DDI2 protease controls embryonic development and inflammation via TCF11/NRF1

. 2024 Oct 18 ; 27 (10) : 110893. [epub] 20240905

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39328932
Odkazy

PubMed 39328932
PubMed Central PMC11424978
DOI 10.1016/j.isci.2024.110893
PII: S2589-0042(24)02118-7
Knihovny.cz E-zdroje

DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.

Zobrazit více v PubMed

Collins G.A., Goldberg A.L. The Logic of the 26S Proteasome. Cell. 2017;169:792–806. doi: 10.1016/j.cell.2017.04.023. PubMed DOI PMC

Zhao J., Garcia G.A., Goldberg A.L. Control of proteasomal proteolysis by mTOR. Nature. 2016;529:E1–E2. doi: 10.1038/nature16472. PubMed DOI PMC

Zhao J., Goldberg A.L. Coordinate regulation of autophagy and the ubiquitin proteasome system by MTOR. Autophagy. 2016;12:1967–1970. doi: 10.1080/15548627.2016.1205770. PubMed DOI PMC

Yu Y., Hayward G.S. The ubiquitin E3 ligase RAUL negatively regulates type i interferon through ubiquitination of the transcription factors IRF7 and IRF3. Immunity. 2010;33:863–877. doi: 10.1016/j.immuni.2010.11.027. PubMed DOI PMC

Xu H., You M., Shi H., Hou Y. Ubiquitin-mediated NFkappaB degradation pathway. Cell. Mol. Immunol. 2015;12:653–655. doi: 10.1038/cmi.2014.99. PubMed DOI PMC

Ling S.C.W., Lau E.K.K., Al-Shabeeb A., Nikolic A., Catalano A., Iland H., Horvath N., Ho P.J., Harrison S., Fleming S., et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematolosubjectgica. 2012;97:64–72. doi: 10.3324/haematol.2011.043331. PubMed DOI PMC

Hipp M.S., Park S.H., Hartl F.U. Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends Cell Biol. 2014;24:506–514. doi: 10.1016/j.tcb.2014.05.003. PubMed DOI

Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012;13:89–102. doi: 10.1038/nrm3270. PubMed DOI

Pakos-Zebrucka K., Koryga I., Mnich K., Ljujic M., Samali A., Gorman A.M. The integrated stress response. EMBO Rep. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC

Hetz C., Zhang K., Kaufman R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020;21:421–438. doi: 10.1038/s41580-020-0250-z. PubMed DOI PMC

Maurel M., Chevet E., Tavernier J., Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci. 2014;39:245–254. doi: 10.1016/j.tibs.2014.02.008. PubMed DOI

So J.S., Hur K.Y., Tarrio M., Ruda V., Frank-Kamenetsky M., Fitzgerald K., Koteliansky V., Lichtman A.H., Iwawaki T., Glimcher L.H., Lee A.H. Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metabol. 2012;16:487–499. doi: 10.1016/j.cmet.2012.09.004. PubMed DOI PMC

Radhakrishnan S.K., Lee C.S., Young P., Beskow A., Chan J.Y., Deshaies R.J. Transcription Factor Nrf1 Mediates the Proteasome Recovery Pathway after Proteasome Inhibition in Mammalian Cells. Mol. Cell. 2010;38:17–28. doi: 10.1016/j.molcel.2010.02.029. PubMed DOI PMC

Northrop A., Vangala J.R., Feygin A., Radhakrishnan S.K. Disabling the Protease DDI2 Attenuates the Transcriptional Activity of NRF1 and Potentiates Proteasome Inhibitor Cytotoxicity. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21010327. PubMed DOI PMC

Fassmannová D., Sedlák F., Sedláček J., Špička I., Grantz Šašková K. Nelfinavir Inhibits the TCF11/Nrf1-Mediated Proteasome Recovery Pathway in Multiple Myeloma. Cancers. 2020;12 doi: 10.3390/cancers12051065. PubMed DOI PMC

Chavarria C., Zaffalon L., Ribeiro S.T., Op M., Quadroni M., Iatrou M.S., Chapuis C., Martinon F. ER-trafficking triggers NRF1 ubiquitination to promote its proteolytic activation. iScience. 2023;26 doi: 10.1016/j.isci.2023.107777. PubMed DOI PMC

Meiners S., Heyken D., Weller A., Ludwig A., Stangl K., Kloetzel P.M., Krüger E. Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J. Biol. Chem. 2003;278:21517–21525. doi: 10.1074/jbc.M301032200. PubMed DOI

Steffen J., Seeger M., Koch A., Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell. 2010;40:147–158. doi: 10.1016/j.molcel.2010.09.012. PubMed DOI

Koizumi S., Irie T., Hirayama S., Sakurai Y., Yashiroda H., Naguro I., Ichijo H., Hamazaki J., Murata S. The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. Elife. 2016;5 doi: 10.7554/eLife.18357. PubMed DOI PMC

Siva M., Svoboda M., Veverka V., Trempe J.F., Hofmann K., Kozisek M., Hexnerova R., Sedlak F., Belza J., Brynda J., et al. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog. Sci. Rep. 2016;6 doi: 10.1038/srep30443. PubMed DOI PMC

Tomlin F.M., Gerling-Driessen U.I.M., Liu Y.C., Flynn R.A., Vangala J.R., Lentz C.S., Clauder-Muenster S., Jakob P., Mueller W.F., Ordoñez-Rueda D., et al. Inhibition of NGLY1 Inactivates the Transcription Factor Nrf1 and Potentiates Proteasome Inhibitor Cytotoxicity. ACS Cent. Sci. 2017;3:1143–1155. doi: 10.1021/acscentsci.7b00224. PubMed DOI PMC

Nowak K., Taubert R.M., Haberecht S., Venz S., Krüger E. Inhibition of calpain-1 stabilizes TCF11/Nrf1 but does not affect its activation in response to proteasome inhibition. Biosci. Rep. 2018;38 doi: 10.1042/BSR20180393. PubMed DOI PMC

Sotzny F., Schormann E., Kühlewindt I., Koch A., Brehm A., Goldbach-Mansky R., Gilling K.E., Krüger E. TCF11/Nrf1-Mediated Induction of Proteasome Expression Prevents Cytotoxicity by Rotenone. Antioxidants Redox Signal. 2016;25:870–885. doi: 10.1089/ars.2015.6539. PubMed DOI PMC

Studencka-Turski M., Cetin G., Junker H., Ebstein F., Kruger E. Molecular Insight Into the IRE1alpha-Mediated Type I Interferon Response Induced by Proteasome Impairment in Myeloid Cells of the Brain. Front. Immunol. 2019;10:2900. doi: 10.3389/fimmu.2019.02900. PubMed DOI PMC

Kroll-Hermi A., Ebstein F., Stoetzel C., Geoffroy V., Schaefer E., Scheidecker S., Bar S., Takamiya M., Kawakami K., Zieba B.A., et al. Proteasome subunit PSMC3 variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. Embo Mol Med. ARTN. 2020;12 doi: 10.15252/emmm.201911861. PubMed DOI PMC

Brehm A., Liu Y., Sheikh A., Marrero B., Omoyinmi E., Zhou Q., Montealegre G., Biancotto A., Reinhardt A., Almeida de Jesus A., et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 2015;125:4196–4211. doi: 10.1172/JCI81260. PubMed DOI PMC

Poli M.C., Ebstein F., Nicholas S.K., de Guzman M.M., Forbes L.R., Chinn I.K., Mace E.M., Vogel T.P., Carisey A.F., Benavides F., et al. Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. Am. J. Hum. Genet. 2018;102:1126–1142. doi: 10.1016/j.ajhg.2018.04.010. PubMed DOI PMC

Davidson S., Yu C.H., Steiner A., Ebstein F., Baker P.J., Jarur-Chamy V., Hrovat Schaale K., Laohamonthonkul P., Kong K., Calleja D.J., et al. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci. Immunol. 2022;7:eabi6763. PubMed PMC

Trempe J.F., Šašková K.G., Sivá M., Ratcliffe C.D.H., Veverka V., Hoegl A., Ménade M., Feng X., Shenker S., Svoboda M., et al. Structural studies of the yeast DNA damage-inducible protein Ddi1 reveal domain architecture of this eukaryotic protein family. Sci. Rep. 2016;6 doi: 10.1038/srep33671. PubMed DOI PMC

Svoboda M., Konvalinka J., Trempe J.F., Grantz Saskova K. The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response. DNA Repair. 2019;80:45–51. doi: 10.1016/j.dnarep.2019.06.008. PubMed DOI

Serbyn N., Noireterre A., Bagdiul I., Plank M., Michel A.H., Loewith R., Kornmann B., Stutz F. The Aspartic Protease Ddi1 Contributes to DNA-Protein Crosslink Repair in Yeast. Mol. Cell. 2020;77:1066–1079.e9. doi: 10.1016/j.molcel.2019.12.007. PubMed DOI

Yip M.C.J., Bodnar N.O., Rapoport T.A. Ddi1 is a ubiquitin-dependent protease. Proc. Natl. Acad. Sci. USA. 2020;117:7776–7781. doi: 10.1073/pnas.1902298117. PubMed DOI PMC

Dirac-Svejstrup A.B., Walker J., Faull P., Encheva V., Akimov V., Puglia M., Perkins D., Kümper S., Hunjan S.S., Blagoev B., et al. DDI2 Is a Ubiquitin-Directed Endoprotease Responsible for Cleavage of Transcription Factor NRF1. Mol. Cell. 2020;79:332–341.e7. doi: 10.1016/j.molcel.2020.05.035. PubMed DOI PMC

Collins G.A., Sha Z., Kuo C.L., Erbil B., Goldberg A.L. Mammalian Ddi2 is a shuttling factor containing a retroviral protease domain that influences binding of ubiquitylated proteins and proteasomal degradation. J. Biol. Chem. 2022;298 doi: 10.1016/j.jbc.2022.101875. PubMed DOI PMC

Chowdhury A.M.M.A., Katoh H., Hatanaka A., Iwanari H., Nakamura N., Hamakubo T., Natsume T., Waku T., Kobayashi A. Multiple regulatory mechanisms of the biological function of NRF3 (NFE2L3) control cancer cell proliferation. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-12675-y. PubMed DOI PMC

Ribeiro S.T., de Gassart A., Bettigole S., Zaffalon L., Chavarria C., Op M., Nugraha K., Martinon F. The protease DDI2 regulates NRF1 activation in response to cadmium toxicity. iScience. 2022;25 doi: 10.1016/j.isci.2022.105227. PubMed DOI PMC

Wang Y., Zhu Y., Wang Y., Chang Y., Geng F., Ma M., Gu Y., Yu A., Zhu R., Yu P., et al. Proteolytic activation of angiomotin by DDI2 promotes angiogenesis. EMBO J. 2023;42 doi: 10.15252/embj.2022112900. PubMed DOI PMC

Cavo M., Pantani L., Pezzi A., Petrucci M.T., Patriarca F., Di Raimondo F., Marzocchi G., Galli M., Montefusco V., Zamagni E., et al. Bortezomib-thalidomide-dexamethasone (VTD) is superior to bortezomib-cyclophosphamide-dexamethasone (VCD) as induction therapy prior to autologous stem cell transplantation in multiple myeloma. Leukemia. 2015;29:2429–2431. doi: 10.1038/leu.2015.274. PubMed DOI

Finley D. Recognition and Processing of Ubiquitin-Protein Conjugates by the Proteasome. Annu. Rev. Biochem. 2009;78:477–513. doi: 10.1146/annurev.biochem.78.081507.101607. PubMed DOI PMC

Welk V., Coux O., Kleene V., Abeza C., Trümbach D., Eickelberg O., Meiners S. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J. Biol. Chem. 2016;291:13147–13159. doi: 10.1074/jbc.M116.717652. PubMed DOI PMC

Kruger E., Kloetzel P.M. Immunoproteasomes at the interface of innate and adaptive immune responses: two faces of one enzyme. Curr. Opin. Immunol. 2012;24:77–83. doi: 10.1016/j.coi.2012.01.005. PubMed DOI

Whitby F.G., Masters E.I., Kramer L., Knowlton J.R., Yao Y., Wang C.C., Hill C.P. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature. 2000;408:115–120. doi: 10.1038/35040607. PubMed DOI

Leung L., Kwong M., Hou S., Lee C., Chan J.Y. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 2003;278:48021–48029. doi: 10.1074/jbc.M308439200. PubMed DOI

Vomund S., Schafer A., Parnham M.J., Brune B., von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int. J. Mol. Sci. 2017;18 PubMed PMC

Chevillard G., Blank V. NFE2L3 (NRF3): the Cinderella of the Cap'n'Collar transcription factors. Cell. Mol. Life Sci. 2011;68:3337–3348. doi: 10.1007/s00018-011-0747-x. PubMed DOI PMC

Ebstein F., Poli Harlowe M.C., Studencka-Turski M., Krüger E. Contribution of the Unfolded Protein Response (UPR) to the Pathogenesis of Proteasome-Associated Autoinflammatory Syndromes (PRAAS) Front. Immunol. 2019;10:2756. doi: 10.3389/fimmu.2019.02756. PubMed DOI PMC

Rice G.I., Melki I., Frémond M.L., Briggs T.A., Rodero M.P., Kitabayashi N., Oojageer A., Bader-Meunier B., Belot A., Bodemer C., et al. Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease. J. Clin. Immunol. 2017;37:123–132. doi: 10.1007/s10875-016-0359-1. PubMed DOI PMC

Llamas E., Alirzayeva H., Loureiro R., Vilchez D. The intrinsic proteostasis network of stem cells. Curr. Opin. Cell Biol. 2020;67:46–55. doi: 10.1016/j.ceb.2020.08.005. PubMed DOI

Garcia-Prat L., Sousa-Victor P., Munoz-Canoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell. 2017;20:593–608. doi: 10.1016/j.stem.2017.04.011. PubMed DOI

Hipp M.S., Kasturi P., Hartl F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019;20:421–435. doi: 10.1038/s41580-019-0101-y. PubMed DOI

Hu X., Zou R., Zhang Z., Ji J., Li J., Huo X.Y., Liu D., Ge M.X., Cui M.K., Wu M.Z., et al. UBE4A catalyzes NRF1 ubiquitination and facilitates DDI2-mediated NRF1 cleavage. Biochim. Biophys. Acta. Gene Regul. Mech. 2023;1866 doi: 10.1016/j.bbagrm.2023.194937. PubMed DOI

Vangala J.R., Sotzny F., Krüger E., Deshaies R.J., Radhakrishnan S.K. Nrf1 can be processed and activated in a proteasome-independent manner. Curr. Biol. 2016;26:R834–R835. doi: 10.1016/j.cub.2016.08.008. PubMed DOI PMC

Fujihira H., Masahara-Negishi Y., Tamura M., Huang C., Harada Y., Wakana S., Takakura D., Kawasaki N., Taniguchi N., Kondoh G., et al. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene. PLoS Genet. 2017;13 doi: 10.1371/journal.pgen.1006696. PubMed DOI PMC

Chan J.Y., Kwong M., Lu R., Chang J., Wang B., Yen T.S., Kan Y.W. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 1998;17:1779–1787. doi: 10.1093/emboj/17.6.1779. PubMed DOI PMC

Sakao Y., Kawai T., Takeuchi O., Copeland N.G., Gilbert D.J., Jenkins N.A., Takeda K., Akira S. Mouse proteasomal ATPases Psmc3 and Psmc4: genomic organization and gene targeting. Genomics. 2000;67:1–7. doi: 10.1006/geno.2000.6231. PubMed DOI

Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002;12:996–1006. doi: 10.1101/gr.229102. PubMed DOI PMC

Gray P.A., Fu H., Luo P., Zhao Q., Yu J., Ferrari A., Tenzen T., Yuk D.I., Tsung E.F., Cai Z., et al. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science. 2004;306:2255–2257. doi: 10.1126/science.1104935. PubMed DOI

Ramirez J., Lectez B., Osinalde N., Sivá M., Elu N., Aloria K., Procházková M., Perez C., Martínez-Hernández J., Barrio R., et al. Quantitative proteomics reveals neuronal ubiquitination of Rngo/Ddi1 and several proteasomal subunits by Ube3a, accounting for the complexity of Angelman syndrome. Hum. Mol. Genet. 2018;27:1955–1971. doi: 10.1093/hmg/ddy103. PubMed DOI

Kottemann M.C., Conti B.A., Lach F.P., Smogorzewska A. Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity. Mol. Cell. 2018;69:24–35.e5. doi: 10.1016/j.molcel.2017.11.035. PubMed DOI PMC

Yousaf A., Wu Y., Khan R., Shah W., Khan I., Shi Q., Jiang X. Normal spermatogenesis and fertility in Ddi1 (DNA damage inducible 1) mutant mice. Reprod. Biol. 2020;20:520–524. doi: 10.1016/j.repbio.2020.08.006. PubMed DOI

Farmer S.C., Sun C.W., Winnier G.E., Hogan B.L., Townes T.M. The bZIP transcription factor LCR-F1 is essential for mesoderm formation in mouse development. Genes Dev. 1997;11:786–798. doi: 10.1101/gad.11.6.786. PubMed DOI

Yokoi M., Hanaoka F. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Gene. 2017;597:1–9. doi: 10.1016/j.gene.2016.10.027. PubMed DOI

Tanaka K., Chiba T. The proteasome: a protein-destroying machine. Gene Cell. 1998;3:499–510. doi: 10.1046/j.1365-2443.1998.00207.x. PubMed DOI

Ariyama Y., Shimizu H., Satoh T., Tsuchiya T., Okada S., Oyadomari S., Mori M., Mori M. Chop-deficient mice showed increased adiposity but no glucose intolerance. Obesity. 2007;15:1647–1656. doi: 10.1038/oby.2007.197. PubMed DOI

Masuoka H.C., Townes T.M. Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood. 2002;99:736–745. doi: 10.1182/blood.V99.3.736. PubMed DOI

Muller-Newen G., Stope M.B., Kraus T., Ziegler P. Development of platelets during steady state and inflammation. J. Leukoc. Biol. 2017;101:1109–1117. doi: 10.1189/jlb.1RU0916-391RR. PubMed DOI

Hamilton A.M., Zito K. Breaking It Down: The Ubiquitin Proteasome System in Neuronal Morphogenesis. Neural Plast. 2013;2013 doi: 10.1155/2013/196848. PubMed DOI PMC

Boukhalfa A., Miceli C., Ávalos Y., Morel E., Dupont N. Interplay between primary cilia, ubiquitin-proteasome system and autophagy. Biochimie. 2019;166:286–292. doi: 10.1016/j.biochi.2019.06.009. PubMed DOI

Gerhardt C., Wiegering A., Leu T., Rüther U. Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J. Dev. Biol. 2016;4 doi: 10.3390/jdb4030027. PubMed DOI PMC

Baloghova N., Lidak T., Cermak L. Ubiquitin Ligases Involved in the Regulation of Wnt, TGF-beta, and Notch Signaling Pathways and Their Roles in Mouse Development and Homeostasis. Genes. 2019;10 doi: 10.3390/genes10100815. PubMed DOI PMC

Seifert U., Bialy L.P., Ebstein F., Bech-Otschir D., Voigt A., Schröter F., Prozorovski T., Lange N., Steffen J., Rieger M., et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell. 2010;142:613–624. doi: 10.1016/j.cell.2010.07.036. PubMed DOI

Ebstein F., Voigt A., Lange N., Warnatsch A., Schröter F., Prozorovski T., Kuckelkorn U., Aktas O., Seifert U., Kloetzel P.M., Krüger E. Immunoproteasomes are important for proteostasis in immune responses. Cell. 2013;152:935–937. doi: 10.1016/j.cell.2013.02.018. PubMed DOI

Jung T., Hohn A., Grune T. The proteasome and the degradation of oxidized proteins: Part III-Redox regulation of the proteasomal system. Redox Biol. 2014;2:388–394. doi: 10.1016/j.redox.2013.12.029. PubMed DOI PMC

Yang K., Huang R., Fujihira H., Suzuki T., Yan N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J. Exp. Med. 2018;215:2600–2616. doi: 10.1084/jem.20180783. PubMed DOI PMC

Novoa I., Zhang Y.H., Zeng H.Q., Jungreis R., Harding H.P., Ron D. Stress-induced gene expression requires programmed recovery from translational repression (vol 22, pg 1180, 2003) EMBO J. 2003;22:2307. PubMed PMC

Bertolotti A. The split protein phosphatase system. Biochem. J. 2018;475:3707–3723. doi: 10.1042/Bcj20170726. PubMed DOI PMC

Schneider K., Nelson G.M., Watson J.L., Morf J., Dalglish M., Luh L.M., Weber A., Bertolotti A. Protein Stability Buffers the Cost of Translation Attenuation following eIF2alpha Phosphorylation. Cell Rep. 2020;32 doi: 10.1016/j.celrep.2020.108154. PubMed DOI PMC

Dalet A., Arguello R.J., Combes A., Spinelli L., Jaeger S., Fallet M., Manh T.P.V., Mendes A., Perego J., Reverendo M., et al. Protein synthesis inhibition and GADD34 control IFN-beta heterogeneous expression in response to dsRNA. EMBO J. 2017;36:761–782. doi: 10.15252/embj.201695000. PubMed DOI PMC

Brehm A., Krüger E. Dysfunction in protein clearance by the proteasome: impact on autoinflammatory diseases. Semin. Immunopathol. 2015;37:323–333. doi: 10.1007/s00281-015-0486-4. PubMed DOI

Ebstein F., Küry S., Most V., Rosenfelt C., Scott-Boyer M.P., van Woerden G.M., Besnard T., Papendorf J.J., Studencka-Turski M., Wang T., et al. PSMC3 proteasome subunit variants are associated with neurodevelopmental delay and type I interferon production. Sci. Transl. Med. 2023;15 doi: 10.1126/scitranslmed.abo3189. PubMed DOI PMC

Kim H., de Jesus A.A., Brooks S.R., Liu Y., Huang Y., VanTries R., Montealegre Sanchez G.A., Rotman Y., Gadina M., Goldbach-Mansky R. Development of a Validated Interferon Score Using NanoString Technology. J. Interferon Cytokine Res. 2018;38:171–185. doi: 10.1089/jir.2017.0127. PubMed DOI PMC

Perry A.K., Chow E.K., Goodnough J.B., Yeh W.C., Cheng G. Differential requirement for TANK-binding kinase-1 in type I interferon responses to toll-like receptor activation and viral infection. J. Exp. Med. 2004;199:1651–1658. doi: 10.1084/jem.20040528. PubMed DOI PMC

Tsuzuki S., Tachibana M., Hemmi M., Yamaguchi T., Shoji M., Sakurai F., Kobiyama K., Kawabata K., Ishii K.J., Akira S., Mizuguchi H. TANK-binding kinase 1-dependent or -independent signaling elicits the cell-type-specific innate immune responses induced by the adenovirus vector. Int. Immunol. 2016;28:105–115. doi: 10.1093/intimm/dxv058. PubMed DOI

Balka K.R., Louis C., Saunders T.L., Smith A.M., Calleja D.J., D'Silva D.B., Moghaddas F., Tailler M., Lawlor K.E., Zhan Y., et al. TBK1 and IKK epsilon Act Redundantly to Mediate STING-Induced NF-kappa B Responses in Myeloid Cells. Cell Rep. 2020;31 doi: 10.1016/j.celrep.2020.03.056. PubMed DOI

Miyahira A.K., Shahangian A., Hwang S., Sun R., Cheng G. TANK-Binding Kinase-1 Plays an Important Role during In Vitro and In Vivo Type I IFN Responses to DNA Virus Infections. J. Immunol. 2009;182:2248–2257. doi: 10.4049/jimmunol.0802466. PubMed DOI PMC

DeFilippis V.R., Robinson B., Keck T.M., Hansen S.G., Nelson J.A., Früh K.J. Interferon regulatory factor 3 is necessary for induction of antiviral genes during human cytomegalovirus infection. J. Virol. 2006;80:1032–1037. doi: 10.1128/Jvi.80.2.1032-1037.2006. PubMed DOI PMC

Ashley C.L., Abendroth A., McSharry B.P., Slobedman B. Interferon-Independent Upregulation of Interferon-Stimulated Genes during Human Cytomegalovirus Infection is Dependent on IRF3 Expression. Viruses-Basel. 2019;11 doi: 10.3390/v11030246. PubMed DOI PMC

Csumita M., Csermely A., Horvath A., Nagy G., Monori F., Göczi L., Orbea H.A., Reith W., Széles L. Specific enhancer selection by IRF3, IRF5 and IRF9 is determined by ISRE half-sites, 5 ' and 3 ' flanking bases, collaborating transcription factors and the chromatin environment in a combinatorial fashion. Nucleic Acids Res. 2020;48:589–604. doi: 10.1093/nar/gkz1112. PubMed DOI PMC

Deschenes-Simard X., Parisotto M., Rowell M.C., Le Calve B., Igelmann S., Moineau-Vallee K., Saint-Germain E., Kalegari P., Bourdeau V., Kottakis F., et al. Circumventing senescence is associated with stem cell properties and metformin sensitivity. Aging Cell. 2019;18 doi: 10.1111/acel.12889. PubMed DOI PMC

Ganguly D., Sims M., Cai C., Fan M., Pfeffer L.M. Chromatin Remodeling Factor BRG1 Regulates Stemness and Chemosensitivity of Glioma Initiating Cells. Stem Cell. 2018;36:1804–1815. doi: 10.1002/stem.2909. PubMed DOI PMC

Lu T., Bankhead A., Ljungman M., Neamati N. Multi-omics profiling reveals key signaling pathways in ovarian cancer controlled by STAT3. Theranostics. 2019;9:5478–5496. doi: 10.7150/thno.33444. PubMed DOI PMC

Lin L., Wang Y., Sun B., Liu L., Ying W., Wang W., Zhou Q., Hou J., Yao H., Hu L., et al. The clinical, immunological and genetic features of 12 Chinese patients with STAT3 mutations. Allergy Asthma Clin. Immunol. 2020;16:1–10. doi: 10.1186/s13223-020-00462-w. PubMed DOI PMC

Jin J., Liu J., Chen C., Liu Z., Jiang C., Chu H., Pan W., Wang X., Zhang L., Li B., et al. The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog. Nat. Commun. 2016;7 doi: 10.1038/ncomms13594. PubMed DOI PMC

Charras A., Arvaniti P., Le Dantec C., Arleevskaya M.I., Zachou K., Dalekos G.N., Bordon A., Renaudineau Y. JAK Inhibitors Suppress Innate Epigenetic Reprogramming: a Promise for Patients with Sjogren's Syndrome. Clin. Rev. Allergy Immunol. 2020;58:182–193. doi: 10.1007/s12016-019-08743-y. PubMed DOI

Tsai M.H., Pai L.M., Lee C.K. Fine-Tuning of Type I Interferon Response by STAT3. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.01448. PubMed DOI PMC

Eggenberger J., Blanco-Melo D., Panis M., Brennand K.J., tenOever B.R. Type I interferon response impairs differentiation potential of pluripotent stem cells. Proc. Natl. Acad. Sci. USA. 2019;116:1384–1393. doi: 10.1073/pnas.1812449116. PubMed DOI PMC

Yu Q., Katlinskaya Y.V., Carbone C.J., Zhao B., Katlinski K.V., Zheng H., Guha M., Li N., Chen Q., Yang T., et al. DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. Cell Rep. 2015;11:785–797. doi: 10.1016/j.celrep.2015.03.069. PubMed DOI PMC

Todoric J., Karin M. The Fire within: Cell-Autonomous Mechanisms in Inflammation-Driven Cancer. Cancer Cell. 2019;35:714–720. doi: 10.1016/j.ccell.2019.04.001. PubMed DOI

Rawlings J.S., Rosler K.M., Harrison D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004;117:1281–1283. doi: 10.1242/jcs.00963. PubMed DOI

Bai L., Zhou H., Xu R., Zhao Y., Chinnaswamy K., McEachern D., Chen J., Yang C.Y., Liu Z., Wang M., et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell. 2019;36:498–511.e17. doi: 10.1016/j.ccell.2019.10.002. PubMed DOI PMC

Gu Y., Wang X., Wang Y., Wang Y., Li J., Yu F.X. Nelfinavir inhibits human DDI2 and potentiates cytotoxicity of proteasome inhibitors. Cell. Signal. 2020;75 doi: 10.1016/j.cellsig.2020.109775. PubMed DOI

Op M., Ribeiro S.T., Chavarria C., De Gassart A., Zaffalon L., Martinon F. The aspartyl protease DDI2 drives adaptation to proteasome inhibition in multiple myeloma. Cell Death Dis. 2022;13:475. doi: 10.1038/s41419-022-04925-3. PubMed DOI PMC

Chen T., Ho M., Briere J., Moscvin M., Czarnecki P.G., Anderson K.C., Blackwell T.K., Bianchi G. Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival. Blood Adv. 2022;6:429–440. doi: 10.1182/bloodadvances.2020003820. PubMed DOI PMC

Lei L., Cao Q., An G., Lv Y., Tang J., Yang J. DDI2 promotes tumor metastasis and resists antineoplastic drugs-induced apoptosis in colorectal cancer. Apoptosis. 2023;28:458–470. doi: 10.1007/s10495-022-01796-z. PubMed DOI

Zhang X.D., Baladandayuthapani V., Lin H., Mulligan G., Li B., Esseltine D.L.W., Qi L., Xu J., Hunziker W., Barlogie B., et al. Tight Junction Protein 1 Modulates Proteasome Capacity and Proteasome Inhibitor Sensitivity in Multiple Myeloma via EGFR/JAK1/STAT3 Signaling. Cancer Cell. 2016;29:639–652. doi: 10.1016/j.ccell.2016.03.026. PubMed DOI PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., Kundu D.J., Prakash A., Frericks-Zipper A., Eisenacher M., et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

Deutsch E.W., Bandeira N., Sharma V., Perez-Riverol Y., Carver J.J., Kundu D.J., García-Seisdedos D., Jarnuczak A.F., Hewapathirana S., Pullman B.S., et al. The ProteomeXchange consortium in 2020: enabling 'big data' approaches in proteomics. Nucleic Acids Res. 2020;48:D1145–D1152. doi: 10.1093/nar/gkz984. PubMed DOI PMC

Tykvart J., Bařinka C., Svoboda M., Navrátil V., Souček R., Hubálek M., Hradilek M., Šácha P., Lubkowski J., Konvalinka J. Structural and Biochemical Characterization of a Novel Aminopeptidase from Human Intestine. J. Biol. Chem. 2015;290:11321–11336. doi: 10.1074/jbc.M114.628149. PubMed DOI PMC

Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39 doi: 10.1093/nar/gkr218. PubMed DOI PMC

Doyle E.L., Booher N.J., Standage D.S., Voytas D.F., Brendel V.P., VanDyk J.K., Bogdanove A.J. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40:W117–W122. doi: 10.1093/nar/gks608. PubMed DOI PMC

Flemr M., Malik R., Franke V., Nejepinska J., Sedlacek R., Vlahovicek K., Svoboda P. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155:807–816. doi: 10.1016/j.cell.2013.10.001. PubMed DOI

Kasparek P., Krausova M., Haneckova R., Kriz V., Zbodakova O., Korinek V., Sedlacek R. Efficient gene targeting of the Rosa26 locus in mouse zygotes using TALE nucleases. FEBS Lett. 2014;588:3982–3988. doi: 10.1016/j.febslet.2014.09.014. PubMed DOI

Wilkinson D.G., Nieto M.A. Detection of Messenger-Rna by in-Situ Hybridization to Tissue-Sections and Whole Mounts. Method Enzymol. 1993;225:361–373. PubMed

Blankenburg S., Hentschker C., Nagel A., Hildebrandt P., Michalik S., Dittmar D., Surmann K., Völker U. Improving Proteome Coverage for Small Sample Amounts: An Advanced Method for Proteomics Approaches with Low Bacterial Cell Numbers. Proteomics. 2019;19:e1900192. doi: 10.1002/pmic.201900192. PubMed DOI

Gillespie M., Jassal B., Stephan R., Milacic M., Rothfels K., Senff-Ribeiro A., Griss J., Sevilla C., Matthews L., Gong C., et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 2022;50:D687–D692. doi: 10.1093/nar/gkab1028. PubMed DOI PMC

Griss J., Viteri G., Sidiropoulos K., Nguyen V., Fabregat A., Hermjakob H. ReactomeGSA-Efficient Multi-Omics Comparative Pathway Analysis. Mol. Cell. Proteomics. 2020;19:2115–2125. doi: 10.1074/mcp.TIR120.002155. PubMed DOI PMC

Jassal B., Matthews L., Viteri G., Gong C., Lorente P., Fabregat A., Sidiropoulos K., Cook J., Gillespie M., Haw R., et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2020;48:D498–D503. doi: 10.1093/nar/gkz1031. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...