Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole

. 2014 Jul 07 ; 281 (1786) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24827438

Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming. This allows us to examine their adaptive divergence and hence a possible role of selection in the replacement. We determine the amino acid substitution Ser52Cys in the major expressed β-globin gene as the allelic difference. We use structural modelling to reveal that the protein environment renders the 52Cys thiol a highly reactive functional group and we show its reactivity in vitro. We demonstrate that possessing the reactive thiol in haemoglobin increases the resistance of bank vole erythrocytes to oxidative stress. Our study thus provides striking evidence for physiological differences between products of genic variants that spread at the expense of one another during colonization of an area from different glacial refugia.

Zobrazit více v PubMed

Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522. (10.1146/annurev.ecolsys.18.1.489) DOI

Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913. (10.1038/35016000) PubMed DOI

Brito P, Edwards SV. 2009. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439–455. (10.1007/s10709-008-9293-3) PubMed DOI

Deagle BE, Jones FC, Absher DM, Kingsley DM, Reimchen TE. 2013. Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping. Mol. Ecol. 22, 1917–1932. (10.1111/mec.12215) PubMed DOI PMC

Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, Monteiro B, Nachman MW. 2007. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 3, e45 (10.1371/journal.pgen.0030045) PubMed DOI PMC

Bulgarella M, Peters JL, Kopuchian C, Valqui T, Wilson RE, McCracken KG. 2012. Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of crested ducks (Lophonetta specularioides). Mol. Ecol. 21, 350–368. (10.1111/j.1365-294X.2011.05400.x) PubMed DOI

Searle JB, Kotlík P, Rambau RV, Marková S, Herman JS, McDevitt AD. 2009. The Celtic fringe of Britain: insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294. (10.1098/rspb.2009.1422) PubMed DOI PMC

Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A. 2002. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267–2270. (10.1126/science.1067814) PubMed DOI

Hofreiter M, Münzel S, Conard NJ, Pollack J, Slatkin M, Weiss G, Pääbo S. 2007. Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Curr. Biol. 17, R122–R123. (10.1016/j.cub.2007.01.026) PubMed DOI

Cook A. 1975. Changes in carrion/hooded crow hybrid zone and possible importance of climate. Bird Study 22, 165–168. (10.1080/00063657509476460) DOI

Herman JS, Searle JB. 2011. Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc. R. Soc. B 278, 3601–3607. (10.1098/rspb.2011.0321) PubMed DOI PMC

Hewitt GM. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. (10.1111/j.1095-8312.1999.tb01160.x) DOI

Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N. 2008. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Q. Sci. Rev. 27, 714–733. (10.1016/j.quascirev.2007.11.016) DOI

Franks SJ, Hoffmann AA. 2012. Genetics of climate change adaptation. Annu. Rev. Genet. 46, 185–208. (10.1146/annurev-genet-110711-155511) PubMed DOI

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson J-F. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. (10.1046/j.1365-294x.1998.00289.x) PubMed DOI

Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. (10.1111/j.1365-294X.2006.03061.x) PubMed DOI

Searle JB, Wilkinson PJ. 1987. Karyotypic variation in the common shrew (Sorex araneus) in Britain—a ‘Celtic Fringe’. Heredity 59, 345–351. (10.1038/hdy.1987.141) DOI

Piertney SB, Stewart WA, Lambin X, Telfer S, Aars J, Dallas JF. 2005. Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Mol. Ecol. 14, 1435–1444. (10.1111/j.1365-294X.2005.02496.x) PubMed DOI

Hall SJG. 1979. Haemoglobin polymorphism in the Bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160. (10.1111/j.1469-7998.1979.tb03939.x) DOI

Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A. 2009. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl Acad. Sci. USA 106, 14 450–14 455. (10.1073/pnas.0905224106) PubMed DOI PMC

Storz JF, Weber RE, Fago A. 2012. Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 161, 265–270. (10.1016/j.cbpa.2011.11.004) PubMed DOI PMC

Brodsky I, Dennis LH, Kahn SB, Brady LW. 1966. Normal mouse erythropoiesis: I. The role of spleen in mouse erythropoiesis. Cancer Res. 26, 198–201. PubMed

Storz JF, Baze M, Waite JL, Hoffmann FG, Opazo JC, Hayes JP. 2007. Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 177, 481–500. (10.1534/genetics.107.078550) PubMed DOI PMC

Yingzhong Y, Yue C, Guoen J, Zhenzhong B, Lan M, Haixia Y, Rili G. 2007. Molecular cloning and characterization of hemoglobin alpha and beta chains from plateau pika (Ochotona curzoniae) living at high altitude. J. Biochem. Mol. Biol. 40, 426–431. (10.5483/BMBRep.2007.40.3.426) PubMed DOI

Kal AJ, et al. 1999. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol. Biol. Cell. 10, 1859–1872. (10.1091/mbc.10.6.1859) PubMed DOI PMC

Ferrand N. 1989. Biochemical and genetic studies on rabbit hemoglobin. I. Electrophoretic polymorphism of the beta chain. Biochem. Genet. 27, 673–678. (10.1007/BF02396059) PubMed DOI

Kosower NS, Kosower EM. 1995. Diamide: an oxidant probe for thiols. Methods Enzymol. 251, 123–133. (10.1016/0076-6879(95)51116-4) PubMed DOI

Rossi R, Barra D, Bellelli A, Boumis G, Canofeni S, Di Simplicio P, Lusini L, Pascarella S, Amiconi G. 1998. Fast-reacting thiols in rat hemoglobins can intercept damaging species in erythrocytes more efficiently than glutathione. J. Biol. Chem. 273, 19 198–19 206. (10.1074/jbc.273.30.19198) PubMed DOI

Giustarini D, Dalle-Donne I, Cavarra E, Fineschi S, Lungarella G, Milzani A, Rossi R. 2006. Metabolism of oxidants by blood from different mouse strains. Biochem. Pharmacol. 71, 1753–1764. (10.1016/j.bcp.2006.03.015) PubMed DOI

Hyršl P, Číž M, Kubala L, Lojek A. 2004. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms. Folia Microbiol. 49, 315–319. (10.1007/BF02931049) PubMed DOI

Slavíková H, Lojek A, Hamar J, Dušková M, Kubala L, Vondráček J, Číž M. 1998. Total antioxidant capacity of serum increased in early but not late period after intestinal ischemia in rats. Free Radical Biol. Med. 25, 9–18. (10.1016/S0891-5849(98)00030-6) PubMed DOI

Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201. (10.1093/bioinformatics/bti770) PubMed DOI

Li H, Robertson AD, Jensen JH. 2005. Very fast empirical prediction and rationalization of protein pKa values. Proteins 61, 704–721. (10.1002/prot.20660) PubMed DOI

Jacob MH, Amir D, Ratner V, Gussakowsky E, Haas E. 2005. Predicting reactivities of protein surface cysteines as part of a strategy for selective multiple labeling. Biochemistry 44, 13 664–13 672. (10.1021/bi051205t) PubMed DOI

Betrán E, Rozas J, Navarro A, Barbadilla A. 1997. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics 146, 89–99. PubMed PMC

Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. (10.1093/bioinformatics/btp187) PubMed DOI

Sawyer S. 1989. Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6, 526–538. PubMed

Weir BS. 1979. Inferences about linkage disequilibrium. Biometrics 35, 235–254. (10.2307/2529947) PubMed DOI

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, logiciel sous Windows pour la génétique des populations (Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France).

Guo SW, Thompson EA. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372. (10.2307/2532296) PubMed DOI

Goudet J, Raymond M, de Meeus T, Rousset F. 1996. Testing differentiation in diploid populations. Genetics 144, 1933–1940. PubMed PMC

Rousset F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. (10.1111/j.1471-8286.2007.01931.x) PubMed DOI

Barton NH. 1983. Multilocus clines. Evolution 37, 454–471. (10.2307/2408260) PubMed DOI

Szymura JM, Barton NH. 1986. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and Bombina variegata, near Cracow in southern Poland. Evolution 40, 1141–1159. (10.2307/2408943) PubMed DOI

Porter AH, Wenger R, Geiger H, Scholl A, Shapiro AM. 1997. The Pontia daplidice-edusa hybrid zone in northwestern Italy. Evolution 51, 1561–1573. (10.2307/2411208) PubMed DOI

Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. (10.1046/j.1365-294x.2000.01020.x) PubMed DOI

Salzburger W, Ewing GB, von Haeseler A. 2011. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963. (10.1111/j.1365-294X.2011.05066.x) PubMed DOI

Runck AM, Moriyama H, Storz JF. 2009. Evolution of duplicated beta-globin genes and the structural basis of hemoglobin isoform differentiation in Mus. Mol. Biol. Evol. 26, 2521–2532. (10.1093/molbev/msp165) PubMed DOI PMC

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. (10.1093/molbev/msr121) PubMed DOI PMC

Marková S, Searle JB, Kotlík P. 2014. Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest different evolutionary history from other rodents. Heredity. (10.1038/hdy.2014.12) PubMed DOI PMC

Reischl E, Dafre AL, Franco JL, Wilhelm D. 2007. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146, 22–53. (10.1016/j.cbpc.2006.07.015) PubMed DOI

Piccinini M, Kleinschmidt T, Gorr T, Weber RE, Künzle H, Braunitzer G. 1991. Primary structure and oxygen-binding properties of the hemoglobin from the lesser hedgehog tenrec (Echinops telfairi, Zalambdodonta). Evidence for phylogenetic isolation. Biol. Chem. H.-S. 372, 975–989. (10.1515/bchm3.1991.372.2.975) PubMed DOI

Riggs A. 1965. Hemoglobin polymerization in mice. Science 147, 621–623. (10.1126/science.147.3658.621-a) PubMed DOI

Miranda JJ. 2000. Highly reactive cysteine residues in rodent hemoglobins. Biochem. Biophys. Res. Commun. 275, 517–523. (10.1006/bbrc.2000.3326) PubMed DOI

Filipovska A, Murphy MP. 2006. Overview of protein glutathionylation. Curr. Protoc. Toxicol. 28, 6.10.1–6.10.8. (10.1002/0471140856.tx0610s28) PubMed DOI

Marino SM, Gladyshev VN. 2010. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902–916. (10.1016/j.jmb.2010.09.027) PubMed DOI PMC

Pörtner HO. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 739–761. (10.1016/S1095-6433(02)00045-4) PubMed DOI

Dowling DK, Simmons LW. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B 276, 1737–1745. (10.1098/rspb.2008.1791) PubMed DOI PMC

Selman C, Blount JD, Nussey DH, Speakman JR. 2012. Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol. Evol. 27, 570–577. (10.1016/j.tree.2012.06.006) PubMed DOI

Metcalfe NB, Monaghan P. 2013. Does reproduction cause oxidative stress? An open question. Trends Ecol. Evol. 28, 347–350. (10.1016/j.tree.2013.01.015) PubMed DOI

Stier A, Reichert S, Massemin S, Bize P, Criscuolo F. 2012. Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front. Zool. 9, 37 (10.1186/1742-9994-9-37) PubMed DOI PMC

Garratt M, Pichaud N, King EDA, Brooks RC. 2013. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. J. Exp. Biol. 216, 2879–2888. (10.1242/jeb.082669) PubMed DOI

Ołdakowski Ł, Piotrowska Ż, Chrząścik KM, Sadowska ET, Koteja P, Taylor JRE. 2012. Is reproduction costly? No increase of oxidative damage in breeding bank voles. J. Exp. Biol. 215, 1799–1805. (10.1242/jeb.068452) PubMed DOI

Karbowiak G, Rychlik L, Nowakowski W, Wita I. 2005. Natural infections of small mammals with blood parasites on the borderland of boreal and temperate forest zones. Acta Theriol. 50, 31–42. (10.1007/BF03192616) DOI

Isaksson C, Sepil I, Baramidze V, Sheldon B. 2013. Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 13, 15 (10.1186/1472-6785-13-15) PubMed DOI PMC

Styskal J, Van Remmen H, Richardson A, Salmon AB. 2012. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radical Biol. Med. 52, 46–58. (10.1016/j.freeradbiomed.2011.10.441) PubMed DOI PMC

Schønecker B, Freimanis T, Sorensen IV. 2011. Diabetes in Danish bank voles (M. glareolus): survivorship, influence on weight, and evaluation of polydipsia as a screening tool for hyperglycaemia. PLoS ONE 6, e22893 (10.1371/journal.pone.0022893) PubMed DOI PMC

Bartelik A, et al. 2013. Development of hyperglycemia and diabetes in captive Polish bank voles. Gen. Comp. Endocr. 183, 69–78. (10.1016/j.ygcen.2012.12.006) PubMed DOI

Niklasson B, Hörnfeldt B, Nyholm E, Niedrig M, Donoso-Mantke O, Gelderblom HR, Lernmarkd Å. 2003. Type 1 diabetes in Swedish bank voles (Clethrionomys glareolus): signs of disease in both colonized and wild cyclic populations at peak density. Ann. NY Acad. Sci. 1005, 170–175. (10.1196/annals.1288.020) PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Genetic admixture drives climate adaptation in the bank vole

. 2024 Jul 15 ; 7 (1) : 863. [epub] 20240715

Local adaptation and future climate vulnerability in a wild rodent

. 2023 Nov 29 ; 14 (1) : 7840. [epub] 20231129

Genic distribution modelling predicts adaptation of the bank vole to climate change

. 2022 Sep 16 ; 5 (1) : 981. [epub] 20220916

A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole

. 2021 Jun ; 11 (12) : 8215-8225. [epub] 20210525

Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus

. 2021 Jun ; 11 (12) : 8054-8070. [epub] 20210517

Playing Hide-and-Seek in Beta-Globin Genes: Gene Conversion Transferring a Beneficial Mutation between Differentially Expressed Gene Duplicates

. 2018 Oct 12 ; 9 (10) : . [epub] 20181012

Genomics of end-Pleistocene population replacement in a small mammal

. 2018 Feb 14 ; 285 (1872) : .

De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus)

. 2017 Apr ; 118 (4) : 348-357. [epub] 20161026

Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq

. 2015 Oct 26 ; 16 () : 870. [epub] 20151026

Zobrazit více v PubMed

GENBANK
KJ677123, KJ677124, KJ677125, KJ677126, KJ677127, KJ677128, KJ677129, KJ677130, KJ677131, KJ677132, KJ677133, KJ677134, KJ677135, KJ677136, KJ677137, KJ677138, KJ677139, KJ677140, KJ677141, KJ677142, KJ677143, KJ677144, KJ677145, KJ677146, KJ677147, KJ677148, KJ677149, KJ677150, KJ677151, KJ677152, KJ677153, KJ677154, KJ677155, KJ677156, KJ677157, KJ677158, KJ677159, KJ677160, KJ677161, KJ677162, KJ677163, KJ677164, KJ677165, KJ677166, KJ677167, KJ677168, KJ677169, KJ677170, KJ677171, KJ677172, KJ677173, KJ677174, KJ677175, KJ677176, KJ677177, KJ677178, KJ677179, KJ677180, KJ677181, KJ677182, KJ677183, KJ677184, KJ677185, KJ677186, KJ677187, KJ677188, KJ677189, KJ677190, KJ677191, KJ677192, KJ677193, KJ677194, KJ677195, KJ677196, KJ677197, KJ677198, KJ677199, KJ677200, KJ677201, KJ677202, KJ677203, KJ677204, KJ677205, KJ677206, KJ677207, KJ677208, KJ677209, KJ677210, KJ677211, KJ677212, KJ677213

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace