adaptive phylogeography Dotaz Zobrazit nápovědu
Over the years, researchers have used presumptively neutral molecular variation to infer the origins of current species' distributions in northern latitudes (especially Europe). However, several reported examples of genic and chromosomal replacements suggest that end-glacial colonizations of particular northern areas may have involved genetic input from different source populations at different times, coupled with competition and selection. We investigate the functional consequences of differences between two bank vole (Clethrionomys glareolus) haemoglobins deriving from different glacial refugia, one of which partially replaced the other in Britain during end-glacial climate warming. This allows us to examine their adaptive divergence and hence a possible role of selection in the replacement. We determine the amino acid substitution Ser52Cys in the major expressed β-globin gene as the allelic difference. We use structural modelling to reveal that the protein environment renders the 52Cys thiol a highly reactive functional group and we show its reactivity in vitro. We demonstrate that possessing the reactive thiol in haemoglobin increases the resistance of bank vole erythrocytes to oxidative stress. Our study thus provides striking evidence for physiological differences between products of genic variants that spread at the expense of one another during colonization of an area from different glacial refugia.
- MeSH
- Arvicolinae klasifikace genetika metabolismus MeSH
- fylogeografie MeSH
- genetická variace MeSH
- hemoglobiny chemie genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- substituce aminokyselin MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
Here, we present a study of the Pipistrellus pipistrellus species complex, a highly diversified bat group with a radiation centre in the Mediterranean biodiversity hotspot. The study sample comprised 583 animals from 118 localities representatively covering the bats' range in the western Palearctic. We used fast-evolving markers (the mitochondrial D-loop sequence and 11 nuclear microsatellites) to describe the phylogeography, demography and population structure of this model taxon and address details of its diversification. The overall pattern within this group includes a mosaic of phylogenetically basal, often morphologically distant, relatively small and mostly allopatric demes in the Mediterranean Basin, as well as two sympatric sibling species in the large continental part of the range. The southern populations exhibit constant size, whereas northern populations show a demographic trend of growth associated with range expansion during the Pleistocene climate oscillations. There is evidence of isolation by distance and female philopatry in P. pipistrellus sensu stricto. Although the northern populations are reproductively isolated, we detected introgression events among several Mediterranean lineages. This pattern implies incomplete establishment of reproductive isolating mechanisms in these populations as well as the existence of a past reinforcement stage in the continental siblings. The occurrence of reticulations in the radiation centre among morphologically and ecologically derived relict demes suggests that adaptive unequal gene exchange within hybridizing populations could play a role in speciation and adaptive radiation within this group.
- MeSH
- Chiroptera klasifikace genetika MeSH
- fylogeografie metody MeSH
- mikrosatelitní repetice genetika MeSH
- mitochondriální DNA genetika MeSH
- populační genetika metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středomoří MeSH
Understanding historical influences of climate and physiographic barriers in shaping patterns of biodiversity remains limited for many regions of the world. For mammals of continental Africa, phylogeographic studies, particularly for West African lineages, implicate both geographic barriers and climate oscillations in shaping small mammal diversity. In contrast, studies for southern African species have revealed conflicting phylogenetic patterns for how mammalian lineages respond to both climate change and geologic events such as river formation, especially during the Pleistocene. However, these studies were often biased by limited geographic sampling or exclusively focused on large-bodied taxa. We exploited the broad southern African distribution of a savanna-woodland-adapted African rodent, Gerbilliscus leucogaster (bushveld gerbil) and generated mitochondrial, autosomal and sex chromosome data to quantify regional signatures of climatic and vicariant biogeographic phenomena. Results indicate the most recent common ancestor for all G. leucogaster lineages occurred during the early Pleistocene. We documented six divergent mitochondrial lineages that diverged ~0.270-0.100 mya, each of which was geographically isolated during periods characterized by alterations to the course of the Zambezi River and its tributaries as well as regional 'megadroughts'. Results demonstrate the presence of a widespread lineage exhibiting demographic expansion ~0.065-0.035 mya, a time that coincides with savanna-woodland expansion across southern Africa. A multilocus autosomal perspective revealed the influence of the Kafue River as a current barrier to gene flow and regions of secondary contact among divergent mitochondrial lineages. Our results demonstrate the importance of both climatic fluctuations and physiographic vicariance in shaping the distribution of southern African biodiversity.
- MeSH
- analýza polymorfismu délky amplifikovaných restrikčních fragmentů MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- Gerbillinae klasifikace genetika MeSH
- haplotypy MeSH
- klimatické změny MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- populační genetika * MeSH
- prostorová analýza MeSH
- rozšíření zvířat MeSH
- sekvenční analýza DNA MeSH
- teoretické modely MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- jižní Afrika MeSH
BACKGROUND: Adaptive radiations are triggered by ecological opportunity - the access to novel niche domains with abundant available resources that facilitate the formation of new ecologically divergent species. Therefore, as new species saturate niche space, clades experience a diversity-dependent slowdown of diversification over time. At the other extreme of the radiation continuum, non-adaptively radiating lineages undergo diversification with minimal niche differentiation when 'spatial opportunity' (i.e. areas with suitable 'ancestral' ecological conditions) is available. Traditionally, most research has focused on adaptive radiations, while empirical studies on non-adaptive radiations remain lagging behind. A prolific clade of African fish with extremely short lifespan (Nothobranchius killifish), show the key evolutionary features of a candidate non-adaptive radiation - primarily allopatric species with minimal niche and phenotypic divergence. Here, we test the hypothesis that Nothobranchius killifish have non-adaptively diversified. We employ phylogenetic modelling to investigate the tempo and mode of macroevolutionary diversification of these organisms. RESULTS: Nothobranchius diversification has proceeded with minor niche differentiation and minimal morphological disparity among allopatric species. Additionally, we failed to identify evidence for a role of body size or biogeography in influencing diversification rates. Diversification has been homogeneous within this genus, with the only hotspot of species-richness not resulting from rapid diversification. However, species in sympatry show higher disparity, which may have been caused by character displacement among coexisting species. CONCLUSIONS: Nothobranchius killifish have proliferated following the tempo and mode of a non-adaptive radiation. Our study confirms that this exceptionally short-lived group have diversified with minimal divergent niche adaptation, while one group of coexisting species seems to have facilitated spatial overlap among these taxa via the evolution of ecological character displacement.
- MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- druhová specificita MeSH
- Fundulidae fyziologie MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- fyziologická adaptace * MeSH
- pravděpodobnostní funkce MeSH
- velikost těla MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.
- MeSH
- biologická adaptace genetika MeSH
- biologická evoluce MeSH
- fylogeografie MeSH
- genetická variace MeSH
- genová introgrese * MeSH
- klimatické změny MeSH
- odolnost vůči nemocem genetika MeSH
- ovce genetika imunologie MeSH
- pneumonie imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Both geographical and ecological speciation interact during the evolution of a clade, but the relative contribution of these processes is rarely assessed for cold-dwelling biota. Here, we investigate the role of biogeography and the evolution of ecological traits on the diversification of the Holarctic arcto-alpine butterfly genus Oeneis (Lepidoptera: Satyrinae). We reconstructed the molecular phylogeny of the genus based on one mitochondrial (COI) and three nuclear (GAPDH, RpS5, wingless) genes. We inferred the biogeographical scenario and the ancestral state reconstructions of climatic and habitat requirements. Within the genus, we detected five main species groups corresponding to the taxonomic division and further paraphyletic position of Neominois (syn. n.). Next, we transferred O. aktashi from the hora to the polixenes species group on the bases of molecular relationships. We found that the genus originated in the dry grasslands of the mountains of Central Asia and dispersed over the Beringian Land Bridges to North America several times independently. Holarctic mountains, in particular the Asian Altai Mts. and Sayan Mts., host the oldest lineages and most of the species diversity. Arctic species are more recent, with Pliocene or Pleistocene origin. We detected a strong phylogenetic signal for the climatic niche, where one lineage diversified towards colder conditions. Altogether, our results indicate that both dispersal across geographical areas and occupation of distinct climatic niches promoted the diversification of the Oeneis genus.
- MeSH
- analýza hlavních komponent MeSH
- biologická evoluce * MeSH
- časové faktory MeSH
- ekosystém MeSH
- fylogeneze MeSH
- fylogeografie * MeSH
- fyziologická adaptace * MeSH
- motýli klasifikace MeSH
- nízká teplota * MeSH
- podnebí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Severní Amerika MeSH
Parasites with high host specificity maximally depend on their hosts, which should increase the likelihood of coevolution. However, coevolution requires reciprocal selection exerted by the host and the parasite, and thus a considerable level of parasite virulence. In species of the monogenean ectoparasite genus Gyrodactylus consecutive generations are confronted with a single host, which may constrain the evolution of virulence. Transmission, which is often important in the ecology of Gyrodactylus species, may have the opposite effect, but may also lead to the avoidance of coevolutionary arms races. We investigated the potential outcome of coevolution between Gyrodactylus gasterostei Gläser, 1974 and its host, the three-spined stickleback (Gasterosteus aculeatus L.) by determining the strength of genotype by genotype (GxG) interactions on two levels: within and between sympatric and allopatric host populations. To do so, we compared the parasite's infection dynamics on laboratory-reared sympatric (Belgian) and allopatric (German) hosts. We found that a parasite line successfully infected a range of sympatric host genotypes (represented by families), while it failed to establish on allopatric hosts. Phylogeographic studies suggest that neutral genetic divergence between the host populations cannot explain this dramatic difference. Provided that this result can be generalised towards other parasite lines, we conclude that coevolution in this host-parasite system is more likely to lead to local adaptation on the population level than to GxG interactions within populations.
- Klíčová slova
- Biological Evolution, Phylogeography,
- MeSH
- biologická evoluce MeSH
- časové faktory MeSH
- ekologie MeSH
- financování organizované MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- interakce hostitele a parazita MeSH
- nemoci ryb parazitologie MeSH
- ploštěnci fyziologie patogenita MeSH
- Smegmamorpha parazitologie MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
Phylogeographical studies are common in boreal and temperate species from the Palaearctic, but scarce in arid-adapted species. We used nuclear and mitochondrial markers to investigate phylogeography and to estimate chronology of colonization events of the trumpeter finch Bucanetes githagineus, an arid-adapted bird. We used 271 samples from 16 populations, most of which were fresh samples but including some museum specimens. Microsatellite data showed no clear grouping according to the sampling locations. Microsatellite and mitochondrial data showed the clearest differentiation between Maghreb and Canary Islands and between Maghreb and Western Sahara. Mitochondrial data suggest differentiation between different Maghreb populations and among Maghreb and Near East populations, between Iberian Peninsula and Canary Islands, as well as between Western Sahara and Maghreb. Our coalescence analyses indicate that the trumpeter finch colonized North Africa during the humid Marine Isotope Stage 5 (MIS5) period of the Sahara region 125 000 years ago. We constructed an ecological niche model (ENM) to estimate the geographical distribution of climatically suitable habitats for the trumpeter finch. We tested whether changes in the species range in relation to glacial-interglacial cycles could be responsible for observed patterns of genetic diversity and structure. Modelling results matched with those from genetic data as the species' potential range increases in interglacial scenarios (in the present climatic scenario and during MIS5) and decreases in glacial climates (during the last glacial maximum, LGM, 21 000 years ago). Our results suggest that the trumpeter finch responded to Pleistocene climatic changes by expanding and contracting its range.
- MeSH
- biologické modely MeSH
- ekosystém * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- klimatické změny MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- pěnkavovití klasifikace MeSH
- populační genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika MeSH
- severní Afrika MeSH
- Španělsko MeSH
- Střední východ MeSH
Parasites with wide host spectra provide opportunities to study the ecological parameters of speciation, as well as the process of the evolution of host specificity. The speciose and cosmopolitan louse genus Menacanthus comprises both multi-host and specialised species, allowing exploration of the ecological and historical factors affecting the evolution of parasites using a comparative approach. We used phylogenetic analysis to reconstruct evolutionary relationships in 14 species of Menacanthus based on the sequences of one mitochondrial and one nuclear gene. The results allowed us to validate species identification based on morphology, as well as to explore host distribution by assumed generalist and specialist species. Our analyses confirmed a narrow host use for several species, however in some cases, the supposed host specialists had a wider host spectrum than anticipated. In one case a host generalist (Menacanthus eurysternus) was clustered terminally on a clade almost exclusively containing host specialists. Such a clade topology indicates that the process of host specialisation may not be irreversible in parasite evolution. Finally, we compared patterns of population genetic structure, geographic distribution and host spectra between two selected species, M. eurysternus and Menacanthus camelinus, using haplotype networks. Menacanthus camelinus showed limited geographical distribution in combination with monoxenous host use, whereas M. eurysternus showed a global distribution and lack of host specificity. It is suggested that frequent host switching maintains gene flow between M. eurysternus populations on unrelated hosts in local populations. However, gene flow between geographically distant localities was restricted, suggesting that geography rather than host-specificity is the main factor defining the global genetic diversity of M. eurysternus.
- MeSH
- Amblycera klasifikace genetika fyziologie MeSH
- biologická adaptace MeSH
- biologická evoluce * MeSH
- fylogeografie * MeSH
- hostitelská specificita MeSH
- molekulární sekvence - údaje MeSH
- sekvenční analýza DNA MeSH
- tok genů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities.
- MeSH
- Asteraceae klasifikace fyziologie MeSH
- biodiverzita MeSH
- časové faktory MeSH
- distribuce rostlin fyziologie MeSH
- druhová specificita MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- fyziologická adaptace MeSH
- lidé MeSH
- lipnicovité klasifikace fyziologie MeSH
- Rosaceae klasifikace fyziologie MeSH
- šáchorovité klasifikace fyziologie MeSH
- zavlečené druhy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH