., Powell D. J. & Berry C. The retroviral proteinase active site and the N-terminus of Ddi1 are required for repression of protein secretion. FEBS Lett 585, 139–142 (2011). PubMed
White R. E., Powell D. J. & Berry C. HIV proteinase inhibitors target the Ddi1-like protein of Leishmania parasites. FASEB J 25, 1729–1736 (2011). PubMed PMC
Bucher P., Karplus K., Moeri N. & Hofmann K. A flexible motif search technique based on generalized profiles. Comput Chem 20, 3–23 (1996). PubMed
Voloshin O., Bakhrat A., Herrmann S. & Raveh D. Transfer of Ho endonuclease and Ufo1 to the proteasome by the UbL-UbA shuttle protein, Ddi1, analysed by complex formation in vitro. Plos One 7, e39210 (2012). PubMed PMC
Osswald C. et al. Mice without the regulator gene Rsc1A1 exhibit increased Na+-D-glucose cotransport in small intestine and develop obesity. Mol Cell Biol 25, 78–87 (2005). PubMed PMC
Soding J. Protein homology detection by HMM-HMM comparison. Bioinformatics 21, 951–960 (2005). PubMed
Cornilescu G., Marquardt J. L., Ottiger M. & Bax A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120, 6836–6837 (1998).
Sloper-Mould K. E., Jemc J. C., Pickart C. M. & Hicke L. Distinct functional surface regions on ubiquitin. J Biol Chem 276, 30483–30489 (2001). PubMed
Singh R. K. et al. Recognition and cleavage of related to ubiquitin 1 (Rub1) and Rub1-ubiquitin chains by components of the ubiquitin-proteasome system. Mol Cell Proteomics 11, 1595–1611 (2012). PubMed PMC
Rice P., Longden I. & Bleasby A. EMBOSS: The European molecular biology open software suite. Trends Genet 16, 276–277 (2000). PubMed
Ye Y. Z. & Godzik A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19, Ii246–Ii255 (2003). PubMed
Hasegawa H. & Holm L. Advances and pitfalls of protein structural alignment. Curr Opin Struc Biol 19, 341–348 (2009). PubMed
Lee J. H., Choi J. M., Lee C. W., Yi K. J. & Cho Y. J. Structure of a peptide : N-glycanase-Rad23 complex: Insight into the deglycosylation for denatured glycoproteins. P Natl Acad Sci USA 102, 9144–9149 (2005). PubMed PMC
Sievers F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7 (2011). PubMed PMC
Schilling O. & Overall C. M. Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites. Nat Biotechnol 26, 685–694 (2008). PubMed
Pickart C. M. & Raasi S. Controlled synthesis of polyubiquitin chains. Ubiquitin and Protein Degradation, Pt B 399, 21–36 (2005). PubMed
Mueller U. et al. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat 19, 442–449 (2012). PubMed PMC
Leslie A. G. W. & Powell H. R. Processing diffraction data with MOSFLM. Nato Sci Ser Ii Math 245, 41–51 (2007).
Evans P. Scaling and assessment of data quality. Acta Crystallogr D 62, 72–82 (2006). PubMed
Vagin A. & Teplyakov A. An approach to multi-copy search in molecular replacement. Acta Crystallogr D 56, 1622–1624 (2000). PubMed
Murshudov G. N., Vagin A. A. & Dodson E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53, 240–255 (1997). PubMed
Winn M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D 67, 235–242 (2011). PubMed PMC
Emsley P. & Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D 60, 2126–2132 (2004). PubMed
Renshaw P. S. et al. Sequence-specific assignment and secondary structure determination of the 195-residue complex formed by the Mycobacterium tuberculosis proteins CFP-10 and ESAT-6. J Biomol Nmr 30, 225–226 (2004). PubMed
Veverka V. et al. NMR assignment of the mTOR domain responsible for rapamycin binding. J Biomol Nmr 36, 3–3 (2006). PubMed
Hura G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6, 606–612 (2009). PubMed PMC
Petoukhov M. V. et al. New developments in the program package for small-angle scattering data analysis. J Appl Crystallogr 45, 342–350 (2012). PubMed PMC
Rambo R. P. & Tainer J. A. Accurate assessment of mass, models and resolution by small-angle scattering. Nature 496, 477–481 (2013). PubMed PMC
Wriggers W. Using Situs for the integration of multi-resolution structures. Biophys Rev 2, 21–27 (2010). PubMed PMC
Pettersen E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25, 1605–1612 (2004). PubMed
Schilling O., Huesgen P. F., Barre O., Keller U. A. D. & Overall C. M. Characterization of the prime and non-prime active site specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry. Nat Protoc 6, 111–120 (2011). PubMed
Baker N. A., Sept D., Joseph S., Holst M. J. & McCammon J. A. Electrostatics of nanosystems: Application to microtubules and the ribosome. P Natl Acad Sci USA 98, 10037–10041 (2001). PubMed PMC
Dolinsky T. J., Nielsen J. E., McCammon J. A. & Baker N. A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32, W665–W667 (2004). PubMed PMC