Mapping 3' transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq

. 2015 Oct 26 ; 16 () : 870. [epub] 20151026

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26503603
Odkazy

PubMed 26503603
PubMed Central PMC4624183
DOI 10.1186/s12864-015-2103-2
PII: 10.1186/s12864-015-2103-2
Knihovny.cz E-zdroje

BACKGROUND: Although posttranscriptional modification of mitochondrial (mt) transcripts plays key roles in completion of the coding information and in the expression of mtDNA-encoded genes, there is little experimental evidence on the polyadenylation status and the location of mt gene poly(A) sites for non-human mammals. RESULTS: Poly(A)-enriched RNA-Seq reads collected for two wild-caught bank voles (Clethrionomys glareolus) were mapped to the complete mitochondrial genome of that species. Transcript polyadenylation was detected as unmapped adenine residues at the ends of the mapped reads. Where the tRNA punctuation model applied, there was the expected polyadenylation, except for the nad5 transcript, whose polyadenylated 3' end is at an intergenic sequence/cytochrome b boundary. As in human, two pairs of bank vole genes, nad4l/nad4 and atp8/atp6, are expressed from bicistronic transcripts. TAA stop codons of four bank vole protein-coding genes (nad1, atp6, cox3 and nad4) are incompletely encoded in the DNA and are completed by polyadenylation. This is three genes (nad2, nad3 and cob) less than in human. The bank vole nad2 gene encodes a full stop codon (TAA in one vole and TAG in the other), which is followed by a 2 bp UTR and the gene conforms to the tRNA punctuation model. In contrast, the annotations of the reference mouse and some other rodent mt genomes in GenBank include complete TAG stop codons in both nad1 and nad2, which overlap downstream trnI and trnW, respectively. Thus the RNA-Seq data of bank voles provides a model for stop codons of mt-encoded genes in mammals comparable to humans, but at odds with some of the interpretation based purely on genomic data in mouse and other rodents. CONCLUSIONS: This work demonstrates how RNA-Seq data were useful to recover mtDNA transcriptome data in a non-model rodent and to shed more light on mammalian mtDNA transcriptome and post-transcriptional modification. Even though gene content and organisation of mtDNA are strongly conserved among mammals, annotations that neglect the transcriptome may be prone to errors in relation to the stop codons.

Zobrazit více v PubMed

Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM. Human mitochondrial mRNAs-like members of all families, similar but different. Biochim Biophys Acta. 2010;1797:1081–5. doi: 10.1016/j.bbabio.2010.02.036. PubMed DOI PMC

Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, et al. The human mitochondrial transcriptome. Cell. 2011;146:645–58. doi: 10.1016/j.cell.2011.06.051. PubMed DOI PMC

Peralta S, Wang X, Moraes CT. Mitochondrial transcription: Lessons from mouse models. Biochim Biophys Acta. 2012;1819:961–9. PubMed PMC

Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA. Sequence and gene organization of mouse mitochondrial DNA. Cell. 1981;26:167–80. doi: 10.1016/0092-8674(81)90300-7. PubMed DOI

Boore JL. Requirements and standards for organelle genome databases. OMICS. 2006;10:119–26. doi: 10.1089/omi.2006.10.119. PubMed DOI

Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 2013;69:313–9. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI

Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell. 1983;34:151–9. doi: 10.1016/0092-8674(83)90145-9. PubMed DOI

Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell. 2005;123:1227–40. doi: 10.1016/j.cell.2005.09.040. PubMed DOI

Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4. doi: 10.1038/290470a0. PubMed DOI

Rossmanith W, Tullo A, Potuschak T, Karwan R, Sbisa E. Human mitochondrial tRNA processing. J Biol Chem. 1995;270:12885–91. doi: 10.1074/jbc.270.21.12885. PubMed DOI

Bendová K, Marková S, Searle JB, Kotlík P. The complete mitochondrial genome of the bank vole Clethrionomys glareolus (Rodentia: Arvicolinae). Mitochondrial DNA. 2014:doi:10.3109/19401736.2013.873927. PubMed

Filipi K, Marková S, Searle JB, Kotlík P. Mitogenomic phylogenetics of the bank vole Clethrionomys glareolus, a model system for studying end-glacial colonization of Europe. Mol Phylogenet Evol. 2015;82:245–57. doi: 10.1016/j.ympev.2014.10.016. PubMed DOI

Torres TT, Dolezal M, Schlotterer C, Ottenwalder B. Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res. 2009;37:7509–18. doi: 10.1093/nar/gkp856. PubMed DOI PMC

Wang HL, Yang J, Boykin LM, Zhao QY, Li Q, Wang XW, et al. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex. BMC Genomics. 2013;14:401. doi: 10.1186/1471-2164-14-401. PubMed DOI PMC

Waern K, Snyder M. Extensive transcript diversity and novel upstream open reading frame regulation in yeast. Genes Genomes Genetics. 2013;3:343–52. PubMed PMC

Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1999;1410:103–23. doi: 10.1016/S0005-2728(98)00161-3. PubMed DOI

Nagaike T, Suzuki T, Ueda T. Polyadenylation in mammalian mitochondria: insights from recent studies. Biochim Biophys Acta. 2008;1779:266–9. doi: 10.1016/j.bbagrm.2008.02.001. PubMed DOI

Slomovic S, Laufer D, Geiger D, Schuster G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol. 2005;25:6427–35. doi: 10.1128/MCB.25.15.6427-6435.2005. PubMed DOI PMC

Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sbisa E, Saccone C. The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol. 1989;28:497–516. doi: 10.1007/BF02602930. PubMed DOI

Stewart JB, Beckenbach AT. Characterization of mature mitochondrial transcripts in Drosophila, and the implications for the tRNA punctuation model in arthropods. Gene. 2009;445:49–57. doi: 10.1016/j.gene.2009.06.006. PubMed DOI

Smith DR. RNA-Seq data: a goldmine for organelle research. Brief Funct Genomics. 2013;12:454–6. doi: 10.1093/bfgp/els066. PubMed DOI

Kotlík P, Marková S, Vojtek L, Stratil A, Šlechta V, Hyršl P, et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc R Soc B Biol Sci. 2014;281:20140021 PubMed PMC

Marková S, Searle JB, Kotlík P. Relaxed functional constraints on triplicate alpha-globin gene in the bank vole suggest a different evolutionary history from other rodents. Heredity. 2014;113:64–73. doi: 10.1038/hdy.2014.12. PubMed DOI PMC

Zuker M. The use of dynamic programming algorithms in RNA secondary structure prediction. In: Waterman MS, editor. Mathematical methods for DNA Sequences. Boca Raton, Florida: CRC Press; 1989. pp. 159–84.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...