Local adaptation and future climate vulnerability in a wild rodent

. 2023 Nov 29 ; 14 (1) : 7840. [epub] 20231129

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38030627

Grantová podpora
EXCELLENCE CZ.02.1.01/0.0/0.0/15_003/0 000460 OP RDE Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 38030627
PubMed Central PMC10686993
DOI 10.1038/s41467-023-43383-z
PII: 10.1038/s41467-023-43383-z
Knihovny.cz E-zdroje

As climate change continues, species pushed outside their physiological tolerance limits must adapt or face extinction. When change is rapid, adaptation will largely harness ancestral variation, making the availability and characteristics of that variation of critical importance. Here, we used whole-genome sequencing and genetic-environment association analyses to identify adaptive variation and its significance in the context of future climates in a small Palearctic mammal, the bank vole (Clethrionomys glareolus). We found that peripheral populations of bank vole in Britain are already at the extreme bounds of potential genetic adaptation and may require an influx of adaptive variation in order to respond. Analyses of adaptive loci suggest regional differences in climate variables select for variants that influence patterns of population adaptive resilience, including genes associated with antioxidant defense, and support a pattern of thermal/hypoxic cross-adaptation. Our findings indicate that understanding potential shifts in genomic composition in response to climate change may be key to predicting species' fate under future climates.

Zobrazit více v PubMed

Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 2010;213:912–920. doi: 10.1242/jeb.037473. PubMed DOI

Weiskopf SR, et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 2020;733:137782. doi: 10.1016/j.scitotenv.2020.137782. PubMed DOI

Barrett RDH, Schluter D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008;23:38–44. doi: 10.1016/j.tree.2007.09.008. PubMed DOI

Olson-Manning CF, Wagner MR, Mitchell-Olds T. Adaptive evolution: evaluating empirical support for theoretical predictions. Nat. Rev. Genet. 2012;13:867–877. doi: 10.1038/nrg3322. PubMed DOI PMC

de Lafontaine G, Napier JD, Petit RJ, Hu FS. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology. 2018;99:1530–1546. doi: 10.1002/ecy.2382. PubMed DOI

Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA. 2020;117:4211–4217. doi: 10.1073/pnas.1913007117. PubMed DOI PMC

Tigano A, Colella JP, MacManes MD. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol. Ecol. 2020;29:1300–1314. doi: 10.1111/mec.15401. PubMed DOI PMC

Smith S, et al. Latitudinal variation in climate-associated genes imperils range edge populations. Mol. Ecol. 2020;29:4337–4349. doi: 10.1111/mec.15637. PubMed DOI

Schweizer RM, et al. Broad concordance in the spatial distribution of adaptive and neutral genetic variation across an elevational gradient in deer mice. Mol. Biol. Evol. 2021;38:4286–4300. doi: 10.1093/molbev/msab161. PubMed DOI PMC

Hewitt GM. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI

Carvalho SB, Brito JC, Crespo EJ, Possingham HP. From climate change predictions to actions—conserving vulnerable animal groups in hotspots at a regional scale. Glob. Change Biol. 2010;16:3257–3270. doi: 10.1111/j.1365-2486.2010.02212.x. DOI

Wachowiak W, Perry A, Zaborowska J, González-Martínez SC, Cavers S. Admixture and selection patterns across the European distribution of Scots pine, Pinus sylvestris (Pinaceae) Bot. J. Linn. Soc. 2022;200:416–432. doi: 10.1093/botlinnean/boac016. DOI

Hewitt GM. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 2001;10:537–549. doi: 10.1046/j.1365-294x.2001.01202.x. PubMed DOI

Birks HH, Willis KJ. Alpines, trees, and refugia in Europe. Plant Ecol. Divers. 2008;1:147–160. doi: 10.1080/17550870802349146. DOI

Luquet E, et al. Post-glacial colonization routes coincide with a life-history breakpoint along a latitudinal gradient. J. Evol. Biol. 2019;32:356–368. doi: 10.1111/jeb.13419. PubMed DOI

Escalante MA, Horníková M, Marková S, Kotlík P. Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus. Ecol. Evol. 2021;11:8054–8070. doi: 10.1002/ece3.7637. PubMed DOI PMC

Martínez-Sancho E, et al. Post-glacial re-colonization and natural selection have shaped growth responses of silver fir across Europe. Sci. Total Environ. 2021;779:146393. doi: 10.1016/j.scitotenv.2021.146393. PubMed DOI

Searle JB, et al. The Celtic fringe of Britain: insights from small mammal phylogeography. Proc. R. Soc. B Biol. Sci. 2009;276:4287–4294. doi: 10.1098/rspb.2009.1422. PubMed DOI PMC

Kotlík P, Marková S, Konczal M, Babik W, Searle JB. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B Biol. Sci. 2018;285:20172624. doi: 10.1098/rspb.2017.2624. PubMed DOI PMC

Brace S, et al. The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): origins and development of the Celtic fringe. Proc. R. Soc. B Biol. Sci. 2016;283:20160130. doi: 10.1098/rspb.2016.0130. PubMed DOI PMC

Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 2001;70:966–979. doi: 10.1046/j.0021-8790.2001.00563.x. DOI

Mayes J. Changing regional climatic gradients in the United Kingdom. Geogr. J. 2000;166:125–138. doi: 10.1111/j.1475-4959.2000.tb00013.x. DOI

Kryštufek B, et al. Back to the future: the proper name for red-backed voles is Clethrionomys Tilesius and not Myodes Pallas. Mammalia. 2020;84:214–217. doi: 10.1515/mammalia-2019-0067. DOI

Hall SJ. Haemoglobin polymorphism in the Bank vole, Clethrionomys glareolus, in Britain. J. Zool. 1979;187:153–160. doi: 10.1111/j.1469-7998.1979.tb03939.x. DOI

Kotlík P, et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B Biol. Sci. 2014;281:20140021. doi: 10.1098/rspb.2014.0021. PubMed DOI PMC

Escalante MA, Marková S, Searle JB, Kotlík P. Genic distribution modelling predicts adaptation of the bank vole to climate change. Commun. Biol. 2022;5:981. doi: 10.1038/s42003-022-03935-3. PubMed DOI PMC

Cassia R, Nocioni M, Correa-Aragunde N, Lamattina L. Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front. Plant Sci. 2018;9:273. doi: 10.3389/fpls.2018.00273. PubMed DOI PMC

Duffy K, Gouhier TC, Ganguly AR. Climate-mediated shifts in temperature fluctuations promote extinction risk. Nat. Clim. Change. 2022;12:1037–1044. doi: 10.1038/s41558-022-01490-7. DOI

Friis G, et al. Genome‐wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 2018;27:5137–5153. doi: 10.1111/mec.14946. PubMed DOI

Uffelmann E, et al. Genome-wide association studies. Nat. Rev. Methods Prim. 2021;1:59. doi: 10.1038/s43586-021-00056-9. DOI

Hayward LK, Sella G. Polygenic adaptation after a sudden change in environment. eLife. 2022;11:e66697. doi: 10.7554/eLife.66697. PubMed DOI PMC

Capblancq T, et al. Climate-associated genetic variation in Fagus sylvatica and potential responses to climate change in the French Alps. J. Evol. Biol. 2020;33:783–796. doi: 10.1111/jeb.13610. PubMed DOI

Capblancq T, Forester BR. Redundancy analysis: a Swiss Army Knife for landscape genomics. Methods Ecol. Evol. 2021;12:2298–2309. doi: 10.1111/2041-210X.13722. DOI

Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 2015;18:1–16. doi: 10.1111/ele.12376. PubMed DOI

Rellstab C, et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 2016;25:5907–5924. doi: 10.1111/mec.13889. PubMed DOI

Sang Y, et al. Genomic insights into local adaptation and future climate-induced vulnerability of a keystone forest tree in East Asia. Nat. Commun. 2022;13:6541. doi: 10.1038/s41467-022-34206-8. PubMed DOI PMC

Hoban S, et al. Finding the genomic basis of local adaptation: pitfalls, practical solutions, and future directions. Am. Nat. 2016;188:379–397. doi: 10.1086/688018. PubMed DOI PMC

Steane DA, et al. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol. Ecol. 2014;23:2500–2513. doi: 10.1111/mec.12751. PubMed DOI

Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science, 2012).

Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 2002;92:1725–1742. doi: 10.1152/japplphysiol.01143.2001. PubMed DOI

Hanlon HM, Bernie D, Carigi G, Lowe JA. Future changes to high impact weather in the UK. Clim. Change. 2021;166:50. doi: 10.1007/s10584-021-03100-5. DOI

Garcia-Elfring A, Barrett RDH, Millien V. Genomic signatures of selection along a climatic gradient in the northern range margin of the white-footed mouse (Peromyscus leucopus) J. Hered. 2019;110:684–695. doi: 10.1093/jhered/esz045. PubMed DOI

Hancock AM, et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 2011;334:83–86. doi: 10.1126/science.1209244. PubMed DOI

Lotterhos KE, Yeaman S, Degner J, Aitken S, Hodgins KA. Modularity of genes involved in local adaptation to climate despite physical linkage. Genome Biol. 2018;19:157. doi: 10.1186/s13059-018-1545-7. PubMed DOI PMC

Jain K, Stephan W. Rapid adaptation of a polygenic trait after a sudden environmental shift. Genetics. 2017;206:389–406. doi: 10.1534/genetics.116.196972. PubMed DOI PMC

Akbarian A, et al. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016;7:37. doi: 10.1186/s40104-016-0097-5. PubMed DOI PMC

Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem. J. 1972;128:617–630. doi: 10.1042/bj1280617. PubMed DOI PMC

Frisard M, Ravussin E. Energy metabolism and oxidative stress. Endocrine. 2006;29:27–32. doi: 10.1385/ENDO:29:1:27. PubMed DOI

Slimen IB, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperthermia. 2014;30:513–523. doi: 10.3109/02656736.2014.971446. PubMed DOI

Abele D, Heise K, Pörtner HO, Puntarulo S. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J. Exp. Biol. 2002;205:1831–1841. doi: 10.1242/jeb.205.13.1831. PubMed DOI

Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 2016;15:71. doi: 10.1186/s12937-016-0186-5. PubMed DOI PMC

Jeruschke S, et al. Protective effects of the mTOR inhibitor everolimus on cytoskeletal injury in human podocytes are mediated by RhoA signaling. PLoS ONE. 2013;8:e55980. doi: 10.1371/journal.pone.0055980. PubMed DOI PMC

Xu C, Miao H, Chen X, Zhang H. Cellular mechanism of action of forsythiaside for the treatment of diabetic kidney disease. Front. Pharmacol. 2023;13:1096536. doi: 10.3389/fphar.2022.1096536. PubMed DOI PMC

Huot J, Houle F, Marceau F, Landry J. Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ. Res. 1997;80:383–392. doi: 10.1161/01.RES.80.3.383. PubMed DOI

Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in Alzheimer disease. Cytoskeleton. 2016;73:477–497. doi: 10.1002/cm.21282. PubMed DOI PMC

Vandebrouck A, et al. In vitro analysis of rod composition and actin dynamics in inherited myopathies. J. Neuropathol. Exp. Neurol. 2010;69:429–441. doi: 10.1097/NEN.0b013e3181d892c6. PubMed DOI

Phuyal S, Farhan H. Multifaceted Rho GTPase signaling at the endomembranes. Front. Cell Dev. Biol. 2019;7:127. doi: 10.3389/fcell.2019.00127. PubMed DOI PMC

Zhang W, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014;10:e1004466. doi: 10.1371/journal.pgen.1004466. PubMed DOI PMC

Elliott J. Alpha-adrenoceptors in equine digital veins: evidence for the presence of both alpha1 and alpha2-receptors mediating vasoconstriction. J. Vet. Pharmacol. Ther. 1997;20:308–317. doi: 10.1046/j.1365-2885.1997.00078.x. PubMed DOI

Yan SF, Mackman N, Kisiel W, Stern DM, Pinsky DJ. Hypoxia/hypoxemia-induced activation of the procoagulant pathways and the pathogenesis of ischemia-associated thrombosis. Arterioscler. Thromb. Vasc. Biol. 1999;19:2029–2035. doi: 10.1161/01.ATV.19.9.2029. PubMed DOI

Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia: bridging the gap between cellular and systemic responses. Temperature. 2014;1:107–114. doi: 10.4161/temp.29800. PubMed DOI PMC

Salgado RM, White AC, Schneider SM, Mermier CM. A novel mechanism for cross-adaptation between heat and altitude acclimation: the role of Heat Shock Protein 90. Physiol. J. 2014;2014:121402. doi: 10.1155/2014/121402. DOI

Li Z, et al. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch. Virol. 2017;162:603–610. doi: 10.1007/s00705-016-3130-2. PubMed DOI

Paital B. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 2016;7:110. doi: 10.4331/wjbc.v7.i1.110. PubMed DOI PMC

Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 2016;7:471. doi: 10.3389/fpls.2016.00471. PubMed DOI PMC

Collier RJ, Renquist BJ, Xiao Y. A 100-year review: stress physiology including heat stress. J. Dairy Sci. 2017;100:10367–10380. doi: 10.3168/jds.2017-13676. PubMed DOI

van Wettere WHEJ, et al. Review of the impact of heat stress on reproductive performance of sheep. J. Anim. Sci. Biotechnol. 2021;12:26. doi: 10.1186/s40104-020-00537-z. PubMed DOI PMC

Andrews, S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

LaMar, D. FastQC. https://qubeshub.org/resources/fastqc (2015).

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kotlík P, Marková S, Horníková M, Escalante MA, Searle JB. The bank vole (Clethrionomys glareolus) as a model system for adaptive phylogeography in the European theater. Front. Ecol. Evol. 2022;10:866605. doi: 10.3389/fevo.2022.866605. DOI

Marková, S. et al. Data from: Local adaptation and future climate vulnerability in a wild rodent. Dryad Digital Repository10.5061/dryad.kwh70rz96 (2023). PubMed PMC

Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

Danecek P, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:1–4. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Tempel S. Using and understanding RepeatMasker. Methods Mol. Biol. 2012;859:29–51. doi: 10.1007/978-1-61779-603-6_2. PubMed DOI

Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0. http://www.repeatmasker.org (2013–2015).

Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA. 2015;6:11. doi: 10.1186/s13100-015-0041-9. PubMed DOI PMC

Pockrandt C, Alzamel M, Iliopoulos CS, Reinert K. GenMap: ultra-fast computation of genome mappability. Bioinformatics. 2020;36:3687–3692. doi: 10.1093/bioinformatics/btaa222. PubMed DOI PMC

Pearman WS, Urban L, Alexander A. Commonly used Hardy–Weinberg equilibrium filtering schemes impact population structure inferences using RADseq data. Mol. Ecol. Resour. 2022;22:2599–2613. doi: 10.1111/1755-0998.13646. PubMed DOI PMC

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC

Lotterhos KE. The paradox of adaptive trait clines with nonclinal patterns in the underlying genes. Proc. Natl Acad. Sci. USA. 2023;120:e2220313120. doi: 10.1073/pnas.2220313120. PubMed DOI PMC

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38:1358–1370. PubMed

Luu K, Bazin E, Blum MGB. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 2017;17:67–77. doi: 10.1111/1755-0998.12592. PubMed DOI

Storey, J. D., Bass, A. J., Dabney, A. & Robinson, D. qvalue: Q-value estimation for false discovery rate control. (2022).

Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 2018;27:2215–2233. doi: 10.1111/mec.14584. PubMed DOI

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

Oksanen, J. et al. vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan (2022).

Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI

Ziehn T, et al. The Australian Earth System Model: ACCESS-ESM1.5. J. South. Hemisph. Earth Syst. Sci. 2020;70:193–214. doi: 10.1071/ES19035. DOI

Voldoire A, et al. Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J. Adv. Model. Earth Syst. 2019;11:2177–2213. doi: 10.1029/2019MS001683. DOI

Bao Y, Song Z, Qiao F. FIO-ESM Version 2.0: model description and evaluation. J. Geophys. Res. Ocean. 2020;125:1–21. doi: 10.1029/2019JC016036. DOI

Kelley M, et al. GISS-E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 2020;12:e2019MS002025. doi: 10.1029/2019MS002025. PubMed DOI PMC

Tatebe H, et al. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 2019;12:2727–2765. doi: 10.5194/gmd-12-2727-2019. DOI

Gidden MJ, et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019;12:1443–1475. doi: 10.5194/gmd-12-1443-2019. DOI

Chhatre, V. E. et al. Climatic niche predicts the landscape structure of locally adaptive standing genetic variation. Preprint at bioRxiv10.1101/817411 (2019).

Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol. 2007;16:3737–3758. doi: 10.1111/j.1365-294X.2007.03435.x. PubMed DOI

Gougherty AV, Keller SR, Fitzpatrick MC. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change. 2021;11:166–171. doi: 10.1038/s41558-020-00968-6. DOI

Ellis N, Smith SJ, Roland Pitcher C. Gradient forests: calculating importance gradients on physical predictors. Ecology. 2012;93:156–168. doi: 10.1890/11-0252.1. PubMed DOI

MacDougall A, et al. UniRule: a unified rule resource for automatic annotation in the UniProt knowledgebase. Bioinformatics. 2020;36:4643–4648. doi: 10.1093/bioinformatics/btaa485. PubMed DOI PMC

Mi H, Thomas P. PANTHER Pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009;563:123–140. doi: 10.1007/978-1-60761-175-2_7. PubMed DOI PMC

Thomas PD, et al. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22. doi: 10.1002/pro.4218. PubMed DOI PMC

David B, et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009;25:3045–3046. doi: 10.1093/bioinformatics/btp536. PubMed DOI PMC

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...