Genetic admixture drives climate adaptation in the bank vole
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20-11058S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
39009753
PubMed Central
PMC11251159
DOI
10.1038/s42003-024-06549-z
PII: 10.1038/s42003-024-06549-z
Knihovny.cz E-zdroje
- MeSH
- aklimatizace genetika MeSH
- Arvicolinae * genetika fyziologie MeSH
- fyziologická adaptace genetika MeSH
- genetická variace MeSH
- jednonukleotidový polymorfismus MeSH
- klimatické změny * MeSH
- podnebí MeSH
- populační genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
Genetic admixture introduces new variants at relatively high frequencies, potentially aiding rapid responses to environmental changes. Here, we evaluate its role in adaptive variation related to climatic conditions in bank voles (Clethrionomys glareolus) in Britain, using whole-genome data. Our results reveal loci showing excess ancestry from one of the two postglacial colonist populations inconsistent with overall admixture patterns. Notably, loci associated with climate adaptation exhibit disproportionate amounts of excess ancestry, highlighting the impact of admixture between colonist populations on local adaptation. The results suggest strong and localized selection on climate-adaptive loci, as indicated by steep clines and/or shifted cline centres, during population replacement. A subset, including a haemoglobin gene, is associated with oxidative stress responses, underscoring a role of oxidative stress in local adaptation. Our study highlights the important contribution of admixture during secondary contact between populations from distinct climatic refugia enriching adaptive diversity. Understanding these dynamics is crucial for predicting future adaptive capacity to anthropogenic climate change.
Zobrazit více v PubMed
Bitter MC, Kapsenberg L, Gattuso J-P, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 2019;10:5821. doi: 10.1038/s41467-019-13767-1. PubMed DOI PMC
Jones FC, et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature. 2012;484:55–61. doi: 10.1038/nature10944. PubMed DOI PMC
Lai Y-T, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc. Natl Acad. Sci. USA. 2019;116:2152–2157. doi: 10.1073/pnas.1813597116. PubMed DOI PMC
Matuszewski S, Hermisson J, Kopp M. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics. 2015;200:1255–1274. doi: 10.1534/genetics.115.178574. PubMed DOI PMC
Reid NM, et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science. 2016;354:1305–1308. doi: 10.1126/science.aah4993. PubMed DOI PMC
Hedrick PW. Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Mol. Ecol. 2013;22:4606–4618. doi: 10.1111/mec.12415. PubMed DOI
Lenormand T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 2002;17:183–189. doi: 10.1016/S0169-5347(02)02497-7. DOI
Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000;405:907–913. doi: 10.1038/35016000. PubMed DOI
de Lafontaine G, Napier JD, Petit RJ, Hu FS. Invoking adaptation to decipher the genetic legacy of past climate change. Ecology. 2018;99:1530–1546. doi: 10.1002/ecy.2382. PubMed DOI
de Carvalho D, et al. Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol. Ecol. 2010;19:1638–1650. doi: 10.1111/j.1365-294X.2010.04595.x. PubMed DOI
Escalante MA, Marková S, Searle JB, Kotlík P. Genic distribution modelling predicts adaptation of the bank vole to climate change. Commun. Biol. 2022;5:981. doi: 10.1038/s42003-022-03935-3. PubMed DOI PMC
Martins K, et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa. Evol. Appl. 2018;11:1842–1858. doi: 10.1111/eva.12684. PubMed DOI PMC
Gompert Z, Buerkle CA. A powerful regression-based method for admixture mapping of isolation across the genome of hybrids. Mol. Ecol. 2009;18:1207–1224. doi: 10.1111/j.1365-294X.2009.04098.x. PubMed DOI
Norris LC, et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc. Natl Acad. Sci. USA. 2015;112:815–820. doi: 10.1073/pnas.1418892112. PubMed DOI PMC
Song Y, et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between Old World mice. Curr. Biol. 2011;21:1296–1301. doi: 10.1016/j.cub.2011.06.043. PubMed DOI PMC
Barnes I, Matheus P, Shapiro B, Jensen D, Cooper A. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science. 2002;295:2267–2270. doi: 10.1126/science.1067814. PubMed DOI
Brace S, et al. The colonization history of British water vole (Arvicola amphibius (Linnaeus, 1758)): origins and development of the Celtic fringe. Proc. R. Soc. B. 2016;283:20160130. doi: 10.1098/rspb.2016.0130. PubMed DOI PMC
Dolby GA, et al. Sea-level driven glacial-age refugia and post-glacial mixing on subtropical coasts, a palaeohabitat and genetic study. Proc. R. Soc. B. 2016;283:20161571. doi: 10.1098/rspb.2016.1571. PubMed DOI PMC
Kotlík P, Marková S, Konczal M, Wiesław B, Searle JB. Genomics of end-Pleistocene population replacement in a small mammal. Proc. R. Soc. B. 2018;285:20172624. doi: 10.1098/rspb.2017.2624. PubMed DOI PMC
Marková S, et al. High genomic diversity in the bank vole at the northern apex of a range expansion: The role of multiple colonizations and end-glacial refugia. Mol. Ecol. 2020;29:1730–1744. doi: 10.1111/mec.15427. PubMed DOI
Searle JB, et al. The Celtic fringe of Britain: insights from small mammal phylogeography. Proc. R. Soc. B. 2009;276:4287–4294. doi: 10.1098/rspb.2009.1422. PubMed DOI PMC
Lanier HC, Gunderson AM, Weksler M, Fedorov VB, Olson LE. Comparative phylogeography highlights the double-edged sword of climate change faced by arctic- and alpine-adapted mammals. PLoS One. 2015;10:e0118396. doi: 10.1371/journal.pone.0118396. PubMed DOI PMC
Moritz C, et al. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. B. 2009;276:1235–1244. doi: 10.1098/rspb.2008.1622. PubMed DOI PMC
Szymura JM, Barton NH. Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata, near Cracow in southern Poland. Evolution. 1986;40:1141–1159. PubMed
Gompert Z, Buerkle CA. Bayesian estimation of genomic clines. Mol. Ecol. 2011;20:2111–2127. doi: 10.1111/j.1365-294X.2011.05074.x. PubMed DOI
Fitzpatrick BM. Alternative forms for genomic clines. Ecol. Evol. 2013;3:1951–1966. doi: 10.1002/ece3.609. PubMed DOI PMC
Menon M, et al. Tracing the footprints of a moving hybrid zone under a demographic history of speciation with gene flow. Evol. Appl. 2020;13:195–209. doi: 10.1111/eva.12795. PubMed DOI PMC
Del-Rio G, et al. Displaced clines in an avian hybrid zone (Thamnophilidae: Rhegmatorhina) within an Amazonian interfluve. Evolution. 2022;76:455–475. doi: 10.1111/evo.14377. PubMed DOI
Caeiro-Dias G, Brelsford A, Meneses-Ribeiro M, Crochet P-A, Pinho C. Hybridization in late stages of speciation: Strong but incomplete genome-wide reproductive isolation and ‘large Z-effect’ in a moving hybrid zone. Mol. Ecol. 2023;32:4362–4380. doi: 10.1111/mec.17035. PubMed DOI
Hodel RGJ, Massatti R, Knowles LL. Hybrid enrichment of adaptive variation revealed by genotype–environment associations in montane sedges. Mol. Ecol. 2022;31:3722–3737. doi: 10.1111/mec.16502. PubMed DOI PMC
Hall SJG. Haemoglobin polymorphism in the bank vole, Clethrionomys glareolus, in Britain. J. Zool. 1979;187:153–160. doi: 10.1111/j.1469-7998.1979.tb03939.x. DOI
Kotlík P, et al. Adaptive phylogeography: functional divergence between haemoglobins derived from different glacial refugia in the bank vole. Proc. R. Soc. B. 2014;281:20140021. doi: 10.1098/rspb.2014.0021. PubMed DOI PMC
Strážnická M, Marková S, Searle JB, Kotlík P. Playing hide-and-seek in beta-globin genes: gene conversion transferring a beneficial mutation between differentially expressed gene duplicates. Genes. 2018;9:492. doi: 10.3390/genes9100492. PubMed DOI PMC
Birnie-Gauvin K, Costantini D, Cooke SJ, Willmore WG. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish. Fish. 2017;18:928–942. doi: 10.1111/faf.12215. DOI
Chaudhry S, Sidhu GPS. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep. 2022;41:1–31. doi: 10.1007/s00299-021-02759-5. PubMed DOI
Metcalfe NB, Alonso-Alvarez C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 2010;24:984–996. doi: 10.1111/j.1365-2435.2010.01750.x. DOI
Paital B, et al. Longevity of animals under reactive oxygen species stress and disease susceptibility due to global warming. World J. Biol. Chem. 2016;7:110–127. doi: 10.4331/wjbc.v7.i1.110. PubMed DOI PMC
Lennon JJ, Koleff P, GreenwooD JJD, Gaston KJ. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 2001;70:966–979. doi: 10.1046/j.0021-8790.2001.00563.x. DOI
Mayes J. Changing regional climatic gradients in the United Kingdom. Geogr. J. 2000;166:125–138. doi: 10.1111/j.1475-4959.2000.tb00013.x. DOI
Marková, S. et al. Data from: Local adaptation and future climate vulnerability in a wild rodent. Dryad. 10.5061/dryad.kwh70rz96 (2023). PubMed PMC
Marková S, et al. Local adaptation and future climate vulnerability in a wild rodent. Nat. Commun. 2023;14:7840. doi: 10.1038/s41467-023-43383-z. PubMed DOI PMC
Capblancq T, Lachmuth S, Fitzpatrick MC, Keller SR. From common gardens to candidate genes: exploring local adaptation to climate in red spruce. N. Phytol. 2023;237:1590–1605. doi: 10.1111/nph.18465. PubMed DOI PMC
Chen Y, Gao Y, Huang X, Li S, Zhan A. Local environment-driven adaptive evolution in a marine invasive ascidian (Molgula manhattensis) Ecol. Evol. 2021;11:4252–4266. doi: 10.1002/ece3.7322. PubMed DOI PMC
Du FK, Wang T, Wang Y, Ueno S, de Lafontaine G. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak, Quercus aquifolioides. Evol. Appl. 2020;13:2377–2391. doi: 10.1111/eva.13030. PubMed DOI PMC
Ma L, et al. Rapid and strong population genetic differentiation and genomic signatures of climatic adaptation in an invasive mealybug. Divers. Distrib. 2020;26:610–622. doi: 10.1111/ddi.13053. DOI
Ruiz Miñano M, et al. Population genetic differentiation and genomic signatures of adaptation to climate in an abundant lizard. Heredity. 2022;128:271–278. doi: 10.1038/s41437-022-00518-0. PubMed DOI PMC
Gompert Z, Buerkle CA. bgc: Software for Bayesian estimation of genomic clines. Mol. Ecol. Resour. 2012;12:1168–1176. doi: 10.1111/1755-0998.12009.x. PubMed DOI
Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Mol. Ecol. 2018;27:2215–2233. doi: 10.1111/mec.14584. PubMed DOI
Hamilton JA, Miller JM. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 2016;30:33–41. doi: 10.1111/cobi.12574. PubMed DOI
Sung C-J, Bell KL, Nice CC, Martin NH. Integrating Bayesian genomic cline analyses and association mapping of morphological and ecological traits to dissect reproductive isolation and introgression in a Louisiana Iris hybrid zone. Mol. Ecol. 2018;27:959–978. doi: 10.1111/mec.14481. PubMed DOI
Parchman TL, et al. The genomic consequences of adaptive divergence and reproductive isolation between species of manakins. Mol. Ecol. 2013;22:3304–3317. doi: 10.1111/mec.12201. PubMed DOI
Anderson TM, et al. Molecular and evolutionary history of melanism in North American gray wolves. Science. 2009;323:1339–1343. doi: 10.1126/science.1165448. PubMed DOI PMC
Huerta-Sánchez E, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512:194–197. doi: 10.1038/nature13408. PubMed DOI PMC
vonHoldt B, Fan Z, Vecchyo DO-D, Wayne RK. EPAS1 variants in high altitude Tibetan wolves were selectively introgressed into highland dogs. PeerJ. 2017;5:e3522. doi: 10.7717/peerj.3522. PubMed DOI PMC
Barton NH, Hewitt GM. Analysis of hybrid zones. Annu. Rev. Ecol. Syst. 1985;16:113–148. doi: 10.1146/annurev.es.16.110185.000553. DOI
Buggs RJA. Empirical study of hybrid zone movement. Heredity. 2007;99:301–312. doi: 10.1038/sj.hdy.6800997. PubMed DOI
Dvořáková, V., Horníková, M., Němcová, L., Marková, S. & Kotlík, P. Regulatory variation in functionally polymorphic globin genes of the bank vole: a possible role for adaptation. Front. Ecol. Evol. 7, 514 (2020).
Lee N, et al. The role of fucoxanthin as a potent Nrf2 activator via Akt/GSK-3β/Fyn axis against amyloid-β peptide-induced oxidative damage. Antioxidants. 2023;12:629. doi: 10.3390/antiox12030629. PubMed DOI PMC
Mathur A, Rizvi F, Kakkar P. PHLPP2 down regulation influences nuclear Nrf2 stability via Akt-1/Gsk3β/Fyn kinase axis in acetaminophen induced oxidative renal toxicity: Protection accorded by morin. Food Chem. Toxicol. 2016;89:19–31. doi: 10.1016/j.fct.2016.01.001. PubMed DOI
Alfaleh MA, et al. Extracellular matrix detached cancer cells resist oxidative stress by increasing histone demethylase KDM6 activity. Saudi J. Biol. Sci. 2024;31:103871. doi: 10.1016/j.sjbs.2023.103871. PubMed DOI PMC
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol. Rev. 2009;228:9–22. doi: 10.1111/j.1600-065X.2008.00745.x. PubMed DOI
Saminathan H, et al. Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: relevance to translational research. Eur. J. Pharmacol. 2020;881:173259. doi: 10.1016/j.ejphar.2020.173259. PubMed DOI PMC
Mkaddem SB, et al. Lyn and Fyn function as molecular switches that control immunoreceptors to direct homeostasis or inflammation. Nat. Commun. 2017;8:246. doi: 10.1038/s41467-017-00294-0. PubMed DOI PMC
Salminen A, Kaarniranta K, Hiltunen M, Kauppinen A. Histone demethylase Jumonji D3 (JMJD3/KDM6B) at the nexus of epigenetic regulation of inflammation and the aging process. J. Mol. Med. 2014;92:1035–1043. doi: 10.1007/s00109-014-1182-x. PubMed DOI
Chatterjee, S. Chapter Two - Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials (eds. Dziubla, T. & Butterfield, D. A.) 35–58 (Academic Press, 2016). 10.1016/B978-0-12-803269-5.00002-4.
Damal Villivalam S, et al. A necessary role of DNMT3A in endurance exercise by suppressing ALDH1L1‐mediated oxidative stress. EMBO J. 2021;40:e106491. doi: 10.15252/embj.2020106491. PubMed DOI PMC
Crowley JL, Smith TC, Fang Z, Takizawa N, Luna EJ. Supervillin reorganizes the actin cytoskeleton and increases invadopodial efficiency. Mol. Biol. Cell. 2009;20:948–962. doi: 10.1091/mbc.e08-08-0867. PubMed DOI PMC
Kuwabara Y, et al. A human FLII gene variant alters sarcomeric actin thin filament length and predisposes to cardiomyopathy. Proc. Natl Acad. Sci. USA. 2023;120:e2213696120. doi: 10.1073/pnas.2213696120. PubMed DOI PMC
Watanabe T, Wang S, Kaibuchi K. IQGAPs as key regulators of actin-cytoskeleton dynamics. Cell Struct. Funct. 2015;40:69–77. doi: 10.1247/csf.15003. PubMed DOI
Bamburg JR, et al. ADF/cofilin-actin rods in neurodegenerative diseases. Curr. Alzheimer Res. 2010;7:241–250. doi: 10.2174/156720510791050902. PubMed DOI PMC
Farah ME, Sirotkin V, Haarer B, Kakhniashvili D, Amberg DC. Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton. 2011;68:340–354. doi: 10.1002/cm.20516. PubMed DOI PMC
Miriyala S, et al. Novel role of 4-hydroxy-2-nonenal in AIFm2-mediated mitochondrial stress signaling. Free Radic. Biol. Med. 2016;91:68–80. doi: 10.1016/j.freeradbiomed.2015.12.002. PubMed DOI PMC
Lu J, et al. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress. Toxicol. Lett. 2016;258:227–236. doi: 10.1016/j.toxlet.2016.07.002. PubMed DOI
Breuza L, et al. Proteomics of endoplasmic reticulum-Golgi intermediate compartment (ERGIC) membranes from brefeldin A-treated HepG2 cells identifies ERGIC-32, a new cycling protein that interacts with human Erv46. J. Biol. Chem. 2004;279:47242–47253. doi: 10.1074/jbc.M406644200. PubMed DOI
Choi SS, et al. Flightless-1 inhibits ER stress-induced apoptosis in colorectal cancer cells by regulating Ca2+ homeostasis. Exp. Mol. Med. 2020;52:940–950. doi: 10.1038/s12276-020-0448-3. PubMed DOI PMC
Jofre GI, Rosenthal GG. A narrow window for geographic cline analysis using genomic data: Effects of age, drift, and migration on error rates. Mol. Ecol. Resour. 2021;21:2278–2287. doi: 10.1111/1755-0998.13428. PubMed DOI PMC
McFarlane SE, Senn HV, Smith SL, Pemberton JM. Locus-specific introgression in young hybrid swarms: Drift may dominate selection. Mol. Ecol. 2021;30:2104–2115. doi: 10.1111/mec.15862. PubMed DOI
Akopyan M, et al. Genetic and phenotypic evidence of a contact zone between divergent colour morphs of the iconic red-eyed treefrog. Mol. Ecol. 2020;29:4442–4456. doi: 10.1111/mec.15639. PubMed DOI
Jahner JP, Parchman TL, Matocq MD. Multigenerational backcrossing and introgression between two woodrat species at an abrupt ecological transition. Mol. Ecol. 2021;30:4245–4258. doi: 10.1111/mec.16056. PubMed DOI
Rheindt FE, Edwards SV. Genetic introgression: An integral but neglected component of speciation in birds. Auk. 2011;128:620–632. doi: 10.1525/auk.2011.128.4.620. DOI
Kelly E, Phillips BL. Targeted gene flow for conservation. Conserv. Biol. 2016;30:259–267. doi: 10.1111/cobi.12623. PubMed DOI
Meek MH, et al. Understanding local adaptation to prepare populations for climate change. BioScience. 2023;73:36–47. doi: 10.1093/biosci/biac101. DOI
Martin BT, et al. Contrasting signatures of introgression in North American box turtle (Terrapene spp.) contact zones. Mol. Ecol. 2020;29:4186–4202. doi: 10.1111/mec.15622. PubMed DOI
Purcell S, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC
Price AL, et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 2006;38:904–909. doi: 10.1038/ng1847. PubMed DOI
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–1664. doi: 10.1101/gr.094052.109. PubMed DOI PMC
Martin BT, Chafin TK, Douglas MR, Douglas ME. ClineHelpR: an R package for genomic cline outlier detection and visualization. BMC Bioinforma. 2021;22:501. doi: 10.1186/s12859-021-04423-x. PubMed DOI PMC
Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2022).
Dormann CF, et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI
MacDougall A, et al. UniRule: a unified rule resource for automatic annotation in the UniProt Knowledgebase. Bioinformatics. 2020;36:4643–4648. doi: 10.1093/bioinformatics/btaa485. PubMed DOI PMC
Thomas PD, et al. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 2022;31:8–22. doi: 10.1002/pro.4218. PubMed DOI PMC
Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 2009;563:123–140. doi: 10.1007/978-1-60761-175-2_7. PubMed DOI PMC
Binns D, et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics. 2009;25:3045–3046. doi: 10.1093/bioinformatics/btp536. PubMed DOI PMC
Massicotte, P. & South, A. rnaturalearth: World Map Data from Natural Earth. R package version 1.0.1. https://CRAN.R-project.org/package=rnaturalearth (2023).