DDI2 protease controls embryonic development and inflammation via TCF11/NRF1
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39328932
PubMed Central
PMC11424978
DOI
10.1016/j.isci.2024.110893
PII: S2589-0042(24)02118-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biological sciences, Developmental biology, Immune respons,
- Publikační typ
- časopisecké články MeSH
DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.
Zobrazit více v PubMed
Collins G.A., Goldberg A.L. The Logic of the 26S Proteasome. Cell. 2017;169:792–806. doi: 10.1016/j.cell.2017.04.023. PubMed DOI PMC
Zhao J., Garcia G.A., Goldberg A.L. Control of proteasomal proteolysis by mTOR. Nature. 2016;529:E1–E2. doi: 10.1038/nature16472. PubMed DOI PMC
Zhao J., Goldberg A.L. Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR. Autophagy. 2016;12:1967–1970. doi: 10.1080/15548627.2016.1205770. PubMed DOI PMC
Yu Y., Hayward G.S. The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity. 2010;33:863–877. doi: 10.1016/j.immuni.2010.11.027. PubMed DOI PMC
Xu H., You M., Shi H., Hou Y. Ubiquitin-mediated NFkappaB degradation pathway. Cell. Mol. Immunol. 2015;12:653–655. doi: 10.1038/cmi.2014.99. PubMed DOI PMC
Ling S.C.W., Lau E.K.K., Al-Shabeeb A., Nikolic A., Catalano A., Iland H., Horvath N., Ho P.J., Harrison S., Fleming S., et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematolosubjectgica. 2012;97:64–72. doi: 10.3324/haematol.2011.043331. PubMed DOI PMC
Hipp M.S., Park S.H., Hartl F.U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014;24:506–514. doi: 10.1016/j.tcb.2014.05.003. PubMed DOI
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012;13:89–102. doi: 10.1038/nrm3270. PubMed DOI
Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC
Hetz C., Zhang K., Kaufman R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020;21:421–438. doi: 10.1038/s41580-020-0250-z. PubMed DOI PMC
Maurel M., Chevet E., Tavernier J., Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 2014;39:245–254. doi: 10.1016/j.tibs.2014.02.008. PubMed DOI
So J.S., Hur K.Y., Tarrio M., Ruda V., Frank-Kamenetsky M., Fitzgerald K., Koteliansky V., Lichtman A.H., Iwawaki T., Glimcher L.H., Lee A.H. Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metabol. 2012;16:487–499. doi: 10.1016/j.cmet.2012.09.004. PubMed DOI PMC
Radhakrishnan S.K., Lee C.S., Young P., Beskow A., Chan J.Y., Deshaies R.J. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol. Cell. 2010;38:17–28. doi: 10.1016/j.molcel.2010.02.029. PubMed DOI PMC
Northrop A., Vangala J.R., Feygin A., Radhakrishnan S.K. Disabling the Protease DDI2 Attenuates the Transcriptional Activity of NRF1 and Potentiates Proteasome Inhibitor Cytotoxicity. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21010327. PubMed DOI PMC
Fassmannová D., Sedlák F., Sedláček J., Špička I., Grantz Šašková K. Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma. Cancers. 2020;12 doi: 10.3390/cancers12051065. PubMed DOI PMC
Chavarria C., Zaffalon L., Ribeiro S.T., Op M., Quadroni M., Iatrou M.S., Chapuis C., Martinon F. ER-trafficking triggers NRF1 ubiquitination to promote its proteolytic activation. iScience. 2023;26 doi: 10.1016/j.isci.2023.107777. PubMed DOI PMC
Meiners S., Heyken D., Weller A., Ludwig A., Stangl K., Kloetzel P.M., Krüger E. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J. Biol. Chem. 2003;278:21517–21525. doi: 10.1074/jbc.M301032200. PubMed DOI
Steffen J., Seeger M., Koch A., Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell. 2010;40:147–158. doi: 10.1016/j.molcel.2010.09.012. PubMed DOI
Koizumi S., Irie T., Hirayama S., Sakurai Y., Yashiroda H., Naguro I., Ichijo H., Hamazaki J., Murata S. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. Elife. 2016;5 doi: 10.7554/eLife.18357. PubMed DOI PMC
Siva M., Svoboda M., Veverka V., Trempe J.F., Hofmann K., Kozisek M., Hexnerova R., Sedlak F., Belza J., Brynda J., et al. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Sci. Rep. 2016;6 doi: 10.1038/srep30443. PubMed DOI PMC
Tomlin F.M., Gerling-Driessen U.I.M., Liu Y.C., Flynn R.A., Vangala J.R., Lentz C.S., Clauder-Muenster S., Jakob P., Mueller W.F., Ordoñez-Rueda D., et al. Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent. Sci. 2017;3:1143–1155. doi: 10.1021/acscentsci.7b00224. PubMed DOI PMC
Nowak K., Taubert R.M., Haberecht S., Venz S., Krüger E. Inhibition of calpain-1 stabilizes TCF11/Nrf1 but does not affect its activation in response to proteasome inhibition. Biosci. Rep. 2018;38 doi: 10.1042/BSR20180393. PubMed DOI PMC
Sotzny F., Schormann E., Kühlewindt I., Koch A., Brehm A., Goldbach-Mansky R., Gilling K.E., Krüger E. TCF11/Nrf1-Mediated Induction of Proteasome Expression Prevents Cytotoxicity by Rotenone. Antioxidants Redox Signal. 2016;25:870–885. doi: 10.1089/ars.2015.6539. PubMed DOI PMC
Studencka-Turski M., Cetin G., Junker H., Ebstein F., Kruger E. Molecular Insight Into the IRE1alpha-Mediated Type I Interferon Response Induced by Proteasome Impairment in Myeloid Cells of the Brain. Front. Immunol. 2019;10:2900. doi: 10.3389/fimmu.2019.02900. PubMed DOI PMC
Kroll-Hermi A., Ebstein F., Stoetzel C., Geoffroy V., Schaefer E., Scheidecker S., Bar S., Takamiya M., Kawakami K., Zieba B.A., et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. Embo Mol Med. ARTN. 2020;12 doi: 10.15252/emmm.201911861. PubMed DOI PMC
Brehm A., Liu Y., Sheikh A., Marrero B., Omoyinmi E., Zhou Q., Montealegre G., Biancotto A., Reinhardt A., Almeida de Jesus A., et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 2015;125:4196–4211. doi: 10.1172/JCI81260. PubMed DOI PMC
Poli M.C., Ebstein F., Nicholas S.K., de Guzman M.M., Forbes L.R., Chinn I.K., Mace E.M., Vogel T.P., Carisey A.F., Benavides F., et al. Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. Am. J. Hum. Genet. 2018;102:1126–1142. doi: 10.1016/j.ajhg.2018.04.010. PubMed DOI PMC
Davidson S., Yu C.H., Steiner A., Ebstein F., Baker P.J., Jarur-Chamy V., Hrovat Schaale K., Laohamonthonkul P., Kong K., Calleja D.J., et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci. Immunol. 2022;7:eabi6763. PubMed PMC
Trempe J.F., Šašková K.G., Sivá M., Ratcliffe C.D.H., Veverka V., Hoegl A., Ménade M., Feng X., Shenker S., Svoboda M., et al. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Sci. Rep. 2016;6 doi: 10.1038/srep33671. PubMed DOI PMC
Svoboda M., Konvalinka J., Trempe J.F., Grantz Saskova K. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair. 2019;80:45–51. doi: 10.1016/j.dnarep.2019.06.008. PubMed DOI
Serbyn N., Noireterre A., Bagdiul I., Plank M., Michel A.H., Loewith R., Kornmann B., Stutz F. The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Mol. Cell. 2020;77:1066–1079.e9. doi: 10.1016/j.molcel.2019.12.007. PubMed DOI
Yip M.C.J., Bodnar N.O., Rapoport T.A. Ddi1 is a ubiquitin-dependent protease. Proc. Natl. Acad. Sci. USA. 2020;117:7776–7781. doi: 10.1073/pnas.1902298117. PubMed DOI PMC
Dirac-Svejstrup A.B., Walker J., Faull P., Encheva V., Akimov V., Puglia M., Perkins D., Kümper S., Hunjan S.S., Blagoev B., et al. DDI2 Is a Ubiquitin-Directed Endoprotease Responsible for Cleavage of Transcription Factor NRF1. Mol. Cell. 2020;79:332–341.e7. doi: 10.1016/j.molcel.2020.05.035. PubMed DOI PMC
Collins G.A., Sha Z., Kuo C.L., Erbil B., Goldberg A.L. Mammalian Ddi2 is a shuttling factor containing a retroviral protease domain that influences binding of ubiquitylated proteins and proteasomal degradation. J. Biol. Chem. 2022;298 doi: 10.1016/j.jbc.2022.101875. PubMed DOI PMC
Chowdhury A.M.M.A., Katoh H., Hatanaka A., Iwanari H., Nakamura N., Hamakubo T., Natsume T., Waku T., Kobayashi A. Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-12675-y. PubMed DOI PMC
Ribeiro S.T., de Gassart A., Bettigole S., Zaffalon L., Chavarria C., Op M., Nugraha K., Martinon F. The protease DDI2 regulates NRF1 activation in response to cadmium toxicity. iScience. 2022;25 doi: 10.1016/j.isci.2022.105227. PubMed DOI PMC
Wang Y., Zhu Y., Wang Y., Chang Y., Geng F., Ma M., Gu Y., Yu A., Zhu R., Yu P., et al. Proteolytic activation of angiomotin by DDI2 promotes angiogenesis. EMBO J. 2023;42 doi: 10.15252/embj.2022112900. PubMed DOI PMC
Cavo M., Pantani L., Pezzi A., Petrucci M.T., Patriarca F., Di Raimondo F., Marzocchi G., Galli M., Montefusco V., Zamagni E., et al. Bortezomib-thalidomide-dexamethasone (VTD) is superior to bortezomib-cyclophosphamide-dexamethasone (VCD) as induction therapy prior to autologous stem cell transplantation in multiple myeloma. Leukemia. 2015;29:2429–2431. doi: 10.1038/leu.2015.274. PubMed DOI
Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annu. Rev. Biochem. 2009;78:477–513. doi: 10.1146/annurev.biochem.78.081507.101607. PubMed DOI PMC
Welk V., Coux O., Kleene V., Abeza C., Trümbach D., Eickelberg O., Meiners S. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J. Biol. Chem. 2016;291:13147–13159. doi: 10.1074/jbc.M116.717652. PubMed DOI PMC
Kruger E., Kloetzel P.M. Immunoproteasomes at the interface of innate and adaptive immune responses: two faces of one enzyme. Curr. Opin. Immunol. 2012;24:77–83. doi: 10.1016/j.coi.2012.01.005. PubMed DOI
Whitby F.G., Masters E.I., Kramer L., Knowlton J.R., Yao Y., Wang C.C., Hill C.P. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature. 2000;408:115–120. doi: 10.1038/35040607. PubMed DOI
Leung L., Kwong M., Hou S., Lee C., Chan J.Y. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 2003;278:48021–48029. doi: 10.1074/jbc.M308439200. PubMed DOI
Vomund S., Schafer A., Parnham M.J., Brune B., von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017;18 PubMed PMC
Chevillard G., Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell. Mol. Life Sci. 2011;68:3337–3348. doi: 10.1007/s00018-011-0747-x. PubMed DOI PMC
Ebstein F., Poli Harlowe M.C., Studencka-Turski M., Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS) Front. Immunol. 2019;10:2756. doi: 10.3389/fimmu.2019.02756. PubMed DOI PMC
Rice G.I., Melki I., Frémond M.L., Briggs T.A., Rodero M.P., Kitabayashi N., Oojageer A., Bader-Meunier B., Belot A., Bodemer C., et al. Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease. J. Clin. Immunol. 2017;37:123–132. doi: 10.1007/s10875-016-0359-1. PubMed DOI PMC
Llamas E., Alirzayeva H., Loureiro R., Vilchez D. The intrinsic proteostasis network of stem cells. Curr. Opin. Cell Biol. 2020;67:46–55. doi: 10.1016/j.ceb.2020.08.005. PubMed DOI
Garcia-Prat L., Sousa-Victor P., Munoz-Canoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell. 2017;20:593–608. doi: 10.1016/j.stem.2017.04.011. PubMed DOI
Hipp M.S., Kasturi P., Hartl F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019;20:421–435. doi: 10.1038/s41580-019-0101-y. PubMed DOI
Hu X., Zou R., Zhang Z., Ji J., Li J., Huo X.Y., Liu D., Ge M.X., Cui M.K., Wu M.Z., et al. UBE4A catalyzes NRF1 ubiquitination and facilitates DDI2-mediated NRF1 cleavage. Biochim. Biophys. Acta. Gene Regul. Mech. 2023;1866 doi: 10.1016/j.bbagrm.2023.194937. PubMed DOI
Vangala J.R., Sotzny F., Krüger E., Deshaies R.J., Radhakrishnan S.K. Nrf1 can be processed and activated in a proteasome-independent manner. Curr. Biol. 2016;26:R834–R835. doi: 10.1016/j.cub.2016.08.008. PubMed DOI PMC
Fujihira H., Masahara-Negishi Y., Tamura M., Huang C., Harada Y., Wakana S., Takakura D., Kawasaki N., Taniguchi N., Kondoh G., et al. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017;13 doi: 10.1371/journal.pgen.1006696. PubMed DOI PMC
Chan J.Y., Kwong M., Lu R., Chang J., Wang B., Yen T.S., Kan Y.W. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 1998;17:1779–1787. doi: 10.1093/emboj/17.6.1779. PubMed DOI PMC
Sakao Y., Kawai T., Takeuchi O., Copeland N.G., Gilbert D.J., Jenkins N.A., Takeda K., Akira S. Mouse proteasomal ATPases Psmc3 and Psmc4: genomic organization and gene targeting. Genomics. 2000;67:1–7. doi: 10.1006/geno.2000.6231. PubMed DOI
Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC
Gray P.A., Fu H., Luo P., Zhao Q., Yu J., Ferrari A., Tenzen T., Yuk D.I., Tsung E.F., Cai Z., et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science. 2004;306:2255–2257. doi: 10.1126/science.1104935. PubMed DOI
Ramirez J., Lectez B., Osinalde N., Sivá M., Elu N., Aloria K., Procházková M., Perez C., Martínez-Hernández J., Barrio R., et al. Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum. Mol. Genet. 2018;27:1955–1971. doi: 10.1093/hmg/ddy103. PubMed DOI
Kottemann M.C., Conti B.A., Lach F.P., Smogorzewska A. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity. Mol. Cell. 2018;69:24–35.e5. doi: 10.1016/j.molcel.2017.11.035. PubMed DOI PMC
Yousaf A., Wu Y., Khan R., Shah W., Khan I., Shi Q., Jiang X. Normal spermatogenesis and fertility in Ddi1 (DNA damage inducible 1) mutant mice. Reprod. Biol. 2020;20:520–524. doi: 10.1016/j.repbio.2020.08.006. PubMed DOI
Farmer S.C., Sun C.W., Winnier G.E., Hogan B.L., Townes T.M. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes Dev. 1997;11:786–798. doi: 10.1101/gad.11.6.786. PubMed DOI
Yokoi M., Hanaoka F. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene. 2017;597:1–9. doi: 10.1016/j.gene.2016.10.027. PubMed DOI
Tanaka K., Chiba T. The proteasome: a protein-destroying machine. Gene Cell. 1998;3:499–510. doi: 10.1046/j.1365-2443.1998.00207.x. PubMed DOI
Ariyama Y., Shimizu H., Satoh T., Tsuchiya T., Okada S., Oyadomari S., Mori M., Mori M. Chop-deficient mice showed increased adiposity but no glucose intolerance. Obesity. 2007;15:1647–1656. doi: 10.1038/oby.2007.197. PubMed DOI
Masuoka H.C., Townes T.M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood. 2002;99:736–745. doi: 10.1182/blood.V99.3.736. PubMed DOI
Muller-Newen G., Stope M.B., Kraus T., Ziegler P. Development of platelets during steady state and inflammation. J. Leukoc. Biol. 2017;101:1109–1117. doi: 10.1189/jlb.1RU0916-391RR. PubMed DOI
Hamilton A.M., Zito K. Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis. Neural Plast. 2013;2013 doi: 10.1155/2013/196848. PubMed DOI PMC
Boukhalfa A., Miceli C., Ávalos Y., Morel E., Dupont N. Interplay between primary cilia, ubiquitin-proteasome system and autophagy. Biochimie. 2019;166:286–292. doi: 10.1016/j.biochi.2019.06.009. PubMed DOI
Gerhardt C., Wiegering A., Leu T., Rüther U. Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J. Dev. Biol. 2016;4 doi: 10.3390/jdb4030027. PubMed DOI PMC
Baloghova N., Lidak T., Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-beta, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes. 2019;10 doi: 10.3390/genes10100815. PubMed DOI PMC
Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schröter F., Prozorovski T., Lange N., Steffen J., Rieger M., et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell. 2010;142:613–624. doi: 10.1016/j.cell.2010.07.036. PubMed DOI
Ebstein F., Voigt A., Lange N., Warnatsch A., Schröter F., Prozorovski T., Kuckelkorn U., Aktas O., Seifert U., Kloetzel P.M., Krüger E. Immunoproteasomes are important for proteostasis in immune responses. Cell. 2013;152:935–937. doi: 10.1016/j.cell.2013.02.018. PubMed DOI
Jung T., Hohn A., Grune T. The proteasome and the degradation of oxidized proteins: Part III-Redox regulation of the proteasomal system. Redox Biol. 2014;2:388–394. doi: 10.1016/j.redox.2013.12.029. PubMed DOI PMC
Yang K., Huang R., Fujihira H., Suzuki T., Yan N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J. Exp. Med. 2018;215:2600–2616. doi: 10.1084/jem.20180783. PubMed DOI PMC
Novoa I., Zhang Y.H., Zeng H.Q., Jungreis R., Harding H.P., Ron D. Stress-induced gene expression requires programmed recovery from translational repression (vol 22, pg 1180, 2003) EMBO J. 2003;22:2307. PubMed PMC
Bertolotti A. The split protein phosphatase system. Biochem. J. 2018;475:3707–3723. doi: 10.1042/Bcj20170726. PubMed DOI PMC
Schneider K., Nelson G.M., Watson J.L., Morf J., Dalglish M., Luh L.M., Weber A., Bertolotti A. Protein Stability Buffers the Cost of Translation Attenuation following eIF2alpha Phosphorylation. Cell Rep. 2020;32 doi: 10.1016/j.celrep.2020.108154. PubMed DOI PMC
Dalet A., Arguello R.J., Combes A., Spinelli L., Jaeger S., Fallet M., Manh T.P.V., Mendes A., Perego J., Reverendo M., et al. Protein synthesis inhibition and GADD34 control IFN-beta heterogeneous expression in response to dsRNA. EMBO J. 2017;36:761–782. doi: 10.15252/embj.201695000. PubMed DOI PMC
Brehm A., Krüger E. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin. Immunopathol. 2015;37:323–333. doi: 10.1007/s00281-015-0486-4. PubMed DOI
Ebstein F., Küry S., Most V., Rosenfelt C., Scott-Boyer M.P., van Woerden G.M., Besnard T., Papendorf J.J., Studencka-Turski M., Wang T., et al. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci. Transl. Med. 2023;15 doi: 10.1126/scitranslmed.abo3189. PubMed DOI PMC
Kim H., de Jesus A.A., Brooks S.R., Liu Y., Huang Y., VanTries R., Montealegre Sanchez G.A., Rotman Y., Gadina M., Goldbach-Mansky R. Development of a Validated Interferon Score Using NanoString Technology. J. Interferon Cytokine Res. 2018;38:171–185. doi: 10.1089/jir.2017.0127. PubMed DOI PMC
Perry A.K., Chow E.K., Goodnough J.B., Yeh W.C., Cheng G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 2004;199:1651–1658. doi: 10.1084/jem.20040528. PubMed DOI PMC
Tsuzuki S., Tachibana M., Hemmi M., Yamaguchi T., Shoji M., Sakurai F., Kobiyama K., Kawabata K., Ishii K.J., Akira S., Mizuguchi H. TANK-binding kinase 1-dependent or -independent signaling elicits the cell-type-specific innate immune responses induced by the adenovirus vector. Int. Immunol. 2016;28:105–115. doi: 10.1093/intimm/dxv058. PubMed DOI
Balka K.R., Louis C., Saunders T.L., Smith A.M., Calleja D.J., D'Silva D.B., Moghaddas F., Tailler M., Lawlor K.E., Zhan Y., et al. TBK1 and IKK epsilon Act Redundantly to Mediate STING-Induced NF-kappa B Responses in Myeloid Cells. Cell Rep. 2020;31 doi: 10.1016/j.celrep.2020.03.056. PubMed DOI
Miyahira A.K., Shahangian A., Hwang S., Sun R., Cheng G. TANK-Binding Kinase-1 Plays an Important Role during In Vitro and In Vivo Type I IFN Responses to DNA Virus Infections. J. Immunol. 2009;182:2248–2257. doi: 10.4049/jimmunol.0802466. PubMed DOI PMC
DeFilippis V.R., Robinson B., Keck T.M., Hansen S.G., Nelson J.A., Früh K.J. Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J. Virol. 2006;80:1032–1037. doi: 10.1128/Jvi.80.2.1032-1037.2006. PubMed DOI PMC
Ashley C.L., Abendroth A., McSharry B.P., Slobedman B. Interferon-Independent Upregulation of Interferon-Stimulated Genes during Human Cytomegalovirus Infection is Dependent on IRF3 Expression. Viruses-Basel. 2019;11 doi: 10.3390/v11030246. PubMed DOI PMC
Csumita M., Csermely A., Horvath A., Nagy G., Monori F., Göczi L., Orbea H.A., Reith W., Széles L. Specific enhancer selection by IRF3, IRF5 and IRF9 is determined by ISRE half-sites, 5 ' and 3 ' flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Res. 2020;48:589–604. doi: 10.1093/nar/gkz1112. PubMed DOI PMC
Deschenes-Simard X., Parisotto M., Rowell M.C., Le Calve B., Igelmann S., Moineau-Vallee K., Saint-Germain E., Kalegari P., Bourdeau V., Kottakis F., et al. Circumventing senescence is associated with stem cell properties and metformin sensitivity. Aging Cell. 2019;18 doi: 10.1111/acel.12889. PubMed DOI PMC
Ganguly D., Sims M., Cai C., Fan M., Pfeffer L.M. Chromatin Remodeling Factor BRG1 Regulates Stemness and Chemosensitivity of Glioma Initiating Cells. Stem Cell. 2018;36:1804–1815. doi: 10.1002/stem.2909. PubMed DOI PMC
Lu T., Bankhead A., Ljungman M., Neamati N. Multi-omics profiling reveals key signaling pathways in ovarian cancer controlled by STAT3. Theranostics. 2019;9:5478–5496. doi: 10.7150/thno.33444. PubMed DOI PMC
Lin L., Wang Y., Sun B., Liu L., Ying W., Wang W., Zhou Q., Hou J., Yao H., Hu L., et al. The clinical, immunological and genetic features of 12 Chinese patients with STAT3 mutations. Allergy Asthma Clin. Immunol. 2020;16:1–10. doi: 10.1186/s13223-020-00462-w. PubMed DOI PMC
Jin J., Liu J., Chen C., Liu Z., Jiang C., Chu H., Pan W., Wang X., Zhang L., Li B., et al. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat. Commun. 2016;7 doi: 10.1038/ncomms13594. PubMed DOI PMC
Charras A., Arvaniti P., Le Dantec C., Arleevskaya M.I., Zachou K., Dalekos G.N., Bordon A., Renaudineau Y. JAK Inhibitors Suppress Innate Epigenetic Reprogramming: a Promise for Patients with Sjogren's Syndrome. Clin. Rev. Allergy Immunol. 2020;58:182–193. doi: 10.1007/s12016-019-08743-y. PubMed DOI
Tsai M.H., Pai L.M., Lee C.K. Fine-Tuning of Type I Interferon Response by STAT3. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.01448. PubMed DOI PMC
Eggenberger J., Blanco-Melo D., Panis M., Brennand K.J., tenOever B.R. Type I interferon response impairs differentiation potential of pluripotent stem cells. Proc. Natl. Acad. Sci. USA. 2019;116:1384–1393. doi: 10.1073/pnas.1812449116. PubMed DOI PMC
Yu Q., Katlinskaya Y.V., Carbone C.J., Zhao B., Katlinski K.V., Zheng H., Guha M., Li N., Chen Q., Yang T., et al. DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. Cell Rep. 2015;11:785–797. doi: 10.1016/j.celrep.2015.03.069. PubMed DOI PMC
Todoric J., Karin M. The Fire within: Cell-Autonomous Mechanisms in Inflammation-Driven Cancer. Cancer Cell. 2019;35:714–720. doi: 10.1016/j.ccell.2019.04.001. PubMed DOI
Rawlings J.S., Rosler K.M., Harrison D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004;117:1281–1283. doi: 10.1242/jcs.00963. PubMed DOI
Bai L., Zhou H., Xu R., Zhao Y., Chinnaswamy K., McEachern D., Chen J., Yang C.Y., Liu Z., Wang M., et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell. 2019;36:498–511.e17. doi: 10.1016/j.ccell.2019.10.002. PubMed DOI PMC
Gu Y., Wang X., Wang Y., Wang Y., Li J., Yu F.X. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell. Signal. 2020;75 doi: 10.1016/j.cellsig.2020.109775. PubMed DOI
Op M., Ribeiro S.T., Chavarria C., De Gassart A., Zaffalon L., Martinon F. The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma. Cell Death Dis. 2022;13:475. doi: 10.1038/s41419-022-04925-3. PubMed DOI PMC
Chen T., Ho M., Briere J., Moscvin M., Czarnecki P.G., Anderson K.C., Blackwell T.K., Bianchi G. Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Adv. 2022;6:429–440. doi: 10.1182/bloodadvances.2020003820. PubMed DOI PMC
Lei L., Cao Q., An G., Lv Y., Tang J., Yang J. DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer. Apoptosis. 2023;28:458–470. doi: 10.1007/s10495-022-01796-z. PubMed DOI
Zhang X.D., Baladandayuthapani V., Lin H., Mulligan G., Li B., Esseltine D.L.W., Qi L., Xu J., Hunziker W., Barlogie B., et al. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell. 2016;29:639–652. doi: 10.1016/j.ccell.2016.03.026. PubMed DOI PMC
Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
Deutsch E.W., Bandeira N., Sharma V., Perez-Riverol Y., Carver J.J., Kundu D.J., García-Seisdedos D., Jarnuczak A.F., Hewapathirana S., Pullman B.S., et al. The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. Nucleic Acids Res. 2020;48:D1145–D1152. doi: 10.1093/nar/gkz984. PubMed DOI PMC
Tykvart J., Bařinka C., Svoboda M., Navrátil V., Souček R., Hubálek M., Hradilek M., Šácha P., Lubkowski J., Konvalinka J. Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine. J. Biol. Chem. 2015;290:11321–11336. doi: 10.1074/jbc.M114.628149. PubMed DOI PMC
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39 doi: 10.1093/nar/gkr218. PubMed DOI PMC
Doyle E.L., Booher N.J., Standage D.S., Voytas D.F., Brendel V.P., VanDyk J.K., Bogdanove A.J. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40:W117–W122. doi: 10.1093/nar/gks608. PubMed DOI PMC
Flemr M., Malik R., Franke V., Nejepinska J., Sedlacek R., Vlahovicek K., Svoboda P. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155:807–816. doi: 10.1016/j.cell.2013.10.001. PubMed DOI
Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., Sedlacek R. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014;588:3982–3988. doi: 10.1016/j.febslet.2014.09.014. PubMed DOI
Wilkinson D.G., Nieto M.A. Detection of Messenger-Rna by in-Situ Hybridization to Tissue-Sections and Whole Mounts. Method Enzymol. 1993;225:361–373. PubMed
Blankenburg S., Hentschker C., Nagel A., Hildebrandt P., Michalik S., Dittmar D., Surmann K., Völker U. Improving Proteome Coverage for Small Sample Amounts: An Advanced Method for Proteomics Approaches with Low Bacterial Cell Numbers. Proteomics. 2019;19:e1900192. doi: 10.1002/pmic.201900192. PubMed DOI
Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., Griss J., Sevilla C., Matthews L., Gong C., et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC
Griss J., Viteri G., Sidiropoulos K., Nguyen V., Fabregat A., Hermjakob H. ReactomeGSA-Efficient Multi-Omics Comparative Pathway Analysis. Mol. Cell. Proteomics. 2020;19:2115–2125. doi: 10.1074/mcp.TIR120.002155. PubMed DOI PMC
Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., Sidiropoulos K., Cook J., Gillespie M., Haw R., et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. doi: 10.1093/nar/gkz1031. PubMed DOI PMC