Complete Mitochondrial Genome of Three Species of the Genus Microtus (Arvicolinae, Rodentia)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
33207831
PubMed Central
PMC7696944
DOI
10.3390/ani10112130
PII: ani10112130
Knihovny.cz E-zdroje
- Klíčová slova
- Microtus, complete mitogenome, control region, mitochondrial, phylogeny,
- Publikační typ
- časopisecké články MeSH
The 65 species of the genus Microtus have unusual sex-related genetic features and a high rate of karyotype variation. However, only nine complete mitogenomes for these species are currently available. We describe the complete mitogenome sequences of three Microtus, which vary in length from 16,295 bp to 16,331 bp, contain 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes and a control region. The length of the 13 PCGs and the coded proteins is the same in all three species, and the start and stop codons are conserved. The non-coding regions include the L-strand origin of replication, with the same sequence of 35 bp, and the control region, which varies between 896 bp and 930 bp in length. The control region includes three domains (Domains I, II and III) with extended termination-associated sequences (ETAS-1 and ETAS-2) in Domain I. Domain II and Domain III include five (CSB-B, C, D, E and F) and three (CSB-1, CSB-2, and CSB-3) conserved sequence blocks, respectively. Phylogenetic reconstructions using the mitochondrial genomes of all the available Microtus species and one representative species from another genus of the Arvicolinae subfamily reproduced the established phylogenetic relationships for all the Arvicolinae genera that were analyzed.
Zobrazit více v PubMed
Triant D.A., DeWoody J.A. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica. 2006;128:95–108. doi: 10.1007/s10709-005-5538-6. PubMed DOI
Fink S., Fischer M.C., Excoffier L., Heckel G. Genomic scans support repetitive continental colonization events during the rapid radiation of voles (Rodentia: Microtus): The utility of AFLPs versus mitochondrial and nuclear sequence markers. Syst. Biol. 2010;59:548–572. doi: 10.1093/sysbio/syq042. PubMed DOI
Sitnikova N.A., Romanenko S.A., O’Brien P.C., Perelman P.L., Fu B., Rubtsova N.V., Serdukova N.A., Golenishchev F.N., Trifonov V.A., Ferguson-Smith M.A., et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007;15:447–456. doi: 10.1007/s10577-007-1137-y. PubMed DOI
Lamelas L., Arroyo M., Fernández F.J., Marchal J.A., Sánchez A. Structural and evolutionary relationships in the giant sex chromosomes of three Microtus species. Genes. 2018;9:27. doi: 10.3390/genes9010027. PubMed DOI PMC
Ohno S., Stenius C., Christian L. The X0 as the normal female of the creeping vole (Microtus oregoni). In Chromosomes Today; Darlington, C.D., Lewis, K.R., Eds.; Oliver and Boyd: Edinburgh, United Kingdom, 1966; Volume 1, pp. 182–187.oregoni) In: Darlington C.D., Lewis K.R., editors. Chromosomes Today. Volume 1. Oliver and Boyd; Edinburgh, UK: 1966. pp. 182–187.
Burgos M., Jiménez R., Díaz de la Guardia R. XY females in Microtus cabrerae (Rodentia, Microtidae): A case of possibly Y-linked sex reversal. Cytogenet. Cell Genet. 1988;49:275–277. doi: 10.1159/000132676. PubMed DOI
Marchal J.A., Acosta M.J., Bullejos M., Díaz de la Guardia R., Sánchez A. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: Role of L1 elements. Genomics. 2008;91:142–151. doi: 10.1016/j.ygeno.2007.10.010. PubMed DOI
Acosta M.J., Marchal J.A., Fernández-Espartero C., Romero-Fernández I., Rovatsos M.T., Giagia-Athanasopoulou E.B., Gornung E., Castiglia R., Sánchez A. Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae) Genetica. 2010;138:1085–1098. doi: 10.1007/s10709-010-9496-2. PubMed DOI
Borodin P.M., Basheva E.A., Golenischev F.N., Dashkevich O.A., Kartavtseva I.N., Lisachov A.P., Torgasheva A.A. Parallel occurrence of asynaptic sex chromosomes in gray voles (Microtus Schrank, 1798) Paleontol. J. 2013;47:1035–1040. doi: 10.1134/S0031030113090049. DOI
Rovatsos M.T., Marchal J.A., Romero-Fernández I., Arroyo M., Athanasopoulou E.B., Sánchez A. Extensive sex chromosome polymorphism of Microtus thomasi/Microtus atticus species complex associated with cryptic chromosomal rearrangements and independent accumulation of heterochromatin. Cytogenet. Genome Res. 2017;151:198–207. doi: 10.1159/000477114. PubMed DOI
Maruyama T., Imai H.T. Evolutionary rate of the mammalian karyotype. J. Theor. Biol. 1981;90:111–121. doi: 10.1016/0022-5193(81)90125-9. PubMed DOI
Libbus B.L., Johnson L.A. The creeping vole, Microtus oregoni: Karyotype and sex-chromosome differences between two geographical populations. Cytogenet. Cell Genet. 1988;47:181–184. doi: 10.1159/000132544. PubMed DOI
Gornung E., Castiglia R., Rovatsos M., Marchal J.A., Díaz de la Guardia-Quiles R., Sánchez A. Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (Rodentia, Cricetidae) Cytogenet. Genome Res. 2011;132:144–150. doi: 10.1159/000321572. PubMed DOI
Baker R.J., Hamilton M.J., Van Den Bussche R.A., Wiggins L.E., Sugg D.W., Smith M.H., Lomakin M.D., Gaschak S.P., Bundova E.G., Ruoenskaya G.A., et al. Small mammals from the most radioactive sites near the Chernobyl nuclear power plant. J. Mammal. 1996;77:155–170. doi: 10.2307/1382717. DOI
Fink S., Excoffier L., Heckel G. Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptations. Mol. Ecol. 2004;13:3501–3514. doi: 10.1111/j.1365-294X.2004.02351.x. PubMed DOI
Jaarola M., Searle J.B. Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol. Ecol. 2002;11:2613–2621. doi: 10.1046/j.1365-294X.2002.01639.x. PubMed DOI
Bannikova A.A., Lebedev V., Lissovsky A., Matrosova V., Abramson N.I., Obolenskaya E.V., Tesakov A.S. Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biol. J. Linn. Soc. 2010;99:595–613. doi: 10.1111/j.1095-8312.2009.01378.x. DOI
Chaline J., Graf J.D. Phylogeny of the Arvicolidae (Rodentia): Biochemical and paleontological evidence. J. Mammal. 1988;69:22–33. doi: 10.2307/1381744. DOI
Modi W.S. Phylogenetic history of LINE-1 among arvicolid rodents. Mol. Biol. Evol. 1996;13:633–641. doi: 10.1093/oxfordjournals.molbev.a025623. PubMed DOI
Jaarola M., Martinkova N., Gunduz I., Brunhoff C., Zima J., Nadachowski A., Amori G., Bulatova N.S., Chondropoulos B., Fraguedakis-Tsolis S., et al. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2004;33:647–663. doi: 10.1016/j.ympev.2004.07.015. PubMed DOI
Fletcher N.K., Acevedo P., Herman J.S., Paupério J., Alves P.C., Searle J.B. Glacial cycles drive rapid divergence of cryptic field vole species. Ecol. Evol. 2019;9:14101–14113. doi: 10.1002/ece3.5846. PubMed DOI PMC
De Woody J.A. Nucleotide variation in the p53 tumor suppressor gene of voles from Chernobyl, Ukraine. Mutat. Res. 1999;439:25–36. doi: 10.1016/S1383-5718(98)00171-5. PubMed DOI
Belfiore N.M., Hoffman F.G., Baker R.J., DeWoody J.A. The use of nuclear and mitochondrial single nucleotide polymorphisms to identify cryptic species. Mol. Ecol. 2003;12:2011–2017. doi: 10.1046/j.1365-294X.2003.01874.x. PubMed DOI
Conroy C.J., Cook J.A. Molecular systematics of a holarctic rodent (Microtus: Muridae) J. Mamm. 2000;81:344–359. doi: 10.1644/1545-1542(2000)081<0344:MSOAHR>2.0.CO;2. DOI
Shevchenko A.T., Mazurok N.A., Slobodyanyuk S.Y., Zakian S.M. Comparative analysis of the MSAT-160 repeats in four species of common vole (Microtus, Arvicolidae) Chromosome Res. 2002;10:117–126. doi: 10.1023/A:1014996917739. PubMed DOI
Romanenko S.A., Sitnikova N.A., Serdukova N.A., Perelman P.L., Rubtsova N.V., Bakloushinskaya I.Y., Lyapunova E.A., Just W., Ferguson-Smith M.A., Yang F., et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007;15:891–897. doi: 10.1007/s10577-007-1171-9. PubMed DOI
Galewski T., Tilak M.K., Sanchez S., Chevret P., Paradis E., Douzery E. The evolutionary radiation of Arvicolinae rodents (voles and lemmings): Relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol. Biol. 2006;6:80. doi: 10.1186/1471-2148-6-80. PubMed DOI PMC
Conroy C.J., Cook J.A. MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J. Mammal. Evol. 1999;6:221–245. doi: 10.1023/A:1020561623890. DOI
Barbosa S., Paupério J., Pavlova S.V., Alves P.C., Searle J.B. The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Mol. Phylogenet. Evol. 2018;125:85–92. doi: 10.1016/j.ympev.2018.03.017. PubMed DOI
Cabria M.T., Rubines J., Gómez-Moliner B., Zardoya R. On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus) Gene. 2006;375:1–13. doi: 10.1016/j.gene.2006.01.038. PubMed DOI
Kim J.Y., Park Y.C. Gene organization and characterization of the complete mitogenome of Hypsugo alaschanicus (Chiroptera: Vespertilionidae) Genet. Mol. Res. 2015;14:16325–16331. doi: 10.4238/2015.December.8.24. PubMed DOI
Ye F., Samuels D.C., Clark T., Guo Y. High-throughput sequencing in mitochondrial DNA research. Mitochondrion. 2014;17:157–163. doi: 10.1016/j.mito.2014.05.004. PubMed DOI PMC
Pita S., Panzera F., Vela J., Mora P., Palomeque T., Lorite P. Complete mitochondrial genome of Triatoma infestans (Hemiptera, Reduviidae, Triatominae), main vector of Chagas disease. Infect. Genet. Evol. 2017;54:158–163. doi: 10.1016/j.meegid.2017.06.003. PubMed DOI
Fernández-Pérez J., Nantón A., Ruiz-Ruano F.J., Camacho J.P.M., Méndez J. First complete female mitochondrial genome in four bivalve species genus Donax and their phylogenetic relationships within the Veneroida order. PLoS ONE. 2017;8:12. doi: 10.1371/journal.pone.0184464. PubMed DOI PMC
Gutiérrez J., Lamelas L., Aleix-Mata G., Arroyo M., Marchal J.A., Palomeque T., Lorite P., Sánchez A. Complete mitochondrial genome of the Iberian Mole Talpa occidentalis (Talpidae, Insectivora) and comparison with Talpa europaea. Genetica. 2018;146:415–423. doi: 10.1007/s10709-018-0033-z. PubMed DOI
Aleix-Mata G., Ruiz-Ruano F.J., Pérez J.M., Sarasa M., Sánchez A. Complete mitochondrial genome of the Western Capercaillie Tetrao urogallus (Phasianidae, Tetraoninae) Zootaxa. 2019;4550:585–593. doi: 10.11646/zootaxa.4550.4.9. PubMed DOI
Aleix-Mata G., Gutiérrez J., Ruiz-Ruano F.J., Lorite P., Marchal J.A., Sánchez A. The complete mitochondrial genome of Talpa aquitania (Talpidae; Insectivora), a mole species endemic to northern Spain and southern France. Mol. Biol. Rep. 2020;47:2387–2403. doi: 10.1007/s11033-020-05296-8. PubMed DOI
Folkertsma R., Westbury M.V., Eccard J.A., Hofreiter M. The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) Mitochondrial DNA Part B. 2018;3:446–447. doi: 10.1080/23802359.2018.1457994. PubMed DOI PMC
Zhu L., Qi Z., Wen Y.C., Min J.Z., Song Q.K. The complete mitochondrial genome of Microtus fortis pelliceus (Arvicolinae, Rodentia) from China and its phylogenetic analysis. Mitochondrial DNA Part B. 2019;4:2039–2041. doi: 10.1080/23802359.2019.1618212. DOI
Modi W.S. Nucleotide sequence and genomic organization of a tandem satellite array from the rock vole Microtus chrotorrhinus (Rodentia), Mamm. Genome. 1992;3:226–232. PubMed
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC
Haring E., Herzig-Straschil B., Spitzenberger F. Phylogenetic analysis of Alpine voles of the Microtus multiplex complex using the mitochondrial control region. J. Zool. Evol. Res. 2000;38:231–238. doi: 10.1046/j.1439-0469.2000.384139.x. DOI
Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Lowe T.M., Chan P.P. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA genes. Nucl. Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC
Marková S., Filipi K., Searle J.B., KotlÍk P. Mapping 3′ transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq. BMC Genom. 2015;16:870. doi: 10.1186/s12864-015-2103-2. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Lohse M., Drechsel O., Kahlau S., Bock R. OrganellarGenomeDRAW-A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:W575–W581. doi: 10.1093/nar/gkt289. PubMed DOI PMC
Alqahtani F., Duckett D., Pirro S., Mandoiu I.I. Complete mitochondrial genome of the water vole, Microtus richardsoni (Cricetidae, Rodentia) Mitochondrial DNA Part B. 2020;5:2498–2499. doi: 10.1080/23802359.2020.1780640. PubMed DOI PMC
Bendová K., Marková S., Searle J.B., Kotlík P. The complete mitochondrial genome of the bank vole Clethrionomys glareolus (Rodentia: Arvicolinae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:111–112. doi: 10.3109/19401736.2013.873927. PubMed DOI
Bondareva O.V., Abramson N.I. The complete mitochondrial genome of the common pine vole Terricola subterraneus (Arvicolinae, Rodentia) Mitochondrial DNA Part B. 2019;4:3925–3926. doi: 10.1080/23802359.2019.1687026. PubMed DOI PMC
Cao W., Xia Y., Dang X., Xu Q. The first complete mitochondrial genome of the Microtus ochrogaster. Mitochondrial DNA Part A. 2016;27:3682–3683. doi: 10.3109/19401736.2015.1079854. PubMed DOI
Chen S., Chen G., Wei H., Wang Q. Complete mitochondrial genome of the Père David’s Vole, Eothenomys melanogaster (Rodentia: Arvicolinae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:2496–2497. doi: 10.3109/19401736.2015.1036246. PubMed DOI
Cong H., Kong L., Liu Z., Wu Y., Motokawa M., Harada M., Li Y. Complete mitochondrial genome of the mandarin vole Lasiopodomys mandarinus (Rodentia: Cricetidae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:760–761. doi: 10.3109/19401736.2014.915528. PubMed DOI
Fedorov V.B., Goropashnaya A.V. Complete mitochondrial genomes of the North American collared lemmings Dicrostonyx groenlandicus Traill, 1823 and Dicrostonyx hudsonius Pallas, 1778 (Rodentia: Arvicolinae) Mitochondrial DNA B Resour. 2016;1:878–879. doi: 10.1080/23802359.2016.1253041. PubMed DOI PMC
Hao H., Liu S., Zhang X., Chen W., Song Z., Peng H., Liu Y., Yue B. Complete mitochondrial genome of a new vole Proedromys liangshanensis (Rodentia: Cricetidae) and phylogenetic analysis with related species: Are there implications for the validity of the genus Proedromys? Mitochondrial DNA. 2011;22:28–34. doi: 10.3109/19401736.2011.588220. PubMed DOI
Jiang J.Q., Wu S.X., Chen J.J., Liu C.Z. Characterization of the complete mitochondrial genome of short-tailed field vole, Microtus agrestis. Mitochondrial DNA Part B. 2018;3:845–846. doi: 10.1080/23802359.2018.1467240. PubMed DOI PMC
Jiang X., Gao J., Ni L., Hu J., Li K., Sun F., Xie J., Bo X., Gao C., Xiao J., et al. The complete mitochondrial genome of Microtus fortis calamorum (Arvicolinae, Rodentia) and its phylogenetic analysis. Gene. 2012;498:288–295. doi: 10.1016/j.gene.2012.02.022. PubMed DOI
Lin Y.H., Waddell P.J., Penny D. Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene. 2002;294:119–129. doi: 10.1016/S0378-1119(02)00695-9. PubMed DOI
Zhang Q., He T., Wei H., Li F., Feng Y., Zong H., Chen S. Characterization of the complete mitochondrial genome and phylogenetic relationship of Neodon sikimensis (Rodentia: Arvicolinae) Mitochondrial DNA Part B. 2016;1:445–446. doi: 10.1080/23802359.2016.1180561. PubMed DOI PMC
Zhao H., Qi X., Li C. Complete mitochondrial genome of the muskrat (Ondatra zibethicus) and its unique phylogenetic position estimated in Cricetidae. Mitochondrial DNA Part B. 2018;3:296–298. doi: 10.1080/23802359.2017.1390402. PubMed DOI PMC
Vilela J.F., Mello B., Voloch C.M., Schrago C.G. Sigmodontine rodents diversified in South American prior to the complete rise of the Panamanian Isthmus. J. Zoolog. Syst. Evol. Res. 2014;52:249–256. doi: 10.1111/jzs.12057. DOI
Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI
Xu Y., Huang X., Hu Y., Tu F. Description of the mitogenome of Gansu mole (Scapanulus oweni) Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016;27:2083–2084. doi: 10.3109/19401736.2014.982567. PubMed DOI
Kim N.H., Lim S.J., Chae H.M., Park Y.C. Complete mitochondrial genome of the Amur hedgehog Erinaceus amurensis (Erinaceidae) and higher phylogeny of the family Erinaceidae. Genet. Mol. Res. 2017;16 doi: 10.4238/gmr16019300. PubMed DOI
Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–474. doi: 10.1038/290470a0. PubMed DOI
Mouchaty S.K., Gullberg A., Janke A., Arnason U. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 2000;17:60–67. doi: 10.1093/oxfordjournals.molbev.a026238. PubMed DOI
Fernández-Silva P., Enriquez J.A., Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 2003;88:41–56. doi: 10.1113/eph8802514. PubMed DOI
Walberg M.W., Clayton D.A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 1981;9:5411–5421. doi: 10.1093/nar/9.20.5411. PubMed DOI PMC
Sbisà E., Tanzariello F., Reyes A., Pesole G., Saccone C. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene. 1997;205:125–140. doi: 10.1016/S0378-1119(97)00404-6. PubMed DOI
Ketmaier V., Bernardini C. Structure of the mitochondrial control region of the Eurasian otter (Lutra lutra; Carnivora, Mustelidae): Patterns of genetic heterogeneity and implications for conservation of the species in Italy. J. Hered. 2005;96:318–328. doi: 10.1093/jhered/esi037. PubMed DOI
Buzan Elena V., Krystufek B., Hänfling B., Hutchinson W.F. Mitochondrial phylogeny of Arvicolinae using comprehensive taxonomic sampling yields new insights. Biol. J. Linn. Soc. 2008;94:825–835. doi: 10.1111/j.1095-8312.2008.01024.x. DOI
Abramson N.I., Lebedev V.S., Tesakov A.S., Bannikova A.A. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): An unexpected result of nuclear gene analysis. Mol. Biol. 2009;43:834–846. doi: 10.1134/S0026893309050148. PubMed DOI
Jin Z.M., Yu C.W., Liu Z. Sequencing and analysis of the complete mitochondrial genome of the northern red-backed vole (Myodes rutilus) from China. Mitochondrial DNA Part B. 2019;4:1575–1577.
Chen W.C., Hao H.B., Sun Z.Y., Liu Y., Liu S.Y., Yue B.S. Phylogenetic position of the genus Proedromys (Arvicolinae, Rodentia): Evidence from nuclear and mitochondrial DNA, Biochem. Syst. Ecol. 2012;42:59–68. doi: 10.1016/j.bse.2012.01.002. DOI
Gromov I.M., Polyakov I.Y. Mammals. Volume 3. Brill Publishing Company; Leiden, Germany: 1992. Fauna of the USSR, Voles (Microtinae) p. 725.
Cuenca-Bescós G., López-García J.M., Galindo-Pellicena M.A., García-Perea R., Gisbert J., Rofes J., Ventura J. Pleistocene history of Iberomys, an endangered endemic rodent from southwestern Europe. Integr. Zool. 2014;9:481–497. doi: 10.1111/1749-4877.12053. PubMed DOI
Rubinoff D., Holland B.S. Between Two Extremes: Mitochondrial DNA is neither the Panacea nor the Nemesis of Phylogenetic and Taxonomic Inference. Syst. Biol. 2005;54:952–961. doi: 10.1080/10635150500234674. PubMed DOI