Playing Hide-and-Seek in Beta-Globin Genes: Gene Conversion Transferring a Beneficial Mutation between Differentially Expressed Gene Duplicates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-032485
Grantová Agentura České Republiky
KONTAKT II LH15255
Ministerstvo Školství, Mládeže a Tělovýchovy
EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO 67985904
Ústav živocišné fyziologie a genetiky AV CR
CZ.02.2.69/0.0/0.0/16_027/0008502; call 02_16_027 International Mobility of Researchers
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
30321987
PubMed Central
PMC6209878
DOI
10.3390/genes9100492
PII: genes9100492
Knihovny.cz E-zdroje
- Klíčová slova
- Chi motif, adaptive phylogeography, antioxidative capacity, cysteine, environmental selection, gene conversion,
- Publikační typ
- časopisecké články MeSH
Increasing evidence suggests that adaptation to diverse environments often involves selection on existing variation rather than new mutations. A previous study identified a nonsynonymous single nucleotide polymorphism (SNP) in exon 2 of two paralogous β-globin genes of the bank vole (Clethrionomys glareolus) in Britain in which the ancestral serine (Ser) and the derived cysteine (Cys) allele represent geographically partitioned functional variation affecting the erythrocyte antioxidative capacity. Here we studied the geographical pattern of the two-locus Ser/Cys polymorphism throughout Europe and tested for the geographic correlation between environmental variables and allele frequency, expected if the polymorphism was under spatially heterogeneous environment-related selection. Although bank vole population history clearly is important in shaping the dispersal of the oxidative stress protective Cys allele, analyses correcting for population structure suggest the Europe-wide pattern is affected by geographical variation in environmental conditions. The β-globin phenotype is encoded by the major paralog HBB-T1 but we found evidence of bidirectional gene conversion of exon 2 with the low-expression paralog HBB-T2. Our data support the model where gene conversion reshuffling genotypes between high- and low- expressed paralogs enables tuning of erythrocyte thiol levels, which may help maintain intracellular redox balance under fluctuating environmental conditions. Therefore, our study suggests a possible role for gene conversion between differentially expressed gene duplicates as a mechanism of physiological adaptation of populations to new or changing environments.
Department of Ecology and Evolutionary Biology Cornell University Ithaca NY 14853 USA
Department of Zoology Faculty of Science Charles University Viničná 7 12844 Prague 2 Czech Republic
Zobrazit více v PubMed
Bergland A.O., Behrman E.L., O’Brien K.R., Schmidt P.S., Petrov D.A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 2014;10:e1004775. doi: 10.1371/journal.pgen.1004775. PubMed DOI PMC
de Filippo C., Key F.M., Ghirotto S., Benazzo A., Meneu J.R., Weihmann A., NISC Comparative Sequence Program. Parra G., Green E.D., Andrés A.M. Recent selection changes in human genes under long-term balancing selection. Mol. Biol. Evol. 2016;33:1435–1447. doi: 10.1093/molbev/msw023. PubMed DOI PMC
Hermisson J., Pennings P.S. Soft sweeps and beyond: Understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 2017;8:700–716. doi: 10.1111/2041-210X.12808. DOI
Llaurens V., Whibley A., Joron M. Genetic architecture and balancing selection: The life and death of differentiated variants. Mol. Ecol. 2017;26:2430–2448. doi: 10.1111/mec.14051. PubMed DOI
Mackinnon M.J., Ndila C., Uyoga S., Macharia A., Snow R.W., Band G., Rautanen A., Rockett K.A., Kwiatkowski D.P., Williams T.N. Environmental correlation analysis for genes associated with protection against malaria. Mol. Biol. Evol. 2016;33:1188–1204. doi: 10.1093/molbev/msw004. PubMed DOI PMC
Gagnaire P.-A., Normandeau E., Côté C., Hansen M.M., Bernatchez L. The genetic consequences of spatially varying selection in the panmictic American eel (Anguilla rostrata) Genetics. 2012;190:725–736. doi: 10.1534/genetics.111.134825. PubMed DOI PMC
Hermisson J., Pennings P.S. Soft sweeps: Molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169:2335–2352. doi: 10.1534/genetics.104.036947. PubMed DOI PMC
Colosimo P.F., Hosemann K.E., Balabhadra S., Villarreal G., Dickson M., Grimwood J., Schmutz J., Myers R.M., Schluter D., Kingsley D.M. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science. 2005;307:1928–1933. doi: 10.1126/science.1107239. PubMed DOI
Pelz H.-J., Rost S., Hünerberg M., Fregin A., Heiberg A.-C., Baert K., MacNicoll A.D., Prescott C.V., Walker A.-S., Oldenburg J., et al. The genetic basis of resistance to anticoagulants in rodents. Genetics. 2005;170:1839–1847. doi: 10.1534/genetics.104.040360. PubMed DOI PMC
Steiner C.C., Weber J.N., Hoekstra H.E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 2007;5:e219. doi: 10.1371/journal.pbio.0050219. PubMed DOI PMC
Liu S., Lorenzen E.D., Fumagalli M., Li B., Harris K., Xiong Z., Zhou L., Korneliussen T.S., Somel M., Babbitt C., et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell. 2014;157:785–794. doi: 10.1016/j.cell.2014.03.054. PubMed DOI PMC
Bataillon T., Galtier N., Bernard A., Cryer N., Faivre N., Santoni S., Severac D., Mikkelsen T.N., Larsen K.S., Beier C., et al. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate. Glob. Chang. Biol. 2016;22:2370–2379. doi: 10.1111/gcb.13293. PubMed DOI PMC
Weber R.E., Ostojic H., Fago A., Dewilde S., Van Hauwaert M.-L., Moens L., Monge C. Novel mechanism for high-altitude adaptation in hemoglobin of the Andean frog Telmatobius peruvianus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002;283:R1052–R1060. doi: 10.1152/ajpregu.00292.2002. PubMed DOI
Storz J.F., Sabatino S.J., Hoffmann F.G., Gering E.J., Moriyama H., Ferrand N., Monteiro B., Nachman M.W. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 2007;3:e45. doi: 10.1371/journal.pgen.0030045. PubMed DOI PMC
Storz J.F., Runck A.M., Sabatino S.J., Kelly J.K., Ferrand N., Moriyama H., Weber R.E., Fago A. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl. Acad. Sci. USA. 2009;106:14450–14455. doi: 10.1073/pnas.0905224106. PubMed DOI PMC
McCracken K.G., Barger C.P., Bulgarella M., Johnson K.P., Sonsthagen S.A., Trucco J., Valqui T.H., Wilson R.E., Winker K., Sorenson M.D. Parallel evolution in the major haemoglobin genes of eight species of Andean waterfowl. Mol. Ecol. 2009;18:3992–4005. doi: 10.1111/j.1365-294X.2009.04352.x. PubMed DOI
McCracken K.G., Barger C.P., Bulgarella M., Johnson K.P., Kuhner M.K., Moore A.V., Peters J.L., Trucco J., Valqui T.H., Winker K., et al. Signatures of high-altitude adaptation in the major hemoglobin of five species of Andean dabbling ducks. Am. Nat. 2009;174:631–650. doi: 10.1086/606020. PubMed DOI
Campbell K.L., Storz J.F., Signore A.V., Moriyama H., Catania K.C., Payson A.P., Bonaventura J., Stetefeld J., Weber R.E. Molecular basis of a novel adaptation to hypoxic-hypercapnia in a strictly fossorial mole. BMC Evol. Biol. 2010;10:214. doi: 10.1186/1471-2148-10-214. PubMed DOI PMC
Campbell K.L., Roberts J.E.E., Watson L.N., Stetefeld J., Sloan A.M., Signore A.V., Howatt J.W., Tame J.R.H., Rohland N., Shen T.-J., et al. Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance. Nat. Genet. 2010;42:536–540. doi: 10.1038/ng.574. PubMed DOI
Natarajan C., Hoffmann F.G., Lanier H.C., Wolf C.J., Cheviron Z.A., Spangler M.L., Weber R.E., Fago A., Storz J.F. Intraspecific polymorphism, interspecific divergence, and the origins of function-altering mutations in deer mouse hemoglobin. Mol. Biol. Evol. 2015;32:978–997. doi: 10.1093/molbev/msu403. PubMed DOI PMC
Di Simplicio P., Cacace M.G., Lusini L., Giannerini F., Giustarini D., Rossi R. Role of protein -SH groups in redox homeostasis—The erythrocyte as a model system. Arch. Biochem. Biophys. 1998;355:145–152. doi: 10.1006/abbi.1998.0694. PubMed DOI
Giustarini D., Dalle-Donne I., Cavarra E., Fineschi S., Lungarella G., Milzani A., Rossi R. Metabolism of oxidants by blood from different mouse strains. Biochem. Pharmacol. 2006;71:1753–1764. doi: 10.1016/j.bcp.2006.03.015. PubMed DOI
Storz J.F., Weber R.E., Fago A. Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 2012;161:265–270. doi: 10.1016/j.cbpa.2011.11.004. PubMed DOI PMC
Vitturi D.A., Sun C.-W., Harper V.M., Thrash-Williams B., Cantu-Medellin N., Chacko B.K., Peng N., Dai Y., Wyss J.M., Townes T., et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 2013;55:119–129. doi: 10.1016/j.freeradbiomed.2012.11.003. PubMed DOI PMC
Kotlík P., Marková S., Vojtek L., Stratil A., Šlechta V., Hyršl P., Searle J.B. Adaptive phylogeography: Functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B. 2014;281:20140021. doi: 10.1098/rspb.2014.0021. PubMed DOI PMC
Hall S.J.G. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 1979;187:153–160. doi: 10.1111/j.1469-7998.1979.tb03939.x. DOI
Rossi R., Barra D., Bellelli A., Boumis G., Canofeni S., Di Simplicio P., Lusini L., Pascarella S., Amiconi G. Fast-reacting thiols in rat hemoglobins can intercept damaging species in erythrocytes more efficiently than glutathione. J. Biol. Chem. 1998;273:19198–19206. doi: 10.1074/jbc.273.30.19198. PubMed DOI
Miranda J.J. Highly reactive cysteine residues in rodent hemoglobins. Biochem. Biophys. Res. Commun. 2000;275:517–523. doi: 10.1006/bbrc.2000.3326. PubMed DOI
Pörtner H.O. Physiological basis of temperature-dependent biogeography: Trade-offs in muscle design and performance in polar ectotherms. J. Exp. Biol. 2002;205:2217–2230. PubMed
Losdat S., Helfenstein F., Blount J.D., Richner H. Resistance to oxidative stress shows low heritability and high common environmental variance in a wild bird. J. Evol. Biol. 2014;27:1990–2000. doi: 10.1111/jeb.12454. PubMed DOI
Novembre J., Di Rienzo A. Spatial patterns of variation due to natural selection in humans. Nat. Rev. Genet. 2009;10:745–755. doi: 10.1038/nrg2632. PubMed DOI PMC
Manel S., Conord C., Després L. Genome scan to assess the respective role of host-plant and environmental constraints on the adaptation of a widespread insect. BMC Evol. Biol. 2009;9:288. doi: 10.1186/1471-2148-9-288. PubMed DOI PMC
Stucki S., Orozco-terWengel P., Forester B.R., Duruz S., Colli L., Masembe C., Negrini R., Landguth E., Jones M.R., The NEXTGEN Consortium et al. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour. 2016;17:1072–1089. doi: 10.1111/1755-0998.12629. PubMed DOI
Deffontaine V., Libois R., Kotlík P., Sommer R., Nieberding C., Paradis E., Searle J.B., Michaux J.R. Beyond the Mediterranean peninsulas: Evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus) Mol. Ecol. 2005;14:1727–1739. doi: 10.1111/j.1365-294X.2005.02506.x. PubMed DOI
Kotlík P., Deffontaine V., Mascheretti S., Zima J., Michaux J.R., Searle J.B. A northern glacial refugium for bank voles (Clethrionomys glareolus) Proc. Natl. Acad. Sci. USA. 2006;103:14860–14864. doi: 10.1073/pnas.0603237103. PubMed DOI PMC
Filipi K., Marková S., Searle J.B., Kotlík P. Mitogenomic phylogenetics of the bank vole (Clethrionomys glareolus), a model system for studying end-glacial colonization of Europe. Mol. Phylogenet. Evol. 2015;82:245–257. doi: 10.1016/j.ympev.2014.10.016. PubMed DOI
Wójcik J.M., Kawałko A., Marková S., Searle J.B., Kotlík P. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: A case study of bank voles using museum specimens. J. Zool. 2010;281:249–262. doi: 10.1111/j.1469-7998.2010.00699.x. DOI
Runck A.M., Weber R.E., Fago A., Storz J.F. Evolutionary and functional properties of a two-locus β-globin polymorphism in Indian house mice. Genetics. 2010;184:1121–1131. doi: 10.1534/genetics.109.113506. PubMed DOI PMC
Storz J.F., Natarajan C., Cheviron Z.A., Hoffmann F.G., Kelly J.K. Altitudinal variation at duplicated β-globin genes in deer mice: Effects of selection, recombination, and gene conversion. Genetics. 2012;190:203–216. doi: 10.1534/genetics.111.134494. PubMed DOI PMC
Rousset F. Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI
Stephens M., Smith N.J., Donnelly P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001;68:978–989. doi: 10.1086/319501. PubMed DOI PMC
Stephens M., Donnelly P. A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 2003;73:1162–1169. doi: 10.1086/379378. PubMed DOI PMC
Librado P., Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Haldane J.B.S. An exact test for randomness of mating. J. Genet. 1954;52:631–635. doi: 10.1007/BF02985085. DOI
Rousset F., Raymond M. Testing heterozygote excess and deficiency. Genetics. 1995;140:1413–1419. PubMed PMC
Asmussen M.A., Basten C.J. Constraints and normalized measures for cytonuclear disequilibria. Heredity. 1996;76:207–214. doi: 10.1038/hdy.1996.33. PubMed DOI
Basten C.J., Asmussen M.A. The exact test for cytonuclear disequilibria. Genetics. 1997;146:1165–1171. PubMed PMC
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Stuart P., Mirimin L., Cross T.F., Sleeman D.P., Buckley N.J., Telfer S., Birtles R.J., Kotlík P., Searle J.B. The origin of Irish bank voles (Clethrionomys glareolus) assessed by mitochondrial DNA analysis. Ir. Nat. J. 2007;28:440–446.
Joost S., Bonin A., Bruford M.W., Després L., Conord C., Erhardt G., Taberlet P. A spatial analysis method (SAM) to detect candidate loci for selection: Towards a landscape genomics approach to adaptation. Mol. Ecol. 2007;16:3955–3969. doi: 10.1111/j.1365-294X.2007.03442.x. PubMed DOI
Pond S.L.K., Frost S.D. Datamonkey: Rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005;21:2531–2533. doi: 10.1093/bioinformatics/bti320. PubMed DOI
Pond S.L.K., Muse S.V. HyPhy: Hypothesis Testing Using Phylogenies. In: Nielsen R., editor. Statistical Methods in Molecular Evolution. Springer; New York, NY, USA: 2005. pp. 125–181.
Pond S.L.K., Posada D., Gravenor M.B., Woelk C.H., Frost S.D. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 2006;23:1891–1901. doi: 10.1093/molbev/msl051. PubMed DOI
Pond S.L.K., Posada D., Gravenor M.B., Woelk C.H., Frost S.D. GARD: A genetic algorithm for recombination detection. Bioinformatics. 2006;22:3096–3098. doi: 10.1093/bioinformatics/btl474. PubMed DOI
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC
Betrán E., Rozas J., Navarro A., Barbadilla A. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics. 1997;146:89–99. PubMed PMC
Sawyer S. Statistical tests for detecting gene conversion. Mol. Biol. Evol. 1989;6:526–538. doi: 10.1093/oxfordjournals.molbev.a040567. PubMed DOI
Sawyer S. GENECONV: A Computer Package for The Statistical Detection of Gene Conversion. Department of Mathematics, Washington University in St. Louis; St. Louis, MO, USA: 1999.
Storz J.F., Baze M., Waite J.L., Hoffmann F.G., Opazo J.C., Hayes J.P. Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics. 2007;177:481–500. doi: 10.1534/genetics.107.078550. PubMed DOI PMC
Nei M. Molecular Evolutionary Genetics. Columbia University Press; New York, NY, USA: 1987.
Prevodnik A., Gardestrom J., Lilja K., Elfwing T., McDonagh B., Petrovic N., Tedengren M., Sheehan D., Bollner T. Oxidative stress in response to xenobiotics in the blue mussel Mytilus edulis L.: Evidence for variation along a natural salinity gradient of the Baltic Sea. Aquat. Toxicol. 2007;82:63–71. doi: 10.1016/j.aquatox.2007.01.006. PubMed DOI
Costantini D., Dell’Omo G., De Filippis S.P., Marquez C., Snell H.L., Snell H.M., Tapia W., Brambilla G., Gentile G. Temporal and spatial covariation of gender and oxidative stress in the Galápagos land iguana Conolophus subcristatus. Physiol. Biochem. Zool. 2009;82:430–437. doi: 10.1086/604668. PubMed DOI
Searle J.B., Kotlík P., Rambau R.V., Marková S., Herman J.S., McDevitt A.D. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. Lond. B. 2009;276:4287–4294. doi: 10.1098/rspb.2009.1422. PubMed DOI PMC
Frichot E., Schoville S.D., de Villemereuil P., Gaggiotti O.E., François O. Detecting adaptive evolution based on association with ecological gradients: Orientation matters! Heredity. 2015;115:22. doi: 10.1038/hdy.2015.7. PubMed DOI PMC
Stier A., Dupoué A., Picard D., Angelier F., Brischoux F., Lourdais O. Oxidative stress in a capital breeder (Vipera aspis) facing pregnancy and water constraints. J. Exp. Biol. 2017;220:1792–1796. doi: 10.1242/jeb.156752. PubMed DOI
Lee C., Mitchell-Olds T. Environmental adaptation contributes to gene polymorphism across the Arabidopsis thaliana genome. Mol. Biol. Evol. 2012;29:3721–3728. doi: 10.1093/molbev/mss174. PubMed DOI PMC
Tiffin P., Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol. Evol. 2014;29:673–680. doi: 10.1016/j.tree.2014.10.004. PubMed DOI
Outridge P.M., Hutchinson T.C. Induction of cadmium tolerance by acclimation transferred between ramets of the clonal fern Salvinia minima Baker. New Phytol. 1991;117:597–605. doi: 10.1111/j.1469-8137.1991.tb00964.x. DOI
Marino S.M., Gladyshev V.N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 2010;404:902–916. doi: 10.1016/j.jmb.2010.09.027. PubMed DOI PMC
Mano S., Innan H. The evolutionary rate of duplicated genes under concerted evolution. Genetics. 2008;180:493–505. doi: 10.1534/genetics.108.087676. PubMed DOI PMC
Hallast P., Nagirnaja L., Margus T., Laan M. Segmental duplications and gene conversion: Human luteinizing hormone/chorionic gonadotropin β gene cluster. Genome Res. 2005;15:1535–1546. doi: 10.1101/gr.4270505. PubMed DOI PMC
von Salomé J., Kukkonen J.P. Sequence features of HLA-DRB1 locus define putative basis for gene conversion and point mutations. BMC Genom. 2008;9:228. doi: 10.1186/1471-2164-9-228. PubMed DOI PMC
Lam S.T., Stahl M.M., McMilin K.D., Stahl F.W. Rec-mediated recombinational hot spot activity in bacteriophage lambda. II. A mutation which causes hot spot activity. Genetics. 1974;77:425–433. PubMed PMC
Henderson D., Weil J. Recombination-deficient deletions in bacteriophage lambda and their interaction with chi mutations. Genetics. 1975;79:143–174. PubMed PMC
Smith G.R. How RecBCD enzyme and Chi promote DNA break repair and recombination: A molecular biologist’s view. Microbiol. Mol. Biol. Rev. 2012;76:217–228. doi: 10.1128/MMBR.05026-11. PubMed DOI PMC
Kenter A.L., Birshtein B.K. Chi, a promoter of generalized recombination in λ phage, is present in immunoglobulin genes. Nature. 1981;293:402–404. doi: 10.1038/293402a0. PubMed DOI
Matsuno Y., Yamashiro Y., Yamamoto K., Hattori Y., Yamamoto K., Ohba Y., Miyaji T. A possible example of gene conversion with a common β-thalassemia mutation and Chi sequence present in the β-globin gene. Hum. Genet. 1992;88:357–358. doi: 10.1007/BF00197277. PubMed DOI
Chen J.-M., Ferec C. Gene conversion-like missense mutations in the human cationic trypsinogen gene and insights into the molecular evolution of the human trypsinogen family. Mol. Genet. Metab. 2000;71:463–469. doi: 10.1006/mgme.2000.3086. PubMed DOI
López-Correa C., Dorschner M., Brems H., Lázaro C., Clementi M., Upadhyaya M., Dooijes D., Moog U., Kehrer-Sawatzki H., Rutkowski J.L., et al. Recombination hotspot in NF1 microdeletion patients. Hum. Mol. Genet. 2001;10:1387–1392. doi: 10.1093/hmg/10.13.1387. PubMed DOI
Zhang W., Cai W.-W., Zhou W.-P., Li H.-P., Li L., Yan W., Deng Q.-K., Zhang Y.-P., Fu Y.-X., Xu X.-M. Evidence of gene conversion in the evolutionary process of the codon 41/42 (-CTTT) mutation causing β-thalassemia in southern China. J. Mol. Evol. 2008;66:436–445. doi: 10.1007/s00239-008-9096-2. PubMed DOI
Innan H. A two-locus gene conversion model with selection and its application to the human RHCE and RHD genes. Proc. Natl. Acad. Sci. USA. 2003;100:8793–8798. doi: 10.1073/pnas.1031592100. PubMed DOI PMC
Lafontaine G., Napier J.D., Petit R.J., Hu F.S. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology. 2018;99:1530–1546. doi: 10.1002/ecy.2382. PubMed DOI
Genetic admixture drives climate adaptation in the bank vole
Genic distribution modelling predicts adaptation of the bank vole to climate change
Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus