MYC Induces Oncogenic Stress through RNA Decay and Ribonucleotide Catabolism in Breast Cancer
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
R35GM147123
National Institute of General Medical Sciences (NIGMS)
T32 GM120011
NIGMS NIH HHS - United States
1F30CA278316-01
National Cancer Institute (NCI)
RR200076
Cancer Prevention and Research Institute of Texas (CPRIT)
R00 ES030735
NIEHS NIH HHS - United States
1R01CA215452-01
National Cancer Institute (NCI)
P30 CA125123
NCI NIH HHS - United States
Q-0007
Welch Foundation (The Welch Foundation)
T32GM120011
National Institutes of Health (NIH)
RR150093
Cancer Prevention and Research Institute of Texas (CPRIT)
R01 CA215226
NCI NIH HHS - United States
C5470/A27144
Mark Foundation For Cancer Research (The Mark Foundation for Cancer Research)
R01 CA215452
NCI NIH HHS - United States
U01CA214125
National Cancer Institute (NCI)
PDF17487931
Susan G. Komen (SGK)
R00ES030735
National Institute of Environmental Health Sciences (NIEHS)
1W81XWH-18-1-0573
U.S. Department of Defense (DOD)
LX22NPO5103
National Institute of Virology and Bacteriology
1R01CA215226
National Cancer Institute (NCI)
P30 DK056338
NIDDK NIH HHS - United States
S10 RR024574
NCRR NIH HHS - United States
U01 CA214125
NCI NIH HHS - United States
F30 CA278316
NCI NIH HHS - United States
R35 GM147123
NIGMS NIH HHS - United States
PubMed
39193992
PubMed Central
PMC11372365
DOI
10.1158/2159-8290.cd-22-0649
PII: 747419
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory prsu * metabolismus genetika patologie MeSH
- protoonkogenní proteiny c-myc * metabolismus genetika MeSH
- regulace genové exprese u nádorů MeSH
- ribonukleotidy * metabolismus MeSH
- stabilita RNA * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- MYC protein, human MeSH Prohlížeč
- protoonkogenní proteiny c-myc * MeSH
- ribonukleotidy * MeSH
Upregulation of MYC is a hallmark of cancer, wherein MYC drives oncogenic gene expression and elevates total RNA synthesis across cancer cell transcriptomes. Although this transcriptional anabolism fuels cancer growth and survival, the consequences and metabolic stresses induced by excess cellular RNA are poorly understood. Herein, we discover that RNA degradation and downstream ribonucleotide catabolism is a novel mechanism of MYC-induced cancer cell death. Combining genetics and metabolomics, we find that MYC increases RNA decay through the cytoplasmic exosome, resulting in the accumulation of cytotoxic RNA catabolites and reactive oxygen species. Notably, tumor-derived exosome mutations abrogate MYC-induced cell death, suggesting excess RNA decay may be toxic to human cancers. In agreement, purine salvage acts as a compensatory pathway that mitigates MYC-induced ribonucleotide catabolism, and inhibitors of purine salvage impair MYC+ tumor progression. Together, these data suggest that MYC-induced RNA decay is an oncogenic stress that can be exploited therapeutically. Significance: MYC is the most common oncogenic driver of poor-prognosis cancers but has been recalcitrant to therapeutic inhibition. We discovered a new vulnerability in MYC+ cancer where MYC induces cell death through excess RNA decay. Therapeutics that exacerbate downstream ribonucleotide catabolism provide a therapeutically tractable approach to TNBC (Triple-negative Breast Cancer) and other MYC-driven cancers.
Dan L Duncan Comprehensive Cancer Center Baylor College of Medicine Houston Texas
Department of Molecular and Cellular Biology Baylor College of Medicine Houston Texas
Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
Medical Scientist Training Program Baylor College of Medicine Houston Texas
The School of Chemistry and Molecular Biosciences The University of Queensland Brisbane Australia
Therapeutic Innovation Center Baylor College of Medicine Houston Texas
Zobrazit více v PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74. PubMed
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100:57–70. PubMed
Lien EC, Lyssiotis CA, Cantley LC. Metabolic reprogramming by the PI3K-Akt-mTOR pathway in cancer. Recent Results Cancer Res 2016;207:39–72. PubMed
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. . Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171–83. PubMed PMC
Sullivan LB, Gui DY, Van Der Heiden MG. Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 2016;16:680–93. PubMed
Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, et al. . Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell 2016;164:293–309. PubMed PMC
Luo J, Solimini NL, Elledge SJ. Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 2009;136:823–37. PubMed PMC
Dang CV. MYC, metabolism, cell growth, and tumorigenesis. Cold Spring Harb Perspect Med 2013;3:a014217. PubMed PMC
Herold S, Herkert B, Eilers M. Facilitating replication under stress: an oncogenic function of MYC? Nat Rev Cancer 2009;9:441–4. PubMed
Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, et al. . A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012;335:348–53. PubMed PMC
Liu L, Ulbrich J, Müller J, Wüstefeld T, Aeberhard L, Kress TR, et al. . Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature 2012;483:608–12. PubMed
David CJ, Chen M, Assanah M, Canoll P, Manley JL. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2010;463:364–8. PubMed PMC
Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall’ Olio V, et al. . Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006;8:764–70. PubMed
Herkert B, Eilers M. Transcriptional repression: the dark side of myc. Genes Cancer 2010;1:580–6. PubMed PMC
Wiese KE, Walz S, von Eyss B, Wolf E, Athineos D, Sansom O, et al. . The role of MIZ-1 in MYC-dependent tumorigenesis. Cold Spring Harb Perspect Med 2013;3:a014290. PubMed PMC
Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. . SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science 2018;360:800–5. PubMed PMC
Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. . Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014;511:483–7. PubMed PMC
Eilers M, Eisenman RN. Myc’s broad reach. Genes Dev 2008;22:2755–66. PubMed PMC
Sabò A, Amati B. Genome recognition by MYC. Cold Spring Harb Perspect Med 2014;4:a014191. PubMed PMC
Iritani BM, Eisenman RN. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc Natl Acad Sci U S A 1999;96:13180–5. PubMed PMC
Grandori C, Gomez-Roman N, Felton-Edkins ZA, Ngouenet C, Galloway DA, Eisenman RN, et al. . c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nat Cell Biol 2005;7:311–8. PubMed
Barna M, Pusic A, Zollo O, Costa M, Kondrashov N, Rego E, et al. . Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 2008;456:971–5. PubMed PMC
Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell 2014;157:1088–103. PubMed PMC
Mannava S, Grachtchouk V, Wheeler LJ, Im M, Zhuang D, Slavina EG, et al. . Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle 2008;7:2392–400. PubMed PMC
Nie Z, Hu G, Wei G, Cui K, Yamane A, Resch W, et al. . c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 2012;151:68–79. PubMed PMC
Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE, et al. . Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012;151:56–67. PubMed PMC
Patange S, Ball DA, Wan Y, Karpova TS, Girvan M, Levens D, et al. . MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Rep 2022;38:110292. PubMed PMC
Ruggero D. The role of Myc-induced protein synthesis in cancer. Cancer Res 2009;69:8839–43. PubMed PMC
Ruggero D, Pandolfi PP. Does the ribosome translate cancer? Nat Rev Cancer 2003;3:179–92. PubMed
Liu Y-C, Li F, Handler J, Huang CRL, Xiang Y, Neretti N, et al. . Global regulation of nucleotide biosynthetic genes by c-Myc. PLoS One 2008;3:e2722. PubMed PMC
Huang F, Ni M, Chalishazar MD, Huffman KE, Kim J, Cai L, et al. . Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab 2018;28:369–82.e5. PubMed PMC
Terunuma A, Putluri N, Mishra P, Mathé EA, Dorsey TH, Yi M, et al. . MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J Clin Invest 2014;124:398–412. PubMed PMC
Budczies J, Brockmöller SF, Müller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, et al. . Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteomics 2013;94:279–88. PubMed
Liao C, Glodowski CR, Fan C, Liu J, Mott KR, Kaushik A, et al. . Integrated metabolic profiling and transcriptional analysis reveals therapeutic modalities for targeting rapidly proliferating breast cancers. Cancer Res 2022;82:665–80. PubMed PMC
Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 2002;277:40156–62. PubMed
Brès V, Yoshida T, Pickle L, Jones KA. SKIP interacts with c-Myc and menin to promote HIV-1 Tat transactivation. Mol Cell 2009;36:75–87. PubMed PMC
Bouchard C, Marquardt J, Brás A, Medema RH, Eilers M. Myc-induced proliferation and transformation require Akt-mediated phosphorylation of FoxO proteins. EMBO J 2004;23:2830–40. PubMed PMC
Kanazawa S, Soucek L, Evan G, Okamoto T, Peterlin BM. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003;22:5707–11. PubMed
Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, et al. . c-Myc regulates transcriptional pause release. Cell 2010;141:432–45. PubMed PMC
Muthalagu N, Murphy DJ. Is oxidative stress MYC’s Achilles heel? Cell Death Differ 2018;25:1189–90. PubMed PMC
Chandriani S, Frengen E, Cowling VH, Pendergrass SA, Perou CM, Whitfield ML, et al. . A core MYC gene expression signature is prominent in basal-like breast cancer but only partially overlaps the core serum response. PLoS One 2009;4:e6693. PubMed PMC
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst 2015;1:417–25. PubMed PMC
Lynch M, Marinov GK. The bioenergetic costs of a gene, Proc Natl Acad Sci U S A 2015;112:15690–5. PubMed PMC
Traut TW. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem 1994;140:1–22. PubMed
Lane AN, Fan TWM. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 2015;43:2466–85. PubMed PMC
Curto R, Voit EO, Sorribas A, Cascante M. Mathematical models of purine metabolism in man. Math Biosci 1998;151:1–49. PubMed
Pillwein K, Chiba P, Knoflach A, Czermak B, Schuchter K, Gersdorf E, et al. . Purine metabolism of human glioblastoma in vivo. Cancer Res 1990;50:1576–9. PubMed
Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006;440:237–41. PubMed
Braga TT, Forni MF, Correa-Costa M, Ramos RN, Barbuto JA, Branco P, et al. . Soluble uric acid activates the NLRP3 inflammasome. Sci Rep 2017;7:39884. PubMed PMC
Zrenner R, Stitt M, Sonnewald U, Boldt R. Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 2006;57:805–36. PubMed
Hsu TY-T, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, et al. . The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 2015;525:384–8. PubMed PMC
Mi H, Ebert D, Muruganujan A, Mills C, Albou LP, Mushayamaha T, et al. . PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API Nucleic Acids Res 2021;49:D394–403. PubMed PMC
Staals RHJ, Bronkhorst AW, Schilders G, Slomovic S, Schuster G, Heck AJR, et al. . Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 2010;29:2358–67. PubMed PMC
Tomecki R, Kristiansen MS, Lykke-Andersen S, Chlebowski A, Larsen KM, Szczesny RJ, et al. . The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 2010;29:2342–57. PubMed PMC
Puno MR, Weick EM, Das M, Lima CD. SnapShot: the RNA exosome. Cell 2019;179:282e1. PubMed
Moore MJ. Nuclear RNA turnover. Cell 2002;108:431–4. PubMed
Thomas MP, Liu X, Whangbo J, McCrossan G, Sanborn KB, Basar E, et al. . Apoptosis triggers specific, rapid, and global mRNA decay with 3′uridylated intermediates degraded by DIS3L2. Cell Rep 2015;11:1079–89. PubMed PMC
Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 1992359:554–6. PubMed
Bissonnette RP, Echeverri F, Mahboubi A, Green DR. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 1992;359:552–4. PubMed
Yang E, van Nimwegen E, Zavolan M, Rajewsky N, Schroeder M, Magnasco M, et al. . Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res 2003;13:1863–72. PubMed PMC
Weber MJ. Ribosomal RNA turnover in contact inhibited cells. Nat New Biol 1972;235:58–61. PubMed
Yi X, Tesmer VM, Savre-Train I, Shay JW, Wright WE. Both transcriptional and posttranscriptional mechanisms regulate human telomerase template RNA levels. Mol Cell Biol 1999;19:3989–97. PubMed PMC
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. . Global quantification of mammalian gene expression control. Nature 2011;473:337–42. PubMed
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. . The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012;2:401–4. PubMed PMC
Katsonis P, Lichtarge O. A formal perturbation equation between genotype and phenotype determines the Evolutionary Action of protein-coding variations on fitness. Genome Res 2014;24:2050–8. PubMed PMC
Makino DL, Baumgärtner M, Conti E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2017;495:70–5. PubMed
Yang W. Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 2011;44:1–93. PubMed PMC
Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM, et al. . c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 2002;9:1031–44. PubMed
KC S, Cárcamo JM, Golde DW. Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Mutat Res 2006;593:64–79. PubMed
Morrish F, Neretti N, Sedivy JM, Hockenbery DM. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry. Cell Cycle 2008;7:1054–66. PubMed PMC
Harris CM, Massey V. The reaction of reduced xanthine dehydrogenase with molecular oxygen: reaction kinetics and measurement of superoxide radical. J Biol Chem 1997;272:8370–9. PubMed
Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer. Nat Rev Cancer 2008;8:24–36. PubMed
Mathews CK. DNA synthesis as a therapeutic target: the first 65 years. FASEB J 2012;26:2231. 7. PubMed PMC
Eng WS, Hocková D, Špaček P, Janeba Z, West NP, Woods K, et al. . First crystal structures of Mycobacterium tuberculosis 6-oxopurine phosphoribosyltransferase: complexes with GMP and pyrophosphate and with acyclic nucleoside phosphonates whose prodrugs have antituberculosis activity. J Med Chem 2015;58:4822–38. PubMed
Meerbrey KL, Hu G, Kessler JD, Roarty K, Li MZ, Fang JE, et al. . The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proc Natl Acad Sci U S A 2011;108:3665–70. PubMed PMC
Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. . Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518–524. PubMed PMC
Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Res 2010;38:D792–9. PubMed PMC
Putluri N, Shojaie A, Vasu VT, Nalluri S, Vareed SK, Putluri V, et al. . Metabolomic profiling reveals a role for androgen in activating amino acid metabolism and methylation in prostate cancer cells. PLoS One;2011;6:e21417. PubMed PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10–2.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 20129:357–9. PubMed PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. PubMed PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010;66:486–501. PubMed PMC
Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: package deSolve. J Stat Softw 2010;33:1–25. PubMed
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. . TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 2016;44:e71. PubMed PMC
Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, et al. . Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 2007;104:20007–12. PubMed PMC
Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci 2022;31:8–22. PubMed PMC