Genic distribution modelling predicts adaptation of the bank vole to climate change
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36114276
PubMed Central
PMC9481625
DOI
10.1038/s42003-022-03935-3
PII: 10.1038/s42003-022-03935-3
Knihovny.cz E-zdroje
- MeSH
- aklimatizace * MeSH
- Arvicolinae genetika MeSH
- fyziologická adaptace MeSH
- hemoglobiny MeSH
- klimatické změny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoglobiny MeSH
The most likely pathway for many species to survive future climate change is by pre-existing trait variation providing a fitness advantage under the new climate. Here we evaluate the potential role of haemoglobin (Hb) variation in bank voles under future climate change. We model gene-climate relationships for two functionally distinct Hb types, HbS and HbF, which have a north-south distribution in Britain presenting an unusually tractable system linking genetic variation in physiology to geographical and temporal variation in climate. Projections to future climatic conditions suggest a change in relative climatic suitability that would result in HbS being displaced by HbF in northern Britain. This would facilitate local adaptation to future climate-without Hb displacement, populations in northern Britain would likely be suboptimally adapted because their Hb would not match local climatic conditions. Our study shows how pre-existing physiological differences can influence the adaptive capacity of species to climate change.
Zobrazit více v PubMed
Davis MB, Shaw RG. Range shifts and adaptive responses to Quaternary climate change. Science. 2001;292:673–679. doi: 10.1126/science.292.5517.673. PubMed DOI
Parmesan C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI
Williams JE, Blois JL. Range shifts in response to past and future climate change: can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 2018;45:2175–2189. doi: 10.1111/jbi.13395. DOI
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI
Thomas CD. Climate, climate change and range boundaries. Divers. Distrib. 2010;16:488–495. doi: 10.1111/j.1472-4642.2010.00642.x. DOI
Bradshaw AD, McNeilly T. Evolutionary response to global climatic change. Ann. Bot. 1991;67:5–14. doi: 10.1093/oxfordjournals.aob.a088209. DOI
Harter DEV, et al. Impacts of global climate change on the floras of oceanic islands—projections, implications and current knowledge. Perspect. Plant Ecol. Evol. Syst. 2015;17:160–183. doi: 10.1016/j.ppees.2015.01.003. DOI
Veron S, Haevermans T, Govaerts R, Mouchet M, Pellens R. Distribution and relative age of endemism across islands worldwide. Sci. Rep. 2019;9:1–12. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC
Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC
Jump AS, Peñuelas J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 2005;8:1010–1020. doi: 10.1111/j.1461-0248.2005.00796.x. PubMed DOI
Freeman BG, Scholer MN, Ruiz-Gutierrez V, Fitzpatrick JW. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA. 2018;115:11982–11987. doi: 10.1073/pnas.1804224115. PubMed DOI PMC
Gilbert KJ, Whitlock MC. The genetics of adaptation to discrete heterogeneous environments: frequent mutation or large-effect alleles can allow range expansion. J. Evol. Biol. 2017;30:591–602. doi: 10.1111/jeb.13029. PubMed DOI
Christmas MJ, Breed MF, Lowe AJ. Constraints to and conservation implications for climate change adaptation in plants. Conserv. Genet. 2015;17:305–320. doi: 10.1007/s10592-015-0782-5. DOI
Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI
Lai YT, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA. 2019;116:2152–2157. doi: 10.1073/pnas.1813597116. PubMed DOI PMC
Hoban S, et al. Finding the genomic basis of local adaptation: Pitfalls, practical solutions, and future directions. Am. Nat. 2016;188:379–397. doi: 10.1086/688018. PubMed DOI PMC
Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI
Catullo RA, Llewelyn J, Phillips BL, Moritz CC. The potential for rapid evolution under anthropogenic climate change. Curr. Biol. 2019;29:R996–R1007. doi: 10.1016/j.cub.2019.08.028. PubMed DOI
Botkin DB, et al. Forecasting the effects of global warming on biodiversity. BioScience. 2007;57:227–236. doi: 10.1641/B570306. DOI
Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. USA. 2009;106:19729–19736. doi: 10.1073/pnas.0901639106. PubMed DOI PMC
Smith AB, Godsoe W, Rodríguez-Sánchez F, Wang HH, Warren D. Niche estimation above and below the species level. Trends Ecol. Evol. 2019;34:260–273. doi: 10.1016/j.tree.2018.10.012. PubMed DOI
Waldvogel A-M, et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 2020;4:4–18. doi: 10.1002/evl3.154. PubMed DOI PMC
Razgour O, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol. Ecol. Resour. 2018;18:18–31. doi: 10.1111/1755-0998.12694. PubMed DOI PMC
Razgour O, et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA. 2019;116:10418–10423. doi: 10.1073/pnas.1820663116. PubMed DOI PMC
Aguirre-Liguori JA, Ramírez-Barahona S, Tiffin P, Eguiarte LE. Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. Proc. R. Soc. B. 2019;286:20190486. doi: 10.1098/rspb.2019.0486. PubMed DOI PMC
Evans TG, Diamond SE, Kelly MW. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 2015;3:cov056. doi: 10.1093/conphys/cov056. PubMed DOI PMC
Hall SJG. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 1979;187:153–160. doi: 10.1111/j.1469-7998.1979.tb03939.x. DOI
Kotlík P, et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B. 2014;281:20140021. doi: 10.1098/rspb.2014.0021. PubMed DOI PMC
Searle JB, et al. The Celtic fringe of Britain: Insights from small mammal phylogeography. Proc. R. Soc. B. 2009;276:4287–4294. doi: 10.1098/rspb.2009.1422. PubMed DOI PMC
Escalante MA, Horníková M, Marková S, Kotlík P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 2021;11:8054–8070. doi: 10.1002/ece3.7637. PubMed DOI PMC
Reischl E, Dafre AL, Franco JL, Wilhelm Filho D. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. Part C. Toxicol. Pharmacol. 2007;146:22–53. doi: 10.1016/j.cbpc.2006.07.015. PubMed DOI
Storz JF, Wheat CW. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution. 2010;64:2489–2509. doi: 10.1111/j.1558-5646.2010.01044.x. PubMed DOI PMC
Rossi R, et al. Different metabolizing ability of thiol reactants in human and rat blood. Biochemical and pharmacological implications. J. Biol. Chem. 2001;276:7004–7010. doi: 10.1074/jbc.M005156200. PubMed DOI
Vitturi DA, et al. Antioxidant functions for the hemoglobin β93 cysteine residue in erythrocytes and in the vascular compartment in vivo. Free Radic. Biol. Med. 2013;55:119–129. doi: 10.1016/j.freeradbiomed.2012.11.003. PubMed DOI PMC
Petersen AG, et al. Hemoglobin polymerization via disulfide bond formation in the hypoxia-tolerant turtle Trachemys scripta: Implications for antioxidant defense and O2 transport. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018;314:R84–R93. doi: 10.1152/ajpregu.00024.2017. PubMed DOI
Paital B, et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 2016;7:110–127. doi: 10.4331/wjbc.v7.i1.110. PubMed DOI PMC
Jacobs PJ, Oosthuizen MK, Mitchell C, Blount JD, Bennett NC. Heat and dehydration induced oxidative damage and antioxidant defenses following incubator heat stress and a simulated heat wave in wild caught four-striped field mice Rhabdomys dilectus. PLoS One. 2020;15:e0242279. doi: 10.1371/journal.pone.0242279. PubMed DOI PMC
Kotlík P, Marková S, Horníková M, Escalante MA, Searle JB. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 2022;10:866605. doi: 10.3389/fevo.2022.866605. DOI
Strážnická M, Marková S, Searle JB, Kotlík P. Playing hide-and-seek in beta-globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene guplicates. Genes. 2018;9:492. doi: 10.3390/genes9100492. PubMed DOI PMC
Stocker, T. Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
Araújo MB, Pearson RG, Thuiller W, Erhard M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 2005;11:1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x. DOI
Peterson AT, Papeş M, Soberón J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell. 2008;213:63–72. doi: 10.1016/j.ecolmodel.2007.11.008. DOI
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Warren DL, et al. ENMTools 1.0: an R package for comparative ecological biogeography. Ecography. 2021;44:504–511. doi: 10.1111/ecog.05485. DOI
Mayes J, Wheeler D. Regional weather and climates of the British Isles—part 1: introduction. Weather. 2013;68:3–8. doi: 10.1002/wea.2041. DOI
Kotlík P, Marková S, Konczal M, Babik W, Searle JB. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B. 2018;285:20172624. doi: 10.1098/rspb.2017.2624. PubMed DOI PMC
Capblancq T, Fitzpatrick MC, Bay RA, Exposito-Alonso M, Keller SR. Genomic prediction of (mal)adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 2020;51:245–269. doi: 10.1146/annurev-ecolsys-020720-042553. DOI
Benito Garzón M, Robson TM, Hampe A. ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. N. Phytol. 2019;222:1757–1765. doi: 10.1111/nph.15716. PubMed DOI
Wisz MS, et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 2008;14:763–773. doi: 10.1111/j.1472-4642.2008.00482.x. DOI
Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. in Twenty-first International Conference on Machine Learning - ICML ’04 9, 83 (ACM Press, 2004).
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978. doi: 10.1002/joc.1276. DOI
Zeng Y, Low BW, Yeo DCJ. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecol. Modell. 2016;341:5–13. doi: 10.1016/j.ecolmodel.2016.09.019. DOI
Warren DL, Seifert SN. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011;21:335–342. doi: 10.1890/10-1171.1. PubMed DOI
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611. doi: 10.1111/j.1600-0587.2009.06041.x. DOI
Gent PR, et al. The community climate system model version 4. J. Clim. 2011;24:4973–4991. doi: 10.1175/2011JCLI4083.1. DOI
Dufresne JL, et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 2013;40:2123–2165. doi: 10.1007/s00382-012-1636-1. DOI
Watanabe S, et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011;4:845–872. doi: 10.5194/gmd-4-845-2011. DOI
Giorgetta MA, et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013;5:572–597. doi: 10.1002/jame.20038. DOI
Schoener TW. The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology. 1968;49:704–726. doi: 10.2307/1935534. DOI