Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34188871
PubMed Central
PMC8216960
DOI
10.1002/ece3.7637
PII: ECE37637
Knihovny.cz E-zdroje
- Klíčová slova
- Last Glacial Maximum, MaxEnt, Myodesglareolus, cryptic refugia, ecological niche modeling, intraspecific variation,
- Publikační typ
- časopisecké články MeSH
Species-level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal. We first model the environmental requirements for the bank vole using species-wide occurrences (210 filtered records) and then model each lineage separately to examine niche overlap and test for niche differentiation in geographic and environmental space. We then use the models to estimate past [Last Glacial Maximum (LGM) and mid-Holocene] habitat suitability to compare with previously hypothesized glacial refugia for this species. Environmental niches are statistically significantly different from each other for all pairs of lineages in geographic and environmental space, and these differences cannot be explained by habitat availability within their respective ranges. Together with the inability of most of the lineages to correctly predict the distributions of other lineages, these results support intraspecific ecological differentiation in the bank vole. Model projections of habitat suitability during the LGM support glacial survival of the bank vole in the Mediterranean region and in central and western Europe. Niche differences between lineages and the resulting spatial segregation of habitat suitability suggest ecological differentiation has played a role in determining the present phylogeographic patterns in the bank vole. Our study illustrates that models pooling lineages within a species may obscure the potential for different responses to climate change among populations.
Zobrazit více v PubMed
Anderson, C. D. , Epperson, B. K. , Fortin, M. J. , Holderegger, R. , James, P. M. A. , Rosenberg, M. S. , Scribner, K. T. , & Spear, S. (2010). Considering spatial and temporal scale in landscape‐genetic studies of gene flow. Molecular Ecology, 19(17), 3565–3575. 10.1111/j.1365-294X.2010.04757.x PubMed DOI
Anderson, R. P. (2013). A framework for using niche models to estimate impacts of climate change on species distributions. Annals of the New York Academy of Sciences, 1297(1), 8–28. 10.1111/nyas.12264 PubMed DOI
Araújo, M. B. , Anderson, R. P. , Barbosa, A. M. , Beale, C. M. , Dormann, C. F. , Early, R. , Garcia, R. A. , Guisan, A. , Maiorano, L. , Naimi, B. , O’Hara, R. B. , Zimmermann, N. E. , & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5(1), eaat4858. 10.1126/sciadv.aat4858 PubMed DOI PMC
Araújo, M. B. , & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22(1), 42–47. 10.1016/j.tree.2006.09.010 PubMed DOI
Araújo, M. B. , Pearson, R. G. , Thuiller, W. , & Erhard, M. (2005). Validation of species‐climate impact models under climate change. Global Change Biology, 11(9), 1504–1513. 10.1111/j.1365-2486.2005.01000.x DOI
Barve, N. , Barve, V. , Jiménez‐Valverde, A. , Lira‐Noriega, A. , Maher, S. P. , Peterson, A. T. , Soberón, J. , & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819. 10.1016/j.ecolmodel.2011.02.011 DOI
Bilton, D. T. , Mirol, P. M. , Mascheretti, S. , Fredga, K. , Zima, J. , & Searle, J. B. (1998). Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proceedings of the Royal Society B: Biological Sciences, 265(1402), 1219–1226. 10.1098/rspb.1998.0423 PubMed DOI PMC
Broennimann, O. , Fitzpatrick, M. C. , Pearman, P. B. , Petitpierre, B. , Pellissier, L. , Yoccoz, N. G. , Thuiller, W. , Fortin, M.‐J. , Randin, C. , Zimmermann, N. E. , Graham, C. H. , & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography, 21(4), 481–497. 10.1111/j.1466-8238.2011.00698.x DOI
Brown, J. L. , & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography, 11(4). 10.21425/F5FBG44158 DOI
Chardon, N. I. , Pironon, S. , Peterson, M. L. , & Doak, D. F. (2020). Incorporating intraspecific variation into species distribution models improves distribution predictions, but cannot predict species traits for a wide‐spread plant species. Ecography, 43(1), 60–74. 10.1111/ecog.04630 DOI
Cordy, J. M. (1991). Palaeoecology of the Late Glacial and early postglacial of Belgium and neighbouring areas. In Barto N., Roberts A. J., & Roe D. A. (Eds.), The Late Glacial in Northwest Europe: Human adaptation and environmental change at the end of the Pleistocene (pp. 40–47). Council for British Archaeology.
D’Amen, M. , Zimmermann, N. E. , & Pearman, P. B. (2013). Conservation of phylogeographic lineages under climate change. Global Ecology and Biogeography, 22(1), 93–104. 10.1111/j.1466-8238.2012.00774.x DOI
de Lafontaine, G. , Napier, J. D. , Petit, R. J. , & Hu, F. S. (2018). Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 99(7), 1530–1546. 10.1002/ecy.2382 PubMed DOI
Deffontaine, V. , Libois, R. , Kotlík, P. , Sommer, R. , Nieberding, C. , Paradis, E. , Searle, J. B. , & Michaux, J. R. (2005). Beyond the Mediterranean peninsulas: Evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Molecular Ecology, 14(6), 1727–1739. 10.1111/j.1365-294X.2005.02506.x PubMed DOI
Dungan, J. L. , Perry, J. N. , Dale, M. R. T. , Legendre, P. , Citron‐Pousty, S. , Fortin, M.‐J. , Jakomulska, A. , Miriti, M. , & Rosenberg, M. S. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(5), 626–640. 10.1034/j.1600-0587.2002.250510.x DOI
Esri (2018). ArcMap: Release 10.6. Environmental Systems Research Institute.
Filipi, K. , Marková, S. , Searle, J. B. , & Kotlík, P. (2015). Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end‐glacial colonization of Europe. Molecular Phylogenetics and Evolution, 82(PA), 245–257. 10.1016/j.ympev.2014.10.016 PubMed DOI
Fløjgaard, C. , Normand, S. , Skov, F. , & Svenning, J.‐C. (2009). Ice age distributions of European small mammals: Insights from species distribution modelling. Journal of Biogeography, 36(6), 1152–1163. 10.1111/j.1365-2699.2009.02089.x DOI
Fontanella, F. M. , Feltrin, N. , Avila, L. J. , Sites, J. W. , & Morando, M. (2012). Early stages of divergence: Phylogeography, climate modeling, and morphological differentiation in the South American lizard Liolaemus petrophilus (Squamata: Liolaemidae). Ecology and Evolution, 2(4), 792–808. 10.1002/ece3.78 PubMed DOI PMC
Gent, P. R. , Danabasoglu, G. , Donner, L. J. , Holland, M. M. , Hunke, E. C. , Jayne, S. R. , Lawrence, D. M. , Neale, R. B. , Rasch, P. J. , Vertenstein, M. , Worley, P. H. , Yang, Z.‐L. , Zhang, M. (2011). The community climate system model version 4. Journal of Climate, 24(19), 4973–4991. 10.1175/2011JCLI4083.1 DOI
Guevara, L. , Gerstner, B. E. , Kass, J. M. , & Anderson, R. P. (2018). Toward ecologically realistic predictions of species distributions: A cross‐time example from tropical montane cloud forests. Global Change Biology, 24(4), 1511–1522. 10.1111/gcb.13992 PubMed DOI
Guisan, A. , & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. 10.1016/S0304-3800(00)00354-9 DOI
Gutiérrez‐Rodríguez, J. , Barbosa, A. M. , & Martínez‐Solano, Í. (2017). Integrative inference of population history in the Ibero‐Maghrebian endemic Pleurodeles waltl (Salamandridae). Molecular Phylogenetics and Evolution, 112, 122–137. 10.1016/j.ympev.2017.04.022 PubMed DOI
Hällfors, M. H. , Liao, J. , Dzurisin, J. , Grundel, R. , Hyvärinen, M. , Towle, K. , Wu, G. C. , & Hellmann, J. J. (2016). Addressing potential local adaptation in species distribution models: Implications for conservation under climate change. Ecological Applications, 26(4), 1154–1169. 10.1890/15-0926 PubMed DOI
Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. 10.1006/bijl.1996.0035 DOI
Hijmans, R. J. , Cameron, S. E. , Parra, J. L. , Jones, P. G. , & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978. 10.1002/joc.1276 DOI
Hoffmann, A. A. , & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470(7335), 479–485. 10.1038/nature09670 PubMed DOI
Hofreiter, M. , Serre, D. , Rohland, N. , Rabeder, G. , Nagel, D. , Conard, N. , & Pääbo, S. (2004). Lack of phylogeography in European mammals before the last glaciation. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 12963–12968. 10.1073/pnas.0403618101 PubMed DOI PMC
Homburg, K. , Brandt, P. , Drees, C. , & Assmann, T. (2014). Evolutionarily significant units in a flightless ground beetle show different climate niches and high extinction risk due to climate change. Journal of Insect Conservation, 18(5), 781–790. 10.1007/s10841-014-9685-x DOI
Horáček, I. (2000). Glacial cycles and mammalian biodiversity of central Europe: Large scale migrations or vicariance dynamics? Geolines, 11, 103–107.
Horáček, I. (2006). Small vertebrates in the Weichselian series in Dzeravá skala cave: List of the samples and a brief summary (pp. 157–167). Pleistocene Environments and Archaelogy of the Dzerava Skala Cave, Lesser Carpathians, Slovakia.
Horníková, M. , Marková, S. , Lanier, H. C. , Searle, J. B. , & Kotlík, P. (2021). A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole. Ecology and Evolution, In press. PubMed PMC
Horton, R. E. (1917). Rational study of rainfall data makes possible better estimates of water yield. Engineering News‐Record, 79, 211–213.
Hu, J. , Broennimann, O. , Guisan, A. , Wang, B. , Huang, Y. , & Jiang, J. (2016). Niche conservatism in Gynandropaa frogs on the southeastern Qinghai‐Tibetan Plateau. Scientific Reports, 6(1), 1–10. 10.1038/srep32624 PubMed DOI PMC
Hutterer, R. , Kryštufek, B. , Yigit, N. , Mitsain, G. , Palomo, L. J. , Henttonen, H. , & Bertolino, S. (2016). Myodes glareolus (errata version published in 2017). The IUCN Red List of Threatened Species. 10.2305/IUCN.UK.2016-3.RLTS.T4973A22372716.en DOI
Ikeda, D. H. , Max, T. L. , Allan, G. J. , Lau, M. K. , Shuster, S. M. , & Whitham, T. G. (2017). Genetically informed ecological niche models improve climate change predictions. Global Change Biology, 23(1), 164–176. 10.1111/gcb.13470 PubMed DOI
Jaime, R. , Alcántara, J. M. , Bastida, J. M. , & Rey, P. J. (2014). Complex patterns of environmental niche evolution in Iberian columbines (genus Aquilegia, Ranunculaceae). Journal of Plant Ecology, 8(5), 457–467. 10.1093/jpe/rtu044 DOI
Kearney, M. , & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12(4), 334–350. 10.1111/j.1461-0248.2008.01277.x PubMed DOI
Kotlík, P. , Deffontaine, V. , Mascheretti, S. , Zima, J. , Michaux, J. R. , & Searle, J. B. (2006). A northern glacial refugium for bank voles (Clethrionomys glareolus). Proceedings of the National Academy of Sciences, 103(40), 14860–14864. 10.1073/pnas.0603237103 PubMed DOI PMC
Kotlík, P. , Marková, S. , Konczal, M. , Babik, W. , & Searle, J. B. (2018). Genomics of end‐Pleistocene population replacement in a small mammal. Proceedings of the Royal Society B: Biological Sciences, 285(1872), 20172624. 10.1098/rspb.2017.2624 PubMed DOI PMC
Kotlík, P. , Marková, S. , Vojtek, L. , Stratil, A. , Slechta, V. , Hyršl, P. , & Searle, J. B. (2014). Adaptive phylogeography: Functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proceedings of the Royal Society B: Biological Sciences, 281(1786), 20140021. 10.1098/rspb.2014.0021 PubMed DOI PMC
Kottek, M. , Grieser, J. , Beck, C. , Rudolf, B. , & Rubel, F. (2006). World Map of the Köppen‐Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. 10.1127/0941-2948/2006/0130 DOI
Kozak, K. H. , Graham, C. H. , & Wiens, J. J. (2008). Integrating GIS‐based environmental data into evolutionary biology. Trends in Ecology and Evolution, 23(3), 141–148. 10.1016/j.tree.2008.02.001 PubMed DOI
Kryštufek, B. , Tesakov, A. S. , Lebedev, V. S. , Bannikova, A. A. , Abramson, N. I. , & Shenbrot, G. (2020). Back to the future: The proper name for red‐backed voles is Clethrionomys Tilesius and not Myodes Pallas. Mammalia, 84(2), 214–217. 10.1515/mammalia-2019-0067 DOI
Kumar, S. , LeBrun, E. G. , Stohlgren, T. J. , Stabach, J. A. , McDonald, D. L. , Oi, D. H. , & LaPolla, J. S. (2015). Evidence of niche shift and global invasion potential of the Tawny Crazy ant, Nylanderia fulva. Ecology and Evolution, 5(20), 4628–4641. 10.1002/ece3.1737 PubMed DOI PMC
Levins, R. (1968). Evolution in changing environments: Some theoretical explorations. Princeton University Press.
Li, W. , & Guo, Q. (2013). How to assess the prediction accuracy of species presence‐absence models without absence data? Ecography, 36(7), 788–799. 10.1111/j.1600-0587.2013.07585.x DOI
Liu, C. , Berry, P. M. , Dawson, T. P. , & Pearson, R. G. (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28(3), 385–393. 10.1111/j.0906-7590.2005.03957.x DOI
Magyari, E. K. , Demény, A. , Buczkó, K. , Kern, Z. , Vennemann, T. , Fórizs, I. , Vincze, I. , Braun, M. , Kovács, J. I. , Udvardi, B. , & Veres, D. (2013). A 13,600‐year diatom oxygen isotope record from the South Carpathians (Romania): Reflection of winter conditions and possible links with North Atlantic circulation changes. Quaternary International, 293, 136–149. 10.1016/j.quaint.2012.05.042 DOI
Markova, A. K. , Smirnov, N. G. , Kozharinov, A. V. , Kazantseva, N. E. , Simakova, A. N. , & Kitaev, L. M. (1995). Late Pleistocene distribution and diversity of mammals in Northern Eurasia (PALEOFAUNA database). Sabadell.
Marková, S. , Horníková, M. , Lanier, H. C. , Henttonen, H. , Searle, J. B. , Weider, L. J. , & Kotlík, P. (2020). High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end‐glacial refugia. Molecular Ecology, 29(9), 1730–1744. 10.1111/mec.15427 PubMed DOI
Martínez‐Gordillo, D. , Rojas‐Soto, O. , De Los, E. , & Monteros, A. (2010). Ecological niche modelling as an exploratory tool for identifying species limits: An example based on Mexican muroid rodents. Journal of Evolutionary Biology, 23(2), 259–270. 10.1111/j.1420-9101.2009.01897.x PubMed DOI
Mcguire, J. L. , & Davis, E. B. (2014). Conservation paleobiogeography: The past, present and future of species distributions. Ecography, 37(11), 1092–1094. 10.1111/ecog.01337 DOI
Melnikova, E. N. , Kshnyasev, I. A. , Bodrov, S. Y. , Mukhacheva, S. V. , Davydova, Y. , & Abramson, N. I. (2012). Sympatric area of Myodes glareolus and M. rutilus (Rodentia, Cricetidae): Historic and recent hybridization. Proceedings of the Zoological Institute RAS, 316(4), 307–323.
Merow, C. , Smith, M. J. , Silander, J. A. , Merow, C. , & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. 10.1111/j.1600-0587.2013.07872.x DOI
Michaux, J. R. , Libois, R. , & Filippucci, M.‐G. (2005). So close and so different: Comparative phylogeography of two small mammal species, the Yellow‐necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity, 94, 52–63. 10.1038/sj.hdy.6800561 PubMed DOI
Nadachowski, A. , & Valde‐Nowak, P. (2015). New Late Pleistocene faunal assemblages from Podhale Basin, Western Carpathians, Poland: Preliminary results. Acta Zoologica Cracoviensia, 58(2), 181–194. 10.3409/azc.58_2.181 DOI
Nicolas, V. , Martínez‐Vargas, J. , & Hugot, J.‐P. (2017). Molecular data and ecological niche modelling reveal the evolutionary history of the common and Iberian moles (Talpidae) in Europe. Zoologica Scripta, 46(1), 12–26. 10.1111/zsc.12189 DOI
Osorio‐Olvera, L. , Lira‐Noriega, A. , Soberón, J. , Peterson, A. T. , Falconi, M. , Contreras‐Díaz, R. G. , Martínez‐Meyer, E. , Barve, V. , & Barve, N. (2020). ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution, 11(10), 1199–1206. 10.1111/2041-210X.13452 DOI
Pahad, G. , Montgelard, C. , & Jansen van Vuuren, B. (2020). Phylogeography and niche modelling: Reciprocal enlightenment. Mammalia, 84(1), 10–25. 10.1515/mammalia-2018-0191 DOI
Pearman, P. B. , D’Amen, M. , Graham, C. H. , Thuiller, W. , & Zimmermann, N. E. (2010). Within‐taxon niche structure: Niche conservatism, divergence and predicted effects of climate change. Ecography, 33(6), 990–1003. 10.1111/j.1600-0587.2010.06443.x DOI
Pearman, P. B. , Guisan, A. , Broennimann, O. , & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23(3), 149–158. 10.1016/j.tree.2007.11.005 PubMed DOI
Peterson, A. T. (1999). Conservatism of ecological niches in evolutionary time. Science, 285(5431), 1265–1267. 10.1126/science.285.5431.1265 PubMed DOI
Peterson, A. T. , Papeş, M. , & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213(1), 63–72. 10.1016/j.ecolmodel.2007.11.008 DOI
Phillips, S. J. , & Dudík, M. (2008). Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. 10.1111/j.0906-7590.2008.5203.x DOI
Phillips, S. J. , Dudík, M. , & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Twenty‐first international conference on Machine learning ‐ ICML ’04 (Vol. 8 Spec, p. 83). 10.1145/1015330.1015412 DOI
Qiao, H. , Soberón, J. , & Peterson, A. T. (2015). No silver bullets in correlative ecological niche modelling: Insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6(10), 1126–1136. 10.1111/2041-210X.12397 DOI
Radosavljevic, A. , & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting and evaluation. Journal of Biogeography, 41(4), 629–643. 10.1111/jbi.12227 DOI
Ramstein, G. , Kageyama, M. , Guiot, J. , Wu, H. , Hély, C. , Krinner, G. , & Brewer, S. (2007). How cold was Europe at the Last Glacial Maximum? A synthesis of the progress achieved since the first PMIP model‐data comparison. Climate of the past, 3(2), 331–339. 10.5194/cp-3-331-2007 DOI
Razgour, O. , Forester, B. , Taggart, J. B. , Bekaert, M. , Juste, J. , Ibáñez, C. , Puechmaille, S. J. , Novella‐Fernandez, R. , Alberdi, A. , & Manel, S. (2019). Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proceedings of the National Academy of Sciences, 116(21), 10418–10423. 10.1073/pnas.1820663116 PubMed DOI PMC
Ruiz‐Luna, A. , Hernández‐Guzmán, R. , García‐De León, F. J. , & Ramírez‐Huerta, A. L. (2017). Potential distribution of endangered Mexican golden trout (Oncorhynchus chrysogaster) in the Rio Sinaloa and Rio Culiacan basins (Sierra Madre Occidental) based on landscape characterization and species distribution models. Environmental Biology of Fishes, 100(8), 981–993. 10.1007/s10641-017-0624-z DOI
Sánchez‐García, F. J. , Galián, J. , & Gallego, D. (2015). Distribution of Tomicus destruens (Coleoptera: Scolytinae) mitochondrial lineages: Phylogeographic insights and niche modelling. Organisms Diversity & Evolution, 15(1), 101–113. 10.1007/s13127-014-0186-2 DOI
Schoener, T. W. (1968). The anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology, 49(4), 704–726. 10.2307/1935534 DOI
Schorr, G. , Holstein, N. , Pearman, P. B. , Guisan, A. , & Kadereit, J. W. (2012). Integrating species distribution models (SDMs) and phylogeography for two species of alpine primula. Ecology and Evolution, 2(6), 1260–1277. 10.1002/ece3.100 PubMed DOI PMC
Schwalm, D. , Epps, C. W. , Rodhouse, T. J. , Monahan, W. B. , Castillo, J. A. , Ray, C. , & Jeffress, M. R. (2016). Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: A place‐based approach. Global Change Biology, 22(4), 1572–1584. 10.1111/gcb.13189 PubMed DOI
Searle, J. B. , Kotlík, P. , Rambau, R. V. , Marková, S. , Herman, J. S. , & McDevitt, A. D. (2009). The Celtic fringe of Britain: Insights from small mammal phylogeography. Proceedings of the Royal Society B: Biological Sciences, 276(1677), 4287–4294. 10.1098/rspb.2009.1422 PubMed DOI PMC
Serra‐Varela, M. J. , Alía, R. , Daniels, R. R. , Zimmermann, N. E. , Gonzalo‐Jiménez, J. , & Grivet, D. (2017). Assessing vulnerability of two Mediterranean conifers to support genetic conservation management in the face of climate change. Diversity and Distributions, 23(5), 507–516. 10.1111/ddi.12544 DOI
Serra‐Varela, M. J. , Grivet, D. , Vincenot, L. , Broennimann, O. , Gonzalo‐Jiménez, J. , & Zimmermann, N. E. (2015). Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.). Global Ecology and Biogeography, 24(11), 1302–1313. 10.1111/geb.12369 DOI
Shinneman, D. J. , Means, R. E. , Potter, K. M. , & Hipkins, V. D. (2016). Exploring climate Niches of Ponderosa Pine (Pinus ponderosa Douglas ex Lawson) haplotypes in the Western United States: Implications for evolutionary history and conservation. PLoS One, 11(3), e0151811. 10.1371/journal.pone.0151811 PubMed DOI PMC
Smith, A. B. , Beever, E. A. , Kessler, A. E. , Johnston, A. N. , Ray, C. , Epps, C. W. , Lanier, H. C. , Klinger, R. C. , Rodhouse, T. J. , Varner, J. , Perrine, J. D. , Seglund, A. , Hall, L. E. , Galbreath, K. , MacGlover, C. , Billman, P. , Blatz, G. , Brewer, J. , Castillo Vardaro, J. , … Yandow, L. (2019). Alternatives to genetic affinity as a context for within‐species response to climate. Nature Climate Change, 9(10), 787–794. 10.1038/s41558-019-0584-8 DOI
Smith, A. B. , Godsoe, W. , Rodríguez‐Sánchez, F. , Wang, H. H. , & Warren, D. (2019). Niche estimation above and below the species level. Trends in Ecology and Evolution, 34(3), 260–273. 10.1016/j.tree.2018.10.012 PubMed DOI
Sommer, R. S. , & Nadachowski, A. (2006). Glacial refugia of mammals in Europe: Evidence from fossil records. Mammal Review. 36(4), 251–265.John Wiley & Sons, Ltd (10.1111). 10.1111/j.1365-2907.2006.00093.x DOI
Stewart, J. R. , Lister, A. M. , Barnes, I. , & Dalén, L. (2010). Refugia revisited: Individualistic responses of species in space and time. Proceedings of the Royal Society B: Biological Sciences, 277(1682), 661–671. 10.1098/rspb.2009.1272 PubMed DOI PMC
Strážnická, M. , Marková, S. , Searle, J. , & Kotlík, P. (2018). Playing hide‐and‐seek in beta‐globin genes: Gene conversion transferring a beneficial mutation between differentially expressed gene duplicates. Genes, 9(10), 492. 10.3390/genes9100492 PubMed DOI PMC
Svendsen, J. I. , Alexanderson, H. , Astakhov, V. I. , Demidov, I. , & Dowdeswell, J. A. , Funder, S. , Gataulling, V. , Henriksen, M. , Hjort, C. , Houmark‐Nielsen, M. , Hubberten, H. W. , Ingólfsson, Ó. , Jakobsson, M. , Kjær, K. H. , Larsen, E. , Lokrantz, H. , Pekka Lunkka, J. , & Lyså, A. … Stein, R. (2004). Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews, 23(11–13), 1229–1271. 10.1016/j.quascirev.2003.12.008 DOI
Svenning, J. C. , Normand, S. , & Kageyama, M. (2008). Glacial refugia of temperate trees in Europe: Insights from species distribution modelling. Journal of Ecology, 96(6), 1117–1127. 10.1111/j.1365-2745.2008.01422.x DOI
Theodoridis, S. , Patsiou, T. S. , Randin, C. , & Conti, E. (2018). Forecasting range shifts of a cold‐adapted species under climate change: Are genomic and ecological diversity within species crucial for future resilience? Ecography, 41(8), 1357–1369. 10.1111/ecog.03346 DOI
Vega, R. , Fløjgaard, C. , Lira‐Noriega, A. , Nakazawa, Y. , Svenning, J. C. , & Searle, J. B. (2010). Northern glacial refugia for the pygmy shrew Sorex minutus in Europe revealed by phylogeographic analyses and species distribution modelling. Ecography, 33(2), 260–271. 10.1111/j.1600-0587.2010.06287.x DOI
Warren, D. L. (2012). In defense of “niche modeling”. Trends in Ecology & Evolution, 27(9), 497–500. 10.1016/j.tree.2012.03.010 PubMed DOI
Warren, D. L. , Beaumont, L. J. , Dinnage, R. , & Baumgartner, J. B. (2019). New methods for measuring ENM breadth and overlap in environmental space. Ecography, 42(3), 444–446. 10.1111/ecog.03900 DOI
Warren, D. L. , Glor, R. E. , & Turelli, M. (2008). Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution, 62(11), 2868–2883. 10.1111/j.1558-5646.2008.00482.x PubMed DOI
Warren, D. L. , Glor, R. E. , & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611. 10.1111/j.1600-0587.2009.06142.x DOI
Warren, D. L. , Matzke, N. J. , Cardillo, M. , Baumgartner, J. B. , Beaumont, L. J. , Turelli, M. , Glor, R. E. , Huron, N. A. , Simões, M. , Iglesias, T. L. , Piquet, J. C. , Dinnage, R. (2021). ENMTools 1.0: An R package for comparative ecological biogeography. Ecography, 44(4), 504–511. 10.1111/ecog.05485 DOI
Watanabe, S. , Hajima, T. , Sudo, K. , Nagashima, T. , Takemura, T. , Okajima, H. , Nozawa, T. , Kawase, H. , Abe, M. , Yokohata, T. , Ise, T. , Sato, H. , Kato, E. , Takata, K. , Emori, S. , & Kawamiya, M. (2011). MIROC‐ESM 2010: Model description and basic results of CMIP5‐20c3m experiments. Geoscientific Model Development, 4, 845–872. 10.5194/gmd-4-845-2011 DOI
Wiens, J. J. , & Graham, C. H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36(1), 519–539. 10.1146/annurev.ecolsys.36.102803.095431 DOI
Wiens, J. A. , Stralberg, D. , Jongsomjit, D. , Howell, C. A. , & Snyder, M. A. (2009). Niches, models, and climate change: Assessing the assumptions and uncertainties. Proceedings of the National Academy of Sciences of the United States of America, 106(SUPPL. 2), 19729–19736. 10.1073/pnas.0901639106 PubMed DOI PMC
Wisz, M. S. , Hijmans, R. J. , Li, J. , Peterson, A. T. , Graham, C. H. , & Guisan, A. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distributions, 14(5), 763–773. 10.1111/j.1472-4642.2008.00482.x DOI
Yackulic, C. B. (2017). Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling. Ecography, 40(2), 305–313. 10.1111/ecog.02836 DOI
Zeng, Y. , Low, B. W. , & Yeo, D. C. J. (2016). Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish. Ecological Modelling, 341, 5–13. 10.1016/j.ecolmodel.2016.09.019 DOI
Local adaptation and future climate vulnerability in a wild rodent
Genic distribution modelling predicts adaptation of the bank vole to climate change
Dryad
10.5061/dryad.jm63xsjb0