Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24827438
PubMed Central
PMC4046400
DOI
10.1098/rspb.2014.0021
PII: rspb.2014.0021
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, antioxidative capacity, climate change, cysteine, oxidative stress, redox,
- MeSH
- Arvicolinae klasifikace genetika metabolismus MeSH
- fylogeografie MeSH
- genetická variace MeSH
- hemoglobiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
- Názvy látek
- hemoglobiny MeSH
Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming. This allows us to examine their adaptive divergence and hence a possible role of selection in the replacement. We determine the amino acid substitution Ser52Cys in the major expressed β-globin gene as the allelic difference. We use structural modelling to reveal that the protein environment renders the 52Cys thiol a highly reactive functional group and we show its reactivity in vitro. We demonstrate that possessing the reactive thiol in haemoglobin increases the resistance of bank vole erythrocytes to oxidative stress. Our study thus provides striking evidence for physiological differences between products of genic variants that spread at the expense of one another during colonization of an area from different glacial refugia.
Zobrazit více v PubMed
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18, 489–522. (10.1146/annurev.ecolsys.18.1.489) DOI
Hewitt GM. 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913. (10.1038/35016000) PubMed DOI
Brito P, Edwards SV. 2009. Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439–455. (10.1007/s10709-008-9293-3) PubMed DOI
Deagle BE, Jones FC, Absher DM, Kingsley DM, Reimchen TE. 2013. Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping. Mol. Ecol. 22, 1917–1932. (10.1111/mec.12215) PubMed DOI PMC
Storz JF, Sabatino SJ, Hoffmann FG, Gering EJ, Moriyama H, Ferrand N, Monteiro B, Nachman MW. 2007. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 3, e45 (10.1371/journal.pgen.0030045) PubMed DOI PMC
Bulgarella M, Peters JL, Kopuchian C, Valqui T, Wilson RE, McCracken KG. 2012. Multilocus coalescent analysis of haemoglobin differentiation between low- and high-altitude populations of crested ducks (Lophonetta specularioides). Mol. Ecol. 21, 350–368. (10.1111/j.1365-294X.2011.05400.x) PubMed DOI
Searle JB, Kotlík P, Rambau RV, Marková S, Herman JS, McDevitt AD. 2009. The Celtic fringe of Britain: insights from small mammal phylogeography. Proc. R. Soc. B 276, 4287–4294. (10.1098/rspb.2009.1422) PubMed DOI PMC
Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A. 2002. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267–2270. (10.1126/science.1067814) PubMed DOI
Hofreiter M, Münzel S, Conard NJ, Pollack J, Slatkin M, Weiss G, Pääbo S. 2007. Sudden replacement of cave bear mitochondrial DNA in the late Pleistocene. Curr. Biol. 17, R122–R123. (10.1016/j.cub.2007.01.026) PubMed DOI
Cook A. 1975. Changes in carrion/hooded crow hybrid zone and possible importance of climate. Bird Study 22, 165–168. (10.1080/00063657509476460) DOI
Herman JS, Searle JB. 2011. Post-glacial partitioning of mitochondrial genetic variation in the field vole. Proc. R. Soc. B 278, 3601–3607. (10.1098/rspb.2011.0321) PubMed DOI PMC
Hewitt GM. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. (10.1111/j.1095-8312.1999.tb01160.x) DOI
Sommer RS, Zachos FE, Street M, Jöris O, Skog A, Benecke N. 2008. Late Quaternary distribution dynamics and phylogeography of the red deer (Cervus elaphus) in Europe. Q. Sci. Rev. 27, 714–733. (10.1016/j.quascirev.2007.11.016) DOI
Franks SJ, Hoffmann AA. 2012. Genetics of climate change adaptation. Annu. Rev. Genet. 46, 185–208. (10.1146/annurev-genet-110711-155511) PubMed DOI
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson J-F. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464. (10.1046/j.1365-294x.1998.00289.x) PubMed DOI
Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS. 2006. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293. (10.1111/j.1365-294X.2006.03061.x) PubMed DOI
Searle JB, Wilkinson PJ. 1987. Karyotypic variation in the common shrew (Sorex araneus) in Britain—a ‘Celtic Fringe’. Heredity 59, 345–351. (10.1038/hdy.1987.141) DOI
Piertney SB, Stewart WA, Lambin X, Telfer S, Aars J, Dallas JF. 2005. Phylogeographic structure and postglacial evolutionary history of water voles (Arvicola terrestris) in the United Kingdom. Mol. Ecol. 14, 1435–1444. (10.1111/j.1365-294X.2005.02496.x) PubMed DOI
Hall SJG. 1979. Haemoglobin polymorphism in the Bank vole, Clethrionomys glareolus, in Britain. J. Zool. 187, 153–160. (10.1111/j.1469-7998.1979.tb03939.x) DOI
Storz JF, Runck AM, Sabatino SJ, Kelly JK, Ferrand N, Moriyama H, Weber RE, Fago A. 2009. Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc. Natl Acad. Sci. USA 106, 14 450–14 455. (10.1073/pnas.0905224106) PubMed DOI PMC
Storz JF, Weber RE, Fago A. 2012. Oxygenation properties and oxidation rates of mouse hemoglobins that differ in reactive cysteine content. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 161, 265–270. (10.1016/j.cbpa.2011.11.004) PubMed DOI PMC
Brodsky I, Dennis LH, Kahn SB, Brady LW. 1966. Normal mouse erythropoiesis: I. The role of spleen in mouse erythropoiesis. Cancer Res. 26, 198–201. PubMed
Storz JF, Baze M, Waite JL, Hoffmann FG, Opazo JC, Hayes JP. 2007. Complex signatures of selection and gene conversion in the duplicated globin genes of house mice. Genetics 177, 481–500. (10.1534/genetics.107.078550) PubMed DOI PMC
Yingzhong Y, Yue C, Guoen J, Zhenzhong B, Lan M, Haixia Y, Rili G. 2007. Molecular cloning and characterization of hemoglobin alpha and beta chains from plateau pika (Ochotona curzoniae) living at high altitude. J. Biochem. Mol. Biol. 40, 426–431. (10.5483/BMBRep.2007.40.3.426) PubMed DOI
Kal AJ, et al. 1999. Dynamics of gene expression revealed by comparison of serial analysis of gene expression transcript profiles from yeast grown on two different carbon sources. Mol. Biol. Cell. 10, 1859–1872. (10.1091/mbc.10.6.1859) PubMed DOI PMC
Ferrand N. 1989. Biochemical and genetic studies on rabbit hemoglobin. I. Electrophoretic polymorphism of the beta chain. Biochem. Genet. 27, 673–678. (10.1007/BF02396059) PubMed DOI
Kosower NS, Kosower EM. 1995. Diamide: an oxidant probe for thiols. Methods Enzymol. 251, 123–133. (10.1016/0076-6879(95)51116-4) PubMed DOI
Rossi R, Barra D, Bellelli A, Boumis G, Canofeni S, Di Simplicio P, Lusini L, Pascarella S, Amiconi G. 1998. Fast-reacting thiols in rat hemoglobins can intercept damaging species in erythrocytes more efficiently than glutathione. J. Biol. Chem. 273, 19 198–19 206. (10.1074/jbc.273.30.19198) PubMed DOI
Giustarini D, Dalle-Donne I, Cavarra E, Fineschi S, Lungarella G, Milzani A, Rossi R. 2006. Metabolism of oxidants by blood from different mouse strains. Biochem. Pharmacol. 71, 1753–1764. (10.1016/j.bcp.2006.03.015) PubMed DOI
Hyršl P, Číž M, Kubala L, Lojek A. 2004. Silkworm (Bombyx mori) hemocytes do not produce reactive oxygen metabolites as a part of defense mechanisms. Folia Microbiol. 49, 315–319. (10.1007/BF02931049) PubMed DOI
Slavíková H, Lojek A, Hamar J, Dušková M, Kubala L, Vondráček J, Číž M. 1998. Total antioxidant capacity of serum increased in early but not late period after intestinal ischemia in rats. Free Radical Biol. Med. 25, 9–18. (10.1016/S0891-5849(98)00030-6) PubMed DOI
Arnold K, Bordoli L, Kopp J, Schwede T. 2006. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201. (10.1093/bioinformatics/bti770) PubMed DOI
Li H, Robertson AD, Jensen JH. 2005. Very fast empirical prediction and rationalization of protein pKa values. Proteins 61, 704–721. (10.1002/prot.20660) PubMed DOI
Jacob MH, Amir D, Ratner V, Gussakowsky E, Haas E. 2005. Predicting reactivities of protein surface cysteines as part of a strategy for selective multiple labeling. Biochemistry 44, 13 664–13 672. (10.1021/bi051205t) PubMed DOI
Betrán E, Rozas J, Navarro A, Barbadilla A. 1997. The estimation of the number and the length distribution of gene conversion tracts from population DNA sequence data. Genetics 146, 89–99. PubMed PMC
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. (10.1093/bioinformatics/btp187) PubMed DOI
Sawyer S. 1989. Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6, 526–538. PubMed
Weir BS. 1979. Inferences about linkage disequilibrium. Biometrics 35, 235–254. (10.2307/2529947) PubMed DOI
Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F. 2004. GENETIX 4.05, logiciel sous Windows pour la génétique des populations (Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France).
Guo SW, Thompson EA. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372. (10.2307/2532296) PubMed DOI
Goudet J, Raymond M, de Meeus T, Rousset F. 1996. Testing differentiation in diploid populations. Genetics 144, 1933–1940. PubMed PMC
Rousset F. 2008. GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. (10.1111/j.1471-8286.2007.01931.x) PubMed DOI
Barton NH. 1983. Multilocus clines. Evolution 37, 454–471. (10.2307/2408260) PubMed DOI
Szymura JM, Barton NH. 1986. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and Bombina variegata, near Cracow in southern Poland. Evolution 40, 1141–1159. (10.2307/2408943) PubMed DOI
Porter AH, Wenger R, Geiger H, Scholl A, Shapiro AM. 1997. The Pontia daplidice-edusa hybrid zone in northwestern Italy. Evolution 51, 1561–1573. (10.2307/2411208) PubMed DOI
Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. (10.1046/j.1365-294x.2000.01020.x) PubMed DOI
Salzburger W, Ewing GB, von Haeseler A. 2011. The performance of phylogenetic algorithms in estimating haplotype genealogies with migration. Mol. Ecol. 20, 1952–1963. (10.1111/j.1365-294X.2011.05066.x) PubMed DOI
Runck AM, Moriyama H, Storz JF. 2009. Evolution of duplicated beta-globin genes and the structural basis of hemoglobin isoform differentiation in Mus. Mol. Biol. Evol. 26, 2521–2532. (10.1093/molbev/msp165) PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. (10.1093/molbev/msr121) PubMed DOI PMC
Marková S, Searle JB, Kotlík P. 2014. Relaxed functional constraints on triplicate α-globin gene in the bank vole suggest different evolutionary history from other rodents. Heredity. (10.1038/hdy.2014.12) PubMed DOI PMC
Reischl E, Dafre AL, Franco JL, Wilhelm D. 2007. Distribution, adaptation and physiological meaning of thiols from vertebrate hemoglobins. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146, 22–53. (10.1016/j.cbpc.2006.07.015) PubMed DOI
Piccinini M, Kleinschmidt T, Gorr T, Weber RE, Künzle H, Braunitzer G. 1991. Primary structure and oxygen-binding properties of the hemoglobin from the lesser hedgehog tenrec (Echinops telfairi, Zalambdodonta). Evidence for phylogenetic isolation. Biol. Chem. H.-S. 372, 975–989. (10.1515/bchm3.1991.372.2.975) PubMed DOI
Riggs A. 1965. Hemoglobin polymerization in mice. Science 147, 621–623. (10.1126/science.147.3658.621-a) PubMed DOI
Miranda JJ. 2000. Highly reactive cysteine residues in rodent hemoglobins. Biochem. Biophys. Res. Commun. 275, 517–523. (10.1006/bbrc.2000.3326) PubMed DOI
Filipovska A, Murphy MP. 2006. Overview of protein glutathionylation. Curr. Protoc. Toxicol. 28, 6.10.1–6.10.8. (10.1002/0471140856.tx0610s28) PubMed DOI
Marino SM, Gladyshev VN. 2010. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902–916. (10.1016/j.jmb.2010.09.027) PubMed DOI PMC
Pörtner HO. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 739–761. (10.1016/S1095-6433(02)00045-4) PubMed DOI
Dowling DK, Simmons LW. 2009. Reactive oxygen species as universal constraints in life-history evolution. Proc. R. Soc. B 276, 1737–1745. (10.1098/rspb.2008.1791) PubMed DOI PMC
Selman C, Blount JD, Nussey DH, Speakman JR. 2012. Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol. Evol. 27, 570–577. (10.1016/j.tree.2012.06.006) PubMed DOI
Metcalfe NB, Monaghan P. 2013. Does reproduction cause oxidative stress? An open question. Trends Ecol. Evol. 28, 347–350. (10.1016/j.tree.2013.01.015) PubMed DOI
Stier A, Reichert S, Massemin S, Bize P, Criscuolo F. 2012. Constraint and cost of oxidative stress on reproduction: correlative evidence in laboratory mice and review of the literature. Front. Zool. 9, 37 (10.1186/1742-9994-9-37) PubMed DOI PMC
Garratt M, Pichaud N, King EDA, Brooks RC. 2013. Physiological adaptations to reproduction. I. Experimentally increasing litter size enhances aspects of antioxidant defence but does not cause oxidative damage in mice. J. Exp. Biol. 216, 2879–2888. (10.1242/jeb.082669) PubMed DOI
Ołdakowski Ł, Piotrowska Ż, Chrząścik KM, Sadowska ET, Koteja P, Taylor JRE. 2012. Is reproduction costly? No increase of oxidative damage in breeding bank voles. J. Exp. Biol. 215, 1799–1805. (10.1242/jeb.068452) PubMed DOI
Karbowiak G, Rychlik L, Nowakowski W, Wita I. 2005. Natural infections of small mammals with blood parasites on the borderland of boreal and temperate forest zones. Acta Theriol. 50, 31–42. (10.1007/BF03192616) DOI
Isaksson C, Sepil I, Baramidze V, Sheldon B. 2013. Explaining variance of avian malaria infection in the wild: the importance of host density, habitat, individual life-history and oxidative stress. BMC Ecol. 13, 15 (10.1186/1472-6785-13-15) PubMed DOI PMC
Styskal J, Van Remmen H, Richardson A, Salmon AB. 2012. Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radical Biol. Med. 52, 46–58. (10.1016/j.freeradbiomed.2011.10.441) PubMed DOI PMC
Schønecker B, Freimanis T, Sorensen IV. 2011. Diabetes in Danish bank voles (M. glareolus): survivorship, influence on weight, and evaluation of polydipsia as a screening tool for hyperglycaemia. PLoS ONE 6, e22893 (10.1371/journal.pone.0022893) PubMed DOI PMC
Bartelik A, et al. 2013. Development of hyperglycemia and diabetes in captive Polish bank voles. Gen. Comp. Endocr. 183, 69–78. (10.1016/j.ygcen.2012.12.006) PubMed DOI
Niklasson B, Hörnfeldt B, Nyholm E, Niedrig M, Donoso-Mantke O, Gelderblom HR, Lernmarkd Å. 2003. Type 1 diabetes in Swedish bank voles (Clethrionomys glareolus): signs of disease in both colonized and wild cyclic populations at peak density. Ann. NY Acad. Sci. 1005, 170–175. (10.1196/annals.1288.020) PubMed DOI
Genetic admixture drives climate adaptation in the bank vole
Local adaptation and future climate vulnerability in a wild rodent
Genic distribution modelling predicts adaptation of the bank vole to climate change
Niche differentiation in a postglacial colonizer, the bank vole Clethrionomys glareolus
Genomics of end-Pleistocene population replacement in a small mammal
GENBANK
KJ677123, KJ677124, KJ677125, KJ677126, KJ677127, KJ677128, KJ677129, KJ677130, KJ677131, KJ677132, KJ677133, KJ677134, KJ677135, KJ677136, KJ677137, KJ677138, KJ677139, KJ677140, KJ677141, KJ677142, KJ677143, KJ677144, KJ677145, KJ677146, KJ677147, KJ677148, KJ677149, KJ677150, KJ677151, KJ677152, KJ677153, KJ677154, KJ677155, KJ677156, KJ677157, KJ677158, KJ677159, KJ677160, KJ677161, KJ677162, KJ677163, KJ677164, KJ677165, KJ677166, KJ677167, KJ677168, KJ677169, KJ677170, KJ677171, KJ677172, KJ677173, KJ677174, KJ677175, KJ677176, KJ677177, KJ677178, KJ677179, KJ677180, KJ677181, KJ677182, KJ677183, KJ677184, KJ677185, KJ677186, KJ677187, KJ677188, KJ677189, KJ677190, KJ677191, KJ677192, KJ677193, KJ677194, KJ677195, KJ677196, KJ677197, KJ677198, KJ677199, KJ677200, KJ677201, KJ677202, KJ677203, KJ677204, KJ677205, KJ677206, KJ677207, KJ677208, KJ677209, KJ677210, KJ677211, KJ677212, KJ677213