Complete Mitochondrial Genome of Three Species of the Genus Microtus (Arvicolinae, Rodentia)

. 2020 Nov 16 ; 10 (11) : . [epub] 20201116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33207831

The 65 species of the genus Microtus have unusual sex-related genetic features and a high rate of karyotype variation. However, only nine complete mitogenomes for these species are currently available. We describe the complete mitogenome sequences of three Microtus, which vary in length from 16,295 bp to 16,331 bp, contain 13 protein-coding genes (PCGs), two ribosomal RNA genes, 22 transfer RNA genes and a control region. The length of the 13 PCGs and the coded proteins is the same in all three species, and the start and stop codons are conserved. The non-coding regions include the L-strand origin of replication, with the same sequence of 35 bp, and the control region, which varies between 896 bp and 930 bp in length. The control region includes three domains (Domains I, II and III) with extended termination-associated sequences (ETAS-1 and ETAS-2) in Domain I. Domain II and Domain III include five (CSB-B, C, D, E and F) and three (CSB-1, CSB-2, and CSB-3) conserved sequence blocks, respectively. Phylogenetic reconstructions using the mitochondrial genomes of all the available Microtus species and one representative species from another genus of the Arvicolinae subfamily reproduced the established phylogenetic relationships for all the Arvicolinae genera that were analyzed.

Zobrazit více v PubMed

Triant D.A., DeWoody J.A. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences. Genetica. 2006;128:95–108. doi: 10.1007/s10709-005-5538-6. PubMed DOI

Fink S., Fischer M.C., Excoffier L., Heckel G. Genomic scans support repetitive continental colonization events during the rapid radiation of voles (Rodentia: Microtus): The utility of AFLPs versus mitochondrial and nuclear sequence markers. Syst. Biol. 2010;59:548–572. doi: 10.1093/sysbio/syq042. PubMed DOI

Sitnikova N.A., Romanenko S.A., O’Brien P.C., Perelman P.L., Fu B., Rubtsova N.V., Serdukova N.A., Golenishchev F.N., Trifonov V.A., Ferguson-Smith M.A., et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). I. The genome homology of tundra vole, field vole, mouse and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007;15:447–456. doi: 10.1007/s10577-007-1137-y. PubMed DOI

Lamelas L., Arroyo M., Fernández F.J., Marchal J.A., Sánchez A. Structural and evolutionary relationships in the giant sex chromosomes of three Microtus species. Genes. 2018;9:27. doi: 10.3390/genes9010027. PubMed DOI PMC

Ohno S., Stenius C., Christian L. The X0 as the normal female of the creeping vole (Microtus oregoni). In Chromosomes Today; Darlington, C.D., Lewis, K.R., Eds.; Oliver and Boyd: Edinburgh, United Kingdom, 1966; Volume 1, pp. 182–187.oregoni) In: Darlington C.D., Lewis K.R., editors. Chromosomes Today. Volume 1. Oliver and Boyd; Edinburgh, UK: 1966. pp. 182–187.

Burgos M., Jiménez R., Díaz de la Guardia R. XY females in Microtus cabrerae (Rodentia, Microtidae): A case of possibly Y-linked sex reversal. Cytogenet. Cell Genet. 1988;49:275–277. doi: 10.1159/000132676. PubMed DOI

Marchal J.A., Acosta M.J., Bullejos M., Díaz de la Guardia R., Sánchez A. Origin and spread of the SRY gene on the X and Y chromosomes of the rodent Microtus cabrerae: Role of L1 elements. Genomics. 2008;91:142–151. doi: 10.1016/j.ygeno.2007.10.010. PubMed DOI

Acosta M.J., Marchal J.A., Fernández-Espartero C., Romero-Fernández I., Rovatsos M.T., Giagia-Athanasopoulou E.B., Gornung E., Castiglia R., Sánchez A. Characterization of the satellite DNA Msat-160 from species of Terricola (Microtus) and Arvicola (Rodentia, Arvicolinae) Genetica. 2010;138:1085–1098. doi: 10.1007/s10709-010-9496-2. PubMed DOI

Borodin P.M., Basheva E.A., Golenischev F.N., Dashkevich O.A., Kartavtseva I.N., Lisachov A.P., Torgasheva A.A. Parallel occurrence of asynaptic sex chromosomes in gray voles (Microtus Schrank, 1798) Paleontol. J. 2013;47:1035–1040. doi: 10.1134/S0031030113090049. DOI

Rovatsos M.T., Marchal J.A., Romero-Fernández I., Arroyo M., Athanasopoulou E.B., Sánchez A. Extensive sex chromosome polymorphism of Microtus thomasi/Microtus atticus species complex associated with cryptic chromosomal rearrangements and independent accumulation of heterochromatin. Cytogenet. Genome Res. 2017;151:198–207. doi: 10.1159/000477114. PubMed DOI

Maruyama T., Imai H.T. Evolutionary rate of the mammalian karyotype. J. Theor. Biol. 1981;90:111–121. doi: 10.1016/0022-5193(81)90125-9. PubMed DOI

Libbus B.L., Johnson L.A. The creeping vole, Microtus oregoni: Karyotype and sex-chromosome differences between two geographical populations. Cytogenet. Cell Genet. 1988;47:181–184. doi: 10.1159/000132544. PubMed DOI

Gornung E., Castiglia R., Rovatsos M., Marchal J.A., Díaz de la Guardia-Quiles R., Sánchez A. Comparative cytogenetic study of two sister species of Iberian ground voles, Microtus (Terricola) duodecimcostatus and M. (T.) lusitanicus (Rodentia, Cricetidae) Cytogenet. Genome Res. 2011;132:144–150. doi: 10.1159/000321572. PubMed DOI

Baker R.J., Hamilton M.J., Van Den Bussche R.A., Wiggins L.E., Sugg D.W., Smith M.H., Lomakin M.D., Gaschak S.P., Bundova E.G., Ruoenskaya G.A., et al. Small mammals from the most radioactive sites near the Chernobyl nuclear power plant. J. Mammal. 1996;77:155–170. doi: 10.2307/1382717. DOI

Fink S., Excoffier L., Heckel G. Mitochondrial gene diversity in the common vole Microtus arvalis shaped by historical divergence and local adaptations. Mol. Ecol. 2004;13:3501–3514. doi: 10.1111/j.1365-294X.2004.02351.x. PubMed DOI

Jaarola M., Searle J.B. Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol. Ecol. 2002;11:2613–2621. doi: 10.1046/j.1365-294X.2002.01639.x. PubMed DOI

Bannikova A.A., Lebedev V., Lissovsky A., Matrosova V., Abramson N.I., Obolenskaya E.V., Tesakov A.S. Molecular phylogeny and evolution of the Asian lineage of vole genus Microtus (Rodentia: Arvicolinae) inferred from mitochondrial cytochrome b sequence. Biol. J. Linn. Soc. 2010;99:595–613. doi: 10.1111/j.1095-8312.2009.01378.x. DOI

Chaline J., Graf J.D. Phylogeny of the Arvicolidae (Rodentia): Biochemical and paleontological evidence. J. Mammal. 1988;69:22–33. doi: 10.2307/1381744. DOI

Modi W.S. Phylogenetic history of LINE-1 among arvicolid rodents. Mol. Biol. Evol. 1996;13:633–641. doi: 10.1093/oxfordjournals.molbev.a025623. PubMed DOI

Jaarola M., Martinkova N., Gunduz I., Brunhoff C., Zima J., Nadachowski A., Amori G., Bulatova N.S., Chondropoulos B., Fraguedakis-Tsolis S., et al. Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol. Phylogenet. Evol. 2004;33:647–663. doi: 10.1016/j.ympev.2004.07.015. PubMed DOI

Fletcher N.K., Acevedo P., Herman J.S., Paupério J., Alves P.C., Searle J.B. Glacial cycles drive rapid divergence of cryptic field vole species. Ecol. Evol. 2019;9:14101–14113. doi: 10.1002/ece3.5846. PubMed DOI PMC

De Woody J.A. Nucleotide variation in the p53 tumor suppressor gene of voles from Chernobyl, Ukraine. Mutat. Res. 1999;439:25–36. doi: 10.1016/S1383-5718(98)00171-5. PubMed DOI

Belfiore N.M., Hoffman F.G., Baker R.J., DeWoody J.A. The use of nuclear and mitochondrial single nucleotide polymorphisms to identify cryptic species. Mol. Ecol. 2003;12:2011–2017. doi: 10.1046/j.1365-294X.2003.01874.x. PubMed DOI

Conroy C.J., Cook J.A. Molecular systematics of a holarctic rodent (Microtus: Muridae) J. Mamm. 2000;81:344–359. doi: 10.1644/1545-1542(2000)081<0344:MSOAHR>2.0.CO;2. DOI

Shevchenko A.T., Mazurok N.A., Slobodyanyuk S.Y., Zakian S.M. Comparative analysis of the MSAT-160 repeats in four species of common vole (Microtus, Arvicolidae) Chromosome Res. 2002;10:117–126. doi: 10.1023/A:1014996917739. PubMed DOI

Romanenko S.A., Sitnikova N.A., Serdukova N.A., Perelman P.L., Rubtsova N.V., Bakloushinskaya I.Y., Lyapunova E.A., Just W., Ferguson-Smith M.A., Yang F., et al. Chromosomal evolution of Arvicolinae (Cricetidae, Rodentia). II. The genome homology of two mole voles (genus Ellobius), the field vole and golden hamster revealed by comparative chromosome painting. Chromosome Res. 2007;15:891–897. doi: 10.1007/s10577-007-1171-9. PubMed DOI

Galewski T., Tilak M.K., Sanchez S., Chevret P., Paradis E., Douzery E. The evolutionary radiation of Arvicolinae rodents (voles and lemmings): Relative contribution of nuclear and mitochondrial DNA phylogenies. BMC Evol. Biol. 2006;6:80. doi: 10.1186/1471-2148-6-80. PubMed DOI PMC

Conroy C.J., Cook J.A. MtDNA evidence for repeated pulses of speciation within arvicoline and murid rodents. J. Mammal. Evol. 1999;6:221–245. doi: 10.1023/A:1020561623890. DOI

Barbosa S., Paupério J., Pavlova S.V., Alves P.C., Searle J.B. The Microtus voles: Resolving the phylogeny of one of the most speciose mammalian genera using genomics. Mol. Phylogenet. Evol. 2018;125:85–92. doi: 10.1016/j.ympev.2018.03.017. PubMed DOI

Cabria M.T., Rubines J., Gómez-Moliner B., Zardoya R. On the phylogenetic position of a rare Iberian endemic mammal, the Pyrenean desman (Galemys pyrenaicus) Gene. 2006;375:1–13. doi: 10.1016/j.gene.2006.01.038. PubMed DOI

Kim J.Y., Park Y.C. Gene organization and characterization of the complete mitogenome of Hypsugo alaschanicus (Chiroptera: Vespertilionidae) Genet. Mol. Res. 2015;14:16325–16331. doi: 10.4238/2015.December.8.24. PubMed DOI

Ye F., Samuels D.C., Clark T., Guo Y. High-throughput sequencing in mitochondrial DNA research. Mitochondrion. 2014;17:157–163. doi: 10.1016/j.mito.2014.05.004. PubMed DOI PMC

Pita S., Panzera F., Vela J., Mora P., Palomeque T., Lorite P. Complete mitochondrial genome of Triatoma infestans (Hemiptera, Reduviidae, Triatominae), main vector of Chagas disease. Infect. Genet. Evol. 2017;54:158–163. doi: 10.1016/j.meegid.2017.06.003. PubMed DOI

Fernández-Pérez J., Nantón A., Ruiz-Ruano F.J., Camacho J.P.M., Méndez J. First complete female mitochondrial genome in four bivalve species genus Donax and their phylogenetic relationships within the Veneroida order. PLoS ONE. 2017;8:12. doi: 10.1371/journal.pone.0184464. PubMed DOI PMC

Gutiérrez J., Lamelas L., Aleix-Mata G., Arroyo M., Marchal J.A., Palomeque T., Lorite P., Sánchez A. Complete mitochondrial genome of the Iberian Mole Talpa occidentalis (Talpidae, Insectivora) and comparison with Talpa europaea. Genetica. 2018;146:415–423. doi: 10.1007/s10709-018-0033-z. PubMed DOI

Aleix-Mata G., Ruiz-Ruano F.J., Pérez J.M., Sarasa M., Sánchez A. Complete mitochondrial genome of the Western Capercaillie Tetrao urogallus (Phasianidae, Tetraoninae) Zootaxa. 2019;4550:585–593. doi: 10.11646/zootaxa.4550.4.9. PubMed DOI

Aleix-Mata G., Gutiérrez J., Ruiz-Ruano F.J., Lorite P., Marchal J.A., Sánchez A. The complete mitochondrial genome of Talpa aquitania (Talpidae; Insectivora), a mole species endemic to northern Spain and southern France. Mol. Biol. Rep. 2020;47:2387–2403. doi: 10.1007/s11033-020-05296-8. PubMed DOI

Folkertsma R., Westbury M.V., Eccard J.A., Hofreiter M. The complete mitochondrial genome of the common vole, Microtus arvalis (Rodentia: Arvicolinae) Mitochondrial DNA Part B. 2018;3:446–447. doi: 10.1080/23802359.2018.1457994. PubMed DOI PMC

Zhu L., Qi Z., Wen Y.C., Min J.Z., Song Q.K. The complete mitochondrial genome of Microtus fortis pelliceus (Arvicolinae, Rodentia) from China and its phylogenetic analysis. Mitochondrial DNA Part B. 2019;4:2039–2041. doi: 10.1080/23802359.2019.1618212. DOI

Modi W.S. Nucleotide sequence and genomic organization of a tandem satellite array from the rock vole Microtus chrotorrhinus (Rodentia), Mamm. Genome. 1992;3:226–232. PubMed

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Novák P., Neumann P., Pech J., Steinhaisl J., Macas J. RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29:792–793. doi: 10.1093/bioinformatics/btt054. PubMed DOI

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Haring E., Herzig-Straschil B., Spitzenberger F. Phylogenetic analysis of Alpine voles of the Microtus multiplex complex using the mitochondrial control region. J. Zool. Evol. Res. 2000;38:231–238. doi: 10.1046/j.1439-0469.2000.384139.x. DOI

Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M., Stadler P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI

Lowe T.M., Chan P.P. tRNAscan-SE On-line: Search and contextual analysis of transfer RNA genes. Nucl. Acids Res. 2016;44:W54–W57. doi: 10.1093/nar/gkw413. PubMed DOI PMC

Marková S., Filipi K., Searle J.B., KotlÍk P. Mapping 3′ transcript ends in the bank vole (Clethrionomys glareolus) mitochondrial genome with RNA-Seq. BMC Genom. 2015;16:870. doi: 10.1186/s12864-015-2103-2. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Lohse M., Drechsel O., Kahlau S., Bock R. OrganellarGenomeDRAW-A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:W575–W581. doi: 10.1093/nar/gkt289. PubMed DOI PMC

Alqahtani F., Duckett D., Pirro S., Mandoiu I.I. Complete mitochondrial genome of the water vole, Microtus richardsoni (Cricetidae, Rodentia) Mitochondrial DNA Part B. 2020;5:2498–2499. doi: 10.1080/23802359.2020.1780640. PubMed DOI PMC

Bendová K., Marková S., Searle J.B., Kotlík P. The complete mitochondrial genome of the bank vole Clethrionomys glareolus (Rodentia: Arvicolinae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:111–112. doi: 10.3109/19401736.2013.873927. PubMed DOI

Bondareva O.V., Abramson N.I. The complete mitochondrial genome of the common pine vole Terricola subterraneus (Arvicolinae, Rodentia) Mitochondrial DNA Part B. 2019;4:3925–3926. doi: 10.1080/23802359.2019.1687026. PubMed DOI PMC

Cao W., Xia Y., Dang X., Xu Q. The first complete mitochondrial genome of the Microtus ochrogaster. Mitochondrial DNA Part A. 2016;27:3682–3683. doi: 10.3109/19401736.2015.1079854. PubMed DOI

Chen S., Chen G., Wei H., Wang Q. Complete mitochondrial genome of the Père David’s Vole, Eothenomys melanogaster (Rodentia: Arvicolinae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:2496–2497. doi: 10.3109/19401736.2015.1036246. PubMed DOI

Cong H., Kong L., Liu Z., Wu Y., Motokawa M., Harada M., Li Y. Complete mitochondrial genome of the mandarin vole Lasiopodomys mandarinus (Rodentia: Cricetidae) Mitochondrial DNA A DNA Mapp. Seq. Anal. 2016;27:760–761. doi: 10.3109/19401736.2014.915528. PubMed DOI

Fedorov V.B., Goropashnaya A.V. Complete mitochondrial genomes of the North American collared lemmings Dicrostonyx groenlandicus Traill, 1823 and Dicrostonyx hudsonius Pallas, 1778 (Rodentia: Arvicolinae) Mitochondrial DNA B Resour. 2016;1:878–879. doi: 10.1080/23802359.2016.1253041. PubMed DOI PMC

Hao H., Liu S., Zhang X., Chen W., Song Z., Peng H., Liu Y., Yue B. Complete mitochondrial genome of a new vole Proedromys liangshanensis (Rodentia: Cricetidae) and phylogenetic analysis with related species: Are there implications for the validity of the genus Proedromys? Mitochondrial DNA. 2011;22:28–34. doi: 10.3109/19401736.2011.588220. PubMed DOI

Jiang J.Q., Wu S.X., Chen J.J., Liu C.Z. Characterization of the complete mitochondrial genome of short-tailed field vole, Microtus agrestis. Mitochondrial DNA Part B. 2018;3:845–846. doi: 10.1080/23802359.2018.1467240. PubMed DOI PMC

Jiang X., Gao J., Ni L., Hu J., Li K., Sun F., Xie J., Bo X., Gao C., Xiao J., et al. The complete mitochondrial genome of Microtus fortis calamorum (Arvicolinae, Rodentia) and its phylogenetic analysis. Gene. 2012;498:288–295. doi: 10.1016/j.gene.2012.02.022. PubMed DOI

Lin Y.H., Waddell P.J., Penny D. Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene. 2002;294:119–129. doi: 10.1016/S0378-1119(02)00695-9. PubMed DOI

Zhang Q., He T., Wei H., Li F., Feng Y., Zong H., Chen S. Characterization of the complete mitochondrial genome and phylogenetic relationship of Neodon sikimensis (Rodentia: Arvicolinae) Mitochondrial DNA Part B. 2016;1:445–446. doi: 10.1080/23802359.2016.1180561. PubMed DOI PMC

Zhao H., Qi X., Li C. Complete mitochondrial genome of the muskrat (Ondatra zibethicus) and its unique phylogenetic position estimated in Cricetidae. Mitochondrial DNA Part B. 2018;3:296–298. doi: 10.1080/23802359.2017.1390402. PubMed DOI PMC

Vilela J.F., Mello B., Voloch C.M., Schrago C.G. Sigmodontine rodents diversified in South American prior to the complete rise of the Panamanian Isthmus. J. Zoolog. Syst. Evol. Res. 2014;52:249–256. doi: 10.1111/jzs.12057. DOI

Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. PubMed DOI

Xu Y., Huang X., Hu Y., Tu F. Description of the mitogenome of Gansu mole (Scapanulus oweni) Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016;27:2083–2084. doi: 10.3109/19401736.2014.982567. PubMed DOI

Kim N.H., Lim S.J., Chae H.M., Park Y.C. Complete mitochondrial genome of the Amur hedgehog Erinaceus amurensis (Erinaceidae) and higher phylogeny of the family Erinaceidae. Genet. Mol. Res. 2017;16 doi: 10.4238/gmr16019300. PubMed DOI

Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–474. doi: 10.1038/290470a0. PubMed DOI

Mouchaty S.K., Gullberg A., Janke A., Arnason U. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Mol. Biol. Evol. 2000;17:60–67. doi: 10.1093/oxfordjournals.molbev.a026238. PubMed DOI

Fernández-Silva P., Enriquez J.A., Montoya J. Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol. 2003;88:41–56. doi: 10.1113/eph8802514. PubMed DOI

Walberg M.W., Clayton D.A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Res. 1981;9:5411–5421. doi: 10.1093/nar/9.20.5411. PubMed DOI PMC

Sbisà E., Tanzariello F., Reyes A., Pesole G., Saccone C. Mammalian mitochondrial D-loop region structural analysis: Identification of new conserved sequences and their functional and evolutionary implications. Gene. 1997;205:125–140. doi: 10.1016/S0378-1119(97)00404-6. PubMed DOI

Ketmaier V., Bernardini C. Structure of the mitochondrial control region of the Eurasian otter (Lutra lutra; Carnivora, Mustelidae): Patterns of genetic heterogeneity and implications for conservation of the species in Italy. J. Hered. 2005;96:318–328. doi: 10.1093/jhered/esi037. PubMed DOI

Buzan Elena V., Krystufek B., Hänfling B., Hutchinson W.F. Mitochondrial phylogeny of Arvicolinae using comprehensive taxonomic sampling yields new insights. Biol. J. Linn. Soc. 2008;94:825–835. doi: 10.1111/j.1095-8312.2008.01024.x. DOI

Abramson N.I., Lebedev V.S., Tesakov A.S., Bannikova A.A. Supraspecies relationships in the subfamily Arvicolinae (Rodentia, Cricetidae): An unexpected result of nuclear gene analysis. Mol. Biol. 2009;43:834–846. doi: 10.1134/S0026893309050148. PubMed DOI

Jin Z.M., Yu C.W., Liu Z. Sequencing and analysis of the complete mitochondrial genome of the northern red-backed vole (Myodes rutilus) from China. Mitochondrial DNA Part B. 2019;4:1575–1577.

Chen W.C., Hao H.B., Sun Z.Y., Liu Y., Liu S.Y., Yue B.S. Phylogenetic position of the genus Proedromys (Arvicolinae, Rodentia): Evidence from nuclear and mitochondrial DNA, Biochem. Syst. Ecol. 2012;42:59–68. doi: 10.1016/j.bse.2012.01.002. DOI

Gromov I.M., Polyakov I.Y. Mammals. Volume 3. Brill Publishing Company; Leiden, Germany: 1992. Fauna of the USSR, Voles (Microtinae) p. 725.

Cuenca-Bescós G., López-García J.M., Galindo-Pellicena M.A., García-Perea R., Gisbert J., Rofes J., Ventura J. Pleistocene history of Iberomys, an endangered endemic rodent from southwestern Europe. Integr. Zool. 2014;9:481–497. doi: 10.1111/1749-4877.12053. PubMed DOI

Rubinoff D., Holland B.S. Between Two Extremes: Mitochondrial DNA is neither the Panacea nor the Nemesis of Phylogenetic and Taxonomic Inference. Syst. Biol. 2005;54:952–961. doi: 10.1080/10635150500234674. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...