• This record comes from PubMed

A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole

. 2021 Jun ; 11 (12) : 8215-8225. [epub] 20210525

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Understanding the historical contributions of differing glacial refugia is key to evaluating the roles of microevolutionary forces, such as isolation, introgression, and selection in shaping genomic diversity in present-day populations. In Europe, where both Mediterranean and extra-Mediterranean (e.g., Carpathian) refugia of the bank vole (Clethrionomys glareolus) have been identified, mtDNA indicates that extra-Mediterranean refugia were the main source of colonization across the species range, while Mediterranean peninsulas harbor isolated, endemic lineages. Here, we critically evaluate this hypothesis using previously generated genomic data (>6,000 SNPs) for over 800 voles, focusing on genomic contributions to bank voles in central Europe, a key geographic area in considering range-wide colonization. The results provide clear evidence that both extra-Mediterranean (Carpathian) and Mediterranean (Spanish, Calabrian, and Balkan) refugia contributed to the ancestry and genomic diversity of bank vole populations across Europe. Few strong barriers to dispersal and frequent admixture events in central Europe have led to a prominent mid-latitude peak in genomic diversity. Although the genomic contribution of the centrally located Carpathian refugium predominates, populations in different parts of Europe have admixed origins from Mediterranean (28%-47%) and the Carpathian (53%-72%) sources. We suggest that the admixture from Mediterranean refugia may have provisioned adaptive southern alleles to more northern populations, facilitating the end-glacial spread of the admixed populations and contributing to increased bank vole diversity in central Europe. This study adds critical details to the complex end-glacial colonization history of this well-studied organism and underscores the importance of genomic data in phylogeographic interpretation.

See more in PubMed

Alexander, D. H. , Novembre, J. , & Lange, K. (2009). Fast model‐based estimation of ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. 10.1101/gr.094052.109 PubMed DOI PMC

Avise, J. C. (2000). Phylogeography. The history and formation of species. Harvard University Press.

Avise, J. C. , Arnold, J. , Ball, R. M. , Bermingham, E. , Lamb, T. , Neigel, J. E. , & Saunders, N. C. (1987). Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics, 18(1), 489–522. 10.1146/annurev.es.18.110187.002421 DOI

Avise, J. C. , Bowen, B. W. , & Ayala, F. J. (2016). In the light of evolution X: Comparative phylogeography. Proceedings of the National Academy of Sciences of the United States of America, 113(29), 7957–7961. 10.1073/pnas.1604338113 PubMed DOI PMC

Bilton, D. T. , Mirol, P. M. , Mascheretti, S. , Fredga, K. , Zima, J. , & Searle, J. B. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proceedings of the Royal Society B: Biological Sciences, 265(1402), 1219–1226. 10.1098/rspb.1998.0423 PubMed DOI PMC

Boutet, I. , Jollivet, D. , Shillito, B. , Moraga, D. , & Tanguy, A. (2009). Molecular identification of differentially regulated genes in the hydrothermal‐vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genomics, 10(1), 222. 10.1186/1471-2164-10-222 PubMed DOI PMC

Bradshaw, W. E. , & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312(5779), 1477–1478. 10.1126/science.1127000 PubMed DOI

Brown, W. M. , George, M. , & Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America, 76(4), 1967–1971. 10.1073/pnas.76.4.1967 PubMed DOI PMC

Chiocchio, A. , Colangelo, P. , Aloise, G. , Amori, G. , Bertolino, S. , Bisconti, R. , & Canestrelli, D. (2019). Population genetic structure of the bank vole Myodes glareolus within its glacial refugium in peninsular Italy. Journal of Zoological Systematics and Evolutionary Research, 57(4), 959–969. 10.1111/jzs.12289 DOI

Clarke, A. (1993). Temperature and extinction in the sea: A physiologist's view. Paleobiology, 19(4), 499–518. 10.1017/S0094837300014111 DOI

Çolak, R. , Olgun Karacan, G. , Kandemir, I. , Çolak, E. , Kankiliç, T. , Yigit, N. , & Michaux, J. (2016). Genetic variations of Turkish bank vole, Myodes glareolus (Mammalia: Rodentia) inferred from mtDNA. Mitochondrial DNA Part A, 27(6), 4372–4379. 10.3109/19401736.2015.1089537 PubMed DOI

Colangelo, P. , Aloise, G. , Franchini, P. , Annesi, F. , & Amori, G. (2012). Mitochondrial DNA reveals hidden diversity and an ancestral lineage of the bank vole in the Italian peninsula. Journal of Zoology, 287(1), 41–52. 10.1111/j.1469-7998.2011.00884.x DOI

Cooper, S. J. , Ibrahim, K. M. , & Hewitt, G. M. (1995). Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus . Molecular Ecology, 4(1), 49–60. 10.1111/j.1365-294X.1995.tb00191.x PubMed DOI

Corander, J. , & Marttinen, P. (2006). Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology, 15(10), 2833–2843. 10.1111/j.1365-294X.2006.02994.x PubMed DOI

Corander, J. , Marttinen, P. , Sirén, J. , & Tang, J. (2008). Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics, 9(1), 539. 10.1186/1471-2105-9-539 PubMed DOI PMC

Corander, J. , Sirén, J. , & Arjas, E. (2008). Bayesian spatial modeling of genetic population structure. Computational Statistics, 23(1), 111–129. 10.1007/s00180-007-0072-x DOI

Cornuet, J.‐M. , Pudlo, P. , Veyssier, J. , Dehne‐Garcia, A. , Gautier, M. , Leblois, R. , Marin, J.‐M. , & Estoup, A. (2014). DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics, 30(8), 1187–1189. 10.1093/bioinformatics/btt763 PubMed DOI

Davis, M. B. , & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673–679. 10.1126/science.292.5517.673 PubMed DOI

Davis, M. B. , Shaw, R. G. , & Etterson, J. R. (2005). Evolutionary responses to changing climate. Ecology, 86(7), 1704–1714. 10.1890/03-0788 DOI

Deffontaine, V. , Libois, R. , Kotlík, P. , Sommer, R. S. , Nieberding, C. , Paradis, E. , & Michaux, J. R. (2005). Beyond the Mediterranean peninsulas: Evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Molecular Ecology, 14(6), 1727–1739. 10.1111/j.1365-294X.2005.02506.x PubMed DOI

Edwards, S. V. , Shultz, A. J. , & Campbell‐Staton, S. C. (2015). Next‐generation sequencing and the expanding domain of phylogeography. Folia Zoologica, 64(3), 187–206. 10.25225/fozo.v64.i3.a2.2015 DOI

Escalante, M. A. , Horníková, M. , Marková, S. , & Kotlík, P. (2021). Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus . Ecology and Evolution, In press. 10.1002/ece3.7637 PubMed DOI PMC

Filipi, K. , Marková, S. , Searle, J. B. , & Kotlík, P. (2015). Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end‐glacial colonization of Europe. Molecular Phylogenetics and Evolution, 82, 245–257. 10.1016/j.ympev.2014.10.016 PubMed DOI

Fletcher, N. K. , Acevedo, P. , Herman, J. S. , Paupério, J. , Alves, P. C. , & Searle, J. B. (2019). Glacial cycles drive rapid divergence of cryptic field vole species. Ecology and Evolution, 9(24), 14101–14113. 10.1002/ece3.5846 PubMed DOI PMC

Fløjgaard, C. , Normand, S. , Skov, F. , & Svenning, J. C. (2009). Ice age distributions of European small mammals: Insights from species distribution modelling. Journal of Biogeography, 36(6), 1152–1163. 10.1111/j.1365-2699.2009.02089.x DOI

Friis, G. , Fandos, G. , Zellmer, A. J. , McCormack, J. E. , Faircloth, B. C. , & Milá, B. (2018). Genome‐wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Molecular Ecology, 27(24), 5137–5153. 10.1111/mec.14946 PubMed DOI

Furlan, E. , Stoklosa, J. , Griffiths, J. , Gust, N. , Ellis, R. , Huggins, R. M. , & Weeks, A. R. (2012). Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus Anatinus . Ecology and Evolution, 2(4), 844–857. 10.1002/ece3.195 PubMed DOI PMC

Hewitt, G. M. (1999). Post‐glacial re‐colonization of European biota. Biological Journal of the Linnean Society, 68(1–2), 87–112. 10.1006/BIJL.1999.0332 DOI

Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913. 10.1038/35016000 PubMed DOI

Hewitt, G. M. (2004). Biodiversity: A climate for colonization. Heredity, 92(1), 1–2. 10.1038/sj.hdy.6800365 PubMed DOI

Horáček, I. (2000). Glacial cycles and mammalian biodiversity in central Europe: Large scale migrations or vicariance dynamics? Geolines, 11, 103–107.

Hung, C.‐M. , Drovetski, S. V. , & Zink, R. M. (2016). Matching loci surveyed to questions asked in phylogeography. Proceedings of the Royal Society B: Biological Sciences, 283(1826), 20152340. 10.1098/rspb.2015.2340 PubMed DOI PMC

Knowles, L. L. , & Maddison, W. (2002). Statistical phylogeography. Molecular Ecology, 11(12), 2623–2635. 10.1046/j.1365-294X.2002.01410.x PubMed DOI

Kotlík, P. , Deffontaine, V. , Mascheretti, S. , Zima, J. , Michaux, J. R. , & Searle, J. B. (2006). A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the National Academy of Sciences of the United States of America, 103(40), 14860–14864. 10.1073/pnas.0603237103 PubMed DOI PMC

Kotlík, P. , Marková, S. , Choleva, L. , Bogutskaya, N. G. , Ekmerci, F. G. , & Ivanova, P. P. (2008). Divergence with gene flow between Ponto‐Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Molecular Ecology, 17(4), 1076–1088. 10.1111/j.1365-294X.2007.03638.x PubMed DOI

Kotlík, P. , Marková, S. , Konczal, M. , Babik, W. , & Searle, J. B. (2018). Genomics of end‐Pleistocene population replacement in a small mammal. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172624. 10.1098/rspb.2017.2624 PubMed DOI PMC

Kotlík, P. , Marková, S. , Vojtek, L. , Stratil, A. , Slechta, V. , Hyršl, P. , & Searle, J. B. (2014). Adaptive phylogeography: Functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proceedings of the Royal Society B: Biological Sciences, 281(1786), 20140021. 10.1098/rspb.2014.0021 PubMed DOI PMC

Kryštufek, B. , Tesakov, A. S. , Lebedev, V. S. , Bannikova, A. A. , Abramson, N. I. , & Shenbrot, G. (2020). Back to the future: The proper name for red‐backed voles is Clethrionomys Tilesius and not Myodes Pallas. Mammalia, 84(2), 214–217. 10.1515/mammalia-2019-0067 DOI

Lanier, H. C. , Massatti, R. , He, Q. , Olson, L. E. , & Knowles, L. L. (2015). Colonization from divergent ancestors: Glaciation signatures on contemporary patterns of genomic variation in Collared Pikas (Ochotona collaris). Molecular Ecology, 24(14), 3688–3705. 10.1111/mec.13270 PubMed DOI

Liepelt, S. , Bialozyt, R. , & Ziegenhagen, B. (2002). Wind‐dispersed pollen mediates postglacial gene flow among refugia. Proceedings of the National Academy of Sciences of the United States of America, 99(22), 14590–14594. 10.1073/pnas.212285399 PubMed DOI PMC

Magri, D. (2008). Patterns of post‐glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography, 35(3), 450–463. 10.1111/j.1365-2699.2007.01803.x DOI

Magyari, E. K. , Demény, A. , Buczkó, K. , Kern, Z. , Vennemann, T. , Fórizs, I. , & Veres, D. (2013). A 13,600‐year diatom oxygen isotope record from the South Carpathians (Romania): Reflection of winter conditions and possible links with North Atlantic circulation changes. Quaternary International, 293, 136–149. 10.1016/j.quaint.2012.05.042 DOI

Markova, A. K. , Smirnov, N. G. , Kozharinov, A. V. , Kazantseva, N. E. , Simakova, A. N. , & Kitaev, L. M. (1995). Late Pleistocene distribution and diversity of mammals in northern Eurasia (Paleofauna Database). Paleontologia I Evolucio, 28–29, 5–145.

Marková, S. , Horníková, M. , Lanier, H. C. , Henttonen, H. , Searle, J. B. , Weider, L. J. , & Kotlík, P. (2020a). High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end‐glacial refugia. Molecular Ecology, 29(9), 1730–1744. 10.1111/mec.15427 PubMed DOI

Marková, S. , Horníková, M. , Lanier, H. C. , Henttonen, H. , Searle, J. B. , Weider, L. J. , & Kotlík, P. (2020b). High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end‐glacial refugia. Dryad Dataset. 10.5061/dryad.sbcc2fr34 PubMed DOI

Melnikova, E. N. , Kshnyasev, I. A. , Bodrov, S. Y. , Mukhacheva, S. V. , Davydova, Y. A. , & Abramson, N. I. (2012). Sympatric area of Myodes glareolus and M. rutilus (Rodentia, Cricetidae): Historic and recent hybridization. Proceedings of the Zoological Institute RAS, 314(4), 307–323.

Michaux, J. R. , Libois, R. , Paradis, E. , & Filippucci, M. G. (2004). Phylogeographic history of the yellow‐necked fieldmouse (Apodemus flavicollis) in Europe and in the Near and Middle East. Molecular Phylogenetics and Evolution, 32(3), 788–798. 10.1016/j.ympev.2004.02.018 PubMed DOI

Nadachowski, A. (1989). Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriologica, 34, 37–53. 10.4098/at.arch.89-2 DOI

Nadachowski, A. , Miekina, B. , & Garapich, A. (2003). Human activity, stratigraphy, and palaeoenvironment. In Valde‐Nowak P., Nadachowski A., & Madeyska T. (Eds.), Oblazowa Cave (pp. 134–140). Institute of Archaeology and Ethnology, Polish Academy of Sciences.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669. 10.1146/annurev.ecolsys.37.091305.110100 DOI

Pearman, P. B. , D’Amen, M. , Graham, C. H. , Thuiller, W. , & Zimmermann, N. E. (2010). Within‐taxon niche structure: Niche conservatism, divergence and predicted effects of climate change. Ecography, 33(6), 990–1003. 10.1111/j.1600-0587.2010.06443.x DOI

Pedreschi, D. , García‐Rodríguez, O. , Yannic, G. , Cantarello, E. , Diaz, A. , Golicher, D. , & Stewart, J. R. (2019). Challenging the European southern refugium hypothesis: Species‐specific structures versus general patterns of genetic diversity and differentiation among small mammals. Global Ecology and Biogeography, 28(2), 262–274. 10.1111/geb.12828 DOI

Petit, R. J. , Aguinagalde, I. , de Beaulieu, J.‐L. , Bittkau, C. , Brewer, S. , Cheddadi, R. , & Vendramin, G. G. (2003). Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300(5625), 1563–1565. 10.1126/science.1083264 PubMed DOI

Pickrell, J. K. , & Pritchard, J. K. (2012). Inference of population splits and mixtures from genome‐wide allele frequency data. PLoS Genetics, 8(11), e1002967. 10.1371/journal.pgen.1002967 PubMed DOI PMC

Price, A. L. , Patterson, N. J. , Plenge, R. M. , Weinblatt, M. E. , Shadick, N. A. , & Reich, D. (2006). Principal components analysis corrects for stratification in genome‐wide association studies. Nature Genetics, 38(8), 904–909. 10.1038/ng1847 PubMed DOI

Provan, J. , & Bennett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23(10), 564–571. 10.1016/J.TREE.2008.06.010 PubMed DOI

Pudlo, P. , Marin, J.‐M. , Estoup, A. , Cornuet, J.‐M. , Gautier, M. , & Robert, C. P. (2016). Reliable ABC model choice via random forests. Bioinformatics, 32(6), 859–866. 10.1093/bioinformatics/btv684 PubMed DOI

Raczyński, J. (1983). Taxonomic position, geographical range and ecology of distribution. In Petrusewicz K. (Ed.), Ecology of the bank vole. Acta Theriologica, 28, Supplement 1 (pp. 3–10). Polish Scientific Publishers.

Raynal, L. , Marin, J.‐M. , Pudlo, P. , Ribatet, M. , Robert, C. P. , Estoup, A. (2019). ABC random forests for Bayesian parameter inference. Bioinformatics, 35(10), 1720–1728. 10.1093/bioinformatics/bty867 PubMed DOI

Rishishwar, L. , Conley, A. B. , Wigington, C. H. , Wang, L. , Valderrama‐Aguirre, A. , & King Jordan, I. (2015). Ancestry, admixture and fitness in Colombian genomes. Scientific Reports, 5(1), 1–16. 10.1038/srep12376 PubMed DOI PMC

Rull, V. (2009). Microrefugia. Journal of Biogeography, 36(3), 481–484. 10.1111/j.1365-2699.2008.02023.x DOI

Ryabokon, N. I. , & Goncharova, R. I. (2006). Transgenerational accumulation of radiation damage in small mammals chronically exposed to Chernobyl fallout. Radiation and Environmental Biophysics, 45(3), 167–177. 10.1007/s00411-006-0054-3 PubMed DOI

Schmitt, T. , & Varga, Z. (2012). Extra‐Mediterranean refugia: The rule and not the exception? Frontiers in Zoology, 9(1), 22. 10.1186/1742-9994-9-22 PubMed DOI PMC

Searle, J. B. , Kotlík, P. , Rambau, R. V. , Marková, S. , Herman, J. S. , & McDevitt, A. D. (2009). The Celtic fringe of Britain: Insights from small mammal phylogeography. Proceedings of the Royal Society B: Biological Sciences, 276(1677), 4287–4294. 10.1098/rspb.2009.1422 PubMed DOI PMC

Seddon, J. M. , Santucci, F. , Reeve, N. , & Hewitt, G. M. (2002). Caucasus Mountains divide postulated postglacial colonization routes in the white‐breasted hedgehog, Erinaceus concolor . Journal of Evolutionary Biology, 15(3), 463–467. 10.1046/j.1420-9101.2002.00408.x DOI

Sommer, R. S. , & Nadachowski, A. (2006). Glacial refugia of mammals in Europe: Evidence from fossil records. Mammal Review, 36(4), 251–265. 10.1111/j.1365-2907.2006.00093.x DOI

Sommer, R. S. , & Zachos, F. E. (2009). Fossil evidence and phylogeography of temperate species: ‘glacial refugia’ and post‐glacial recolonization. Journal of Biogeography, 36(11), 2013–2020. 10.1111/j.1365-2699.2009.02187.x DOI

Stewart, J. R. , Lister, A. M. , Barnes, I. , & Dalén, L. (2010). Refugia revisited: Individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC

Stojak, J. , Borowik, T. , Górny, M. , McDevitt, A. D. , & Wójcik, J. M. (2019). Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Research, 64(1), 19–29. 10.1007/s13364-018-0395-8 DOI

Stojak, J. , McDevitt, A. D. , Herman, J. S. , Searle, J. B. , & Wójcik, J. M. (2015). Post‐glacial colonization of eastern Europe from the Carpathian refugium: Evidence from mitochondrial DNA of the common vole Microtus arvalis . Biological Journal of the Linnean Society, 115(4), 927–939. 10.1111/bij.12535 DOI

Strážnická, M. , Marková, S. , Searle, J. B. , & Kotlík, P. (2018). Playing hide‐and‐seek in beta‐globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene duplicates. Genes, 9(10), 492. 10.3390/genes9100492 PubMed DOI PMC

Wang, C. , Zöllner, S. , & Rosenberg, N. A. (2012). A quantitative comparison of the similarity between genes and geography in worldwide human populations. PLoS Genetics, 8(8), e1002886. 10.1371/journal.pgen.1002886 PubMed DOI PMC

Wielstra, B. , Beukema, W. , Arntzen, J. W. , Skidmore, A. K. , Toxopeus, A. G. , & Raes, N. (2012). Corresponding mitochondrial DNA and niche divergence for crested newt candidate species. PLoS One, 7(9), e46671. 10.1371/journal.pone.0046671 PubMed DOI PMC

Willis, K. J. , & Van Andel, T. H. (2004). Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quaternary Science Reviews, 23(23–24), 2369–2387. 10.1016/j.quascirev.2004.06.002 DOI

Wójcik, J. M. , Kawałko, A. , Marková, S. , Searle, J. B. , & Kotlík, P. (2010). Phylogeographic signatures of northward post‐glacial colonization from high‐latitude refugia: A case study of bank voles using museum specimens. Journal of Zoology, 281(4), 249–262. 10.1111/j.1469-7998.2010.00699.x DOI

See more in PubMed

Dryad
10.5061/dryad.sbcc2fr34

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...