Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish

. 2024 Oct ; 17 (10) : e70006. [epub] 20241004

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39372907

Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success. Here, we examine these hypotheses using 7058 SNPs from 36 native, 40 introduced and 19 farmed populations of tench, a fish native to Eurasia. We examined genetic structure among these populations and accounted for long-term evolutionary history within the native range to assess whether introduced populations exhibited lower genetic diversity than native populations. Subsequent to infer genotype-environment correlations within native-range habitats, we assessed whether adaptation to native environments may have shaped the success of some introduced populations. At the broad scale, two glacial refugia contributed to the ancestry and genomic diversity of tench. However, native, introduced and farmed populations of admixed origin exhibited up to 10-fold more genetic diversity (i.e., observed heterozygosity, expected heterozygosity and allelic richness) compared to populations with predominantly single-source ancestry. The effects of introduction to a new location were also apparent as introduced populations exhibited fewer private alleles (mean = 9.9 and 18.9 private alleles in introduced and native populations, respectively) and higher population-specific Fst compared to native populations, highlighting their distinctiveness relative to the pool of allelic frequencies across tench populations. Finally, introduced populations with varying levels of genetic variation and similar genetic compositions have become established and persisted under strikingly different climatic and ecological conditions. Our results suggest that lack of prior adaptation and low genetic variation may not consistently hinder the success of introduced populations for species with a demonstrated ability to expand their native range.

Zobrazit více v PubMed

Al Fatle, F. A. , Meleg E. E., Sallai Z., et al. 2022. “Genetic Structure and Diversity of Native Tench (Tinca tinca L. 1758) Populations in Hungary—Establishment of Basic Knowledge Base for a Breeding Program.” Diversity 14, no. 5: 336. 10.3390/d14050336. DOI

Alexander, D. H. , Novembre J., and Lange K.. 2009. “Fast Model‐Based Estimation of Ancestry in Unrelated Individuals.” Genome Research 19, no. 9: 1655–1664. 10.1101/gr.094052.109. PubMed DOI PMC

Allendorf, F. W. , and Lundquist L. L.. 2003. “Introduction: Population Biology, Evolution, and Control of Invasive Species.” Conservation Biology 17, no. 1: 24–30. 10.1046/j.1523-1739.2003.02365.x. DOI

Avlijas, S. , Ricciardi A., and Mandrak N.. 2017. “Eurasian Tench (Tinca tinca): The Next Great Lakes Invader.” Canadian Journal of Fisheries and Aquatic Sciences 75, no. 2: 169–179.

Baker, H. , and Stebbins G.. 1964. Genetics of Colonizing Species. London, UK: Academic Press.

Bates, A. E. , McKelvie C. M., Sorte C. J. B., et al. 2013. “Geographical Range, Heat Tolerance and Invasion Success in Aquatic Species.” Proceedings of the Royal Society B 280: 20131958. PubMed PMC

Benjamini, Y. , and Hochberg Y.. 1995. “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.” Journal of the Royal Statistical Society: Series B: Methodological 57, no. 1: 289–300.

Bernos, T. A. , Avlijaš S., Hill J., et al. 2023. “Genetic Diversity and Structure of a Recent Fish Invasion: Tench (Tinca tinca) in Eastern North America.” Evolutionary Applications 16, no. 1: 173–188. 10.1111/eva.13520. PubMed DOI PMC

Bomford, M. , Barry S., and Lawrence E.. 2010. “Predicting Establishment Success for Introduced Freshwater Fishes: A Role for Climate Matching.” Biological Invasions 12: 2559–2571. 10.1007/s10530-009-9665-3. DOI

Bossdorf, O. , Auge H., Lafuma L., Rogers W. E., Siemann E., and Prati D.. 2005. “Phenotypic and Genetic Differentiation Between Native and Introduced Plant Populations.” Oecologia 144, no. 1: 1–11. 10.1007/s00442-005-0070-z. PubMed DOI

Bossdorf, O. , Lipowsky A., and Prati D.. 2008. “Selection of Preadapted Populations Allowed Senecio Inaequidens to Invade Central Europe.” Diversity and Distributions 14, no. 4: 676–685. 10.1111/j.1472-4642.2008.00471.x. DOI

Capblancq, T. , and Forester B. R.. 2021. “Redundancy Analysis: A Swiss Army Knife for Landscape Genomics.” Methods in Ecology and Evolution 12, no. 12: 2298–2309. 10.1111/2041-210X.13722. DOI

Capellini, I. , Allen W. L., and Sally E.. 2015. “The Role of Life History Traits in Mammalian Invasion Success.” Ecology Letters 18, no. 10: 1099–1107. 10.1111/ele.12493. PubMed DOI PMC

Castilla, J. C. , Uribe M., Bahamonde N., Clarke M., Valdovinos C., and Zavala P.. 2005. “Down Under the Southeastern Pacific: Marine Non‐Indigenous Species in Chile.” Biological Invasions 7: 213–232.

Catchen, J. , Hohenlohe P. A., Bassham S., Amores A., and Cresko W. A.. 2013. “Stacks: An Analysis Tool Set for Population Genomics.” Molecular Ecology 22, no. 11: 3124–3140. 10.1111/mec.12354. PubMed DOI PMC

Chakraborty, R. , and Nei M.. 1977. “Bottleneck Effects on Average Heterozygosity and Genetic Distance with the Stepwise Mutation Model.” Evolution 31, no. 2: 347–356. 10.2307/2407757. PubMed DOI

Chapple, D. G. , Simmonds S. M., and Wong B. B. M.. 2012. “Can Behavioral and Personality Traits Influence the Success of Unintentional Species Introductions?.” Trends in Ecology & Evolution 27, no. 1: 57–64. 10.1016/j.tree.2011.09.010. PubMed DOI

Colautti, R. I. , Alexander J. M., Dlugosch K. M., Keller S. R., and Sultan S. E.. 2017. “Invasions and Extinctions Through the Looking Glass of Evolutionary Ecology.” Philosophical Transactions of the Royal Society, B: Biological Sciences 372, no. 1712: 1–12. 10.1098/rstb.2016.0031. PubMed DOI PMC

Danecek, P. , Auton A., Abecasis G., et al. 2011. “The Variant Call Format and VCFtools.” Bioinformatics 27, no. 15: 2156–2158. 10.1093/bioinformatics/btr330. PubMed DOI PMC

Delpero, A. , and Volpato G.. 2022. “Integrated Pond Aquaculture and Regional Identity: Ethnobiology of the Golden Humped Tench of Poirino Highlands, Northwest Italy.” Journal of Ethnobiology and Ethnomedicine 18, no. 1: 31. 10.1186/s13002-022-00529-5. PubMed DOI PMC

DeRaad, D. A. 2021. “Optimize the De Novo Stacks Pipeline Via R (Version 0.1.0) [R package].” https://cran.r‐project.org/web/packages/RADstackshelpR/RADstackshelpR.pdf.

Dlugosch, K. M. , Anderson S. R., Braasch J., Cang F. A., and Gillette H. D.. 2015. “The Devil Is in the Details: Genetic Variation in Introduced Populations and Its Contributions to Invasion.” Molecular Ecology 24, no. 9: 2095–2111. 10.1111/mec.13183. PubMed DOI

Dlugosch, K. M. , and Parker I. M.. 2008. “Founding Events in Species Invasions: Genetic Variation, Adaptive Evolution, and the Role of Multiple Introductions.” Molecular Ecology 17, no. 1: 431–449. 10.1111/j.1365-294X.2007.03538.x. PubMed DOI

Dormann, C. F. , Elith J., Bacher S., et al. 2013. “Collinearity: A Review of Methods to Deal With It and a Simulation Study Evaluating Their Performance.” Ecography 36, no. 1: 27–46. 10.1111/j.1600-0587.2012.07348.x. DOI

Dray, S. , and Dufour A.‐B.. 2007. “The ade4 Package: Implementing the Duality Diagram for Ecologists.” Journal of Statistical Software 22: 1–20.

Dumont, P. , Vachon N., Leclerc J., and Guibert A., eds. 2002. “Intentional Introduction of Tench Into Southern Quebec.” In Alien Invaders in Canada's Waters, Wetlands, and Forests. Ottawa, ON: Canadian Forest Service, Science Branch.

Edelaar, P. , Roques S., Hobson E. A., et al. 2015. “Shared Genetic Diversity Across the Global Invasive Range of the Monk Parakeet Suggests a Common Restricted Geographic Origin and the Possibility of Convergent Selection.” Molecular Ecology 24, no. 9: 2164–2176. 10.1111/mec.13157. PubMed DOI

Fausch, K. D. 2008. “A Paradox of Trout Invasions in North America.” Biological Invasions 10, no. 5: 685–701. 10.1007/s10530-007-9162-5. DOI

Fick, S. E. , and Hijmans R. J.. 2017. “WorldClim 2: New 1‐km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37, no. 12: 4302–4315. 10.1002/joc.5086. DOI

Forester, B. R. , Lasky J. R., Wagner H. H., and Urban D. L.. 2018. “Comparing Methods for Detecting Multilocus Adaptation With Multivariate Genotype–Environment Associations.” Molecular Ecology 27, no. 9: 2215–2233. 10.1111/mec.14584. PubMed DOI

Frichot, E. , and François O.. 2015. “LEA: An R Package for Landscape and Ecological Association Studies.” Methods in Ecology and Evolution 6, no. 8: 925–929. 10.1111/2041-210X.12382. DOI

Fry, F. E. J. 1971. “1—The Effect of Environmental Factors on the Physiology of Fish.” In Fish Physiology, edited by Hoar W. S. and Randall D. J., vol. 6, 1–98. London, UK: Academic Press. 10.1016/S1546-5098(08)60146-6. DOI

Funk, W. C. , Forester B. R., Converse S. J., Darst C., and Morey S.. 2019. “Improving Conservation Policy With Genomics: A Guide to Integrating Adaptive Potential Into U.S. Endangered Species Act Decisions for Conservation Practitioners and Geneticists.” Conservation Genetics 20, no. 1: 115–134. 10.1007/s10592-018-1096-1. DOI

Gaither, M. R. , Bowen B. W., and Toonen R. J.. 2013. “Population Structure in the Native Range Predicts the Spread of Introduced Marine Species.” Proceedings of the Royal Society B: Biological Sciences 280, no. 1760: 20130409. 10.1098/rspb.2013.0409. PubMed DOI PMC

Gallardo, B. 2016. “Global Ecological Impacts of Invasive Species in Aquatic Ecosystems.” Global Change Biology 22: 151–163. 10.1111/gcb.13004. PubMed DOI

Galloway, J. N. , and Cowling E. B.. 1978. “The Effects of Precipitation on Aquatic and Terrestrial Ecosystems: A Proposed Precipitation Chemistry Network.” Journal of the Air Pollution Control Association 28, no. 3: 8.

Goudet, J. , and Jombart T.. 2022. “hierfstat: Estimation and Tests of Hierarchical F‐Statistics” (0.5‐11) [Computer Software]. https://CRAN.R‐project.org/package=hierfstat.

Grapputo, A. , Boman S., Lindström L., Lyytinen A., and Mappes J.. 2005. “The Voyage of an Invasive Species Across Continents: Genetic Diversity of North American and European Colorado Potato Beetle Populations.” Molecular Ecology 14, no. 14: 4207–4219. 10.1111/j.1365-294X.2005.02740.x. PubMed DOI

Havrdová, A. , Douda J., Krak K., et al. 2015. “Higher Genetic Diversity in Recolonized Areas Than in Refugia of Alnus glutinosa Triggered by Continent‐Wide Lineage Admixture.” Molecular Ecology 24, no. 18: 4759–4777. 10.1111/mec.13348. PubMed DOI

Horníková, M. , Marková S., Lanier H. C., Searle J. B., and Kotlík P.. 2021. “A Dynamic History of Admixture From Mediterranean and Carpathian Glacial Refugia Drives Genomic Diversity in the Bank Vole.” Ecology and Evolution 11, no. 12: 8215–8225. 10.1002/ece3.7652. PubMed DOI PMC

Hubbard, J. A. G. , Drake D. A. R., and Mandrak N. E.. 2023. “Estimating Potential Global Sources and Secondary Spread of Freshwater Invasions Under Historical and Future Climates.” Diversity and Distributions 29, no. 8: 986–996. 10.1111/ddi.13695. DOI

Hufbauer, R. A. , Facon B., Ravigné V., et al. 2012. “Anthropogenically Induced Adaptation to Invade (AIAI): Contemporary Adaptation to Human‐Altered Habitats Within the Native Range Can Promote Invasions.” Evolutionary Applications 5, no. 1: 89–101. 10.1111/j.1752-4571.2011.00211.x. PubMed DOI PMC

Jaspers, C. , Ehrlich M., Pujolar J. M., et al. 2021. “Invasion Genomics Uncover Contrasting Scenarios of Genetic Diversity in a Widespread Marine Invader.” Proceedings of the National Academy of Sciences 118, no. 51: e2116211118. 10.1073/pnas.2116211118. PubMed DOI PMC

Karaiskou, N. , Gkagkavouzis K., Minoudi S., et al. 2020. “Genetic Structure and Divergence of Tench Tinca tinca European Populations.” Journal of Fish Biology 97, no. 3: 930–934. 10.1111/jfb.14448. PubMed DOI

Kimura, M. , and Ohta T.. 1969. “The Average Number of Generations Until Fixation of a Mutant Gene in a Finite Population.” Genetics 61, no. 3: 763–771. PubMed PMC

Kitada, S. , Nakamichi R., and Kishino H.. 2021. “Understanding Population Structure in an Evolutionary Context: Population‐Specific FST and Pairwise FST.” G3: Genes, Genomes, Genetics 11, no. 11: jkab316. 10.1093/g3journal/jkab316. PubMed DOI PMC

Kohlmann, K. , Kersten P., Panicz R., Memiş D., and Flajšhans M.. 2010. “Genetic Variability and Differentiation of Wild and Cultured Tench Populations Inferred From Microsatellite Loci.” Reviews in Fish Biology and Fisheries 20, no. 3: 279–288. 10.1007/s11160-009-9138-x. DOI

Kolbe, J. J. , Glor R. E., Rodríguez Schettino L., Lara A. C., Larson A., and Losos J. B.. 2004. “Genetic Variation Increases During Biological Invasion by a Cuban Lizard.” Nature 431, no. 7005: 177–181. 10.1038/nature02807. PubMed DOI

Komoroske, L. M. , Jeffries K. M., Whitehead A., et al. 2021. “Transcriptional Flexibility During Thermal Challenge Corresponds With Expanded Thermal Tolerance in an Invasive Compared to Native Fish.” Evolutionary Applications 14, no. 4: 931–949. 10.1111/eva.13172. DOI

Kumar, G. , Langa J., Montes I., et al. 2019. “A Novel Transcriptome‐Derived SNPs Array for Tench (Tinca tinca L.).” PLoS One 14, no. 3: e0213992. 10.1371/journal.pone.0213992. PubMed DOI PMC

Lachmuth, S. , Capblancq T., Keller S. R., and Fitzpatrick M. C.. 2023. “Assessing Uncertainty in Genomic Offset Forecasts From Landscape Genomic Models (and Implications for Restoration and Assisted Migration).” Frontiers in Ecology and Evolution 11: 1155783. 10.3389/fevo.2023.1155783. DOI

Lajbner, Z. , Kohlmann K., Linhart O., and Kotlík P.. 2010. “Lack of Reproductive Isolation Between the Western and Eastern Phylogroups of the Tench.” Reviews in Fish Biology and Fisheries 20: 289–300. 10.1007/s11160-009-9137-y. DOI

Lajbner, Z. , and Kotlik P.. 2011. “PCR‐RFLP Assays to Distinguish the Western and Eastern Phylogroups in Wild and Cultured Tench Tinca tinca .” Molecular Ecology Resources 11, no. 2: 374–377. 10.1111/j.1755-0998.2010.02914.x. PubMed DOI

Lajbner, Z. , Linhart O., and Kotlík P.. 2011. “Human‐Aided Dispersal Has Altered but Not Erased the Phylogeography of the Tench.” Evolutionary Applications 4, no. 4: 545–561. 10.1111/j.1752-4571.2010.00174.x. PubMed DOI PMC

Lee, C. E. 2002. “Evolutionary Genetics of Invasive Species.” Trends in Ecology & Evolution 17, no. 8: 386–391. 10.1016/S0169-5347(02)02554-5. DOI

Lenz, M. , Bernardo A. P., Gerner N. V., et al. 2011. “Non‐Native Marine Invertebrates Are More Tolerant Towards Environmental Stress Than Taxonomically Related Native Species: Results From a Globally.” Environmental Research 111: 943–952. 10.1016/j.envres.2011.05.001. PubMed DOI

Lo Presti, R. , Gasco L., Lisa C., Zoccarato I., and Di Stasio L.. 2010. “PCR–RFLP Analysis of Mitochondrial DNA in Tench Tinca tinca .” Journal of Fish Biology 76, no. 2: 401–407. 10.1111/j.1095-8649.2009.02495.x. PubMed DOI

Marin, P. , Genitoni J., Barloy D., et al. 2020. “Biological Invasion: The Influence of the Hidden Side of the (Epi)genome.” Functional Ecology 34, no. 2: 385–400. 10.1111/1365-2435.13317. DOI

Nei, M. , Maruyama T., and Chakraborty R.. 1975. “The Bottleneck Effect and Genetic Variability in Populations.” Evolution 29: 1–10. PubMed

Neuheimer, A. B. , Thresher R. E., Lyle J. M., and Semmens J. M.. 2011. “Tolerance Limit for Fish Growth Exceeded by Warming Waters.” Nature Climate Change 1, no. 2: 2. 10.1038/nclimate1084. DOI

Paradis, E. , and Schliep K.. 2019. “ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R.” Bioinformatics 35: 526–528. PubMed

Paris, J. R. , Stevens J. R., and Catchen J. M.. 2017. “Lost in Parameter Space: A Road Map for Stacks.” Methods in Ecology and Evolution 8, no. 10: 1360–1373. 10.1111/2041-210X.12775. DOI

Petit, R. J. , Aguinagalde I., de Beaulieu J.‐L., et al. 2003. “Glacial Refugia: Hotspots but Not Melting Pots of Genetic Diversity.” Science 300, no. 5625: 1563–1565. 10.1126/science.1083264. PubMed DOI

Pimentel, D. , Lach L., Zuniga R., and Morrison D.. 2000. “Environmental and Economic Costs of Nonindigenous Species in the United States.” Bioscience 50, no. 1: 53–65. 10.1641/0006-3568(2000)050[0053:EAECON]2.3.CO;2. DOI

Poland, J. A. , Brown P. J., Sorrells M. E., and Jannink J.‐L.. 2012. “Development of High‐Density Genetic Maps for Barley and Wheat Using a Novel Two‐Enzyme Genotyping‐by‐Sequencing Approach.” PLoS One 7, no. 2: e32253. 10.1371/journal.pone.0032253. PubMed DOI PMC

Prentis, P. J. , Wilson J. R. U., Dormontt E. E., Richardson D. M., and Lowe A. J.. 2008. “Adaptive Evolution in Invasive Species.” Trends in Plant Science 13, no. 6: 288–294. 10.1016/j.tplants.2008.03.004. PubMed DOI

Puechmaille, S. J. 2016. “The Program Structure Does Not Reliably Recover the Correct Population Structure When Sampling Is Uneven: Subsampling and New Estimators Alleviate the Problem.” Molecular Ecology Resources 16, no. 3: 608–627. 10.1111/1755-0998.12512. PubMed DOI

Rellstab, C. , Gugerli F., Eckert A. J., Hancock A. M., and Holderegger R.. 2015. “A Practical Guide to Environmental Association Analysis in Landscape Genomics.” Molecular Ecology 24, no. 17: 4348–4370. 10.1111/mec.13322. PubMed DOI

Richards, C. , Verhoeven K. J. F., and Bossdorf O.. 2012. “Evolutionary Significance of Epigenetic Variation.” Plant Genome Diversity 1: 257–274. 10.1007/978-3-7091-1130-7_16. DOI

Rochette, N. C. , and Catchen J. M.. 2017. “Deriving Genotypes From RAD‐Seq Short‐Read Data Using Stacks.” Nature Protocols 12, no. 12: 12. 10.1038/nprot.2017.123. PubMed DOI

Rowe, D. K. 2004. Potential Effects of Tench (Tinca tinca) in New Zealand Freshwater Ecosystems (HAM2004–005), 31. Hamilton, New Zealand: National Institute of Water and Atmospheric Research.

Sax, D. F. , Stachowicz J. J., Brown J. H., et al. 2007. “Ecological and Evolutionary Insights From Species Invasions.” Trends in Ecology & Evolution 22, no. 9: 465–471. 10.1016/j.tree.2007.06.009. PubMed DOI

Schrey, A. W. , Coon C. A. C., Grispo M. T., et al. 2012. “Epigenetic Variation May Compensate for Decreased Genetic Variation With Introductions: A Case Study Using House Sparrows (Passer domesticus) on Two Continents.” Genetics Research International 2012, no. 1: 979751. 10.1155/2012/979751. PubMed DOI PMC

Shackleton, R. T. , Shackleton C. M., and Kull C. A.. 2019. “The Role of Invasive Alien Species in Shaping Local Livelihoods and Human Well‐Being: A Review.” Journal of Environmental Management 229: 145–157. 10.1016/j.jenvman.2018.05.007. PubMed DOI

Slatkin, M. 1985. “Rare Alleles as Indicators of Gene Flow.” Evolution 39, no. 1: 53–65. 10.1111/j.1558-5646.1985.tb04079.x. PubMed DOI

Steane, D. A. , Potts B. M., McLean E., et al. 2014. “Genome‐Wide Scans Detect Adaptation to Aridity in a Widespread Forest Tree Species.” Molecular Ecology 23, no. 10: 2500–2513. 10.1111/mec.12751. PubMed DOI

Tsutsui, N. D. , Suarez A. V., Holway D. A., and Case T. J.. 2000. “Reduced Genetic Variation and the Success of an Invasive Species.” Proceedings of the National Academy of Sciences 97, no. 11: 5948–5953. 10.1073/pnas.100110397. PubMed DOI PMC

Uller, T. , and Leimu R.. 2011. “Founder Events Predict Changes in Genetic Diversity During Human‐Mediated Range Expansions.” Global Change Biology 17, no. 11: 3478–3485. 10.1111/j.1365-2486.2011.02509.x. DOI

Wellband, K. W. , and Heath D. D.. 2017. “Plasticity in Gene Transcription Explains the Differential Performance of Two Invasive Fish Species.” Evolutionary Applications 10, no. 6: 563–576. 10.1111/eva.12463. PubMed DOI PMC

Zheng, X. , Levine D., Shen J., Gogarten S. M., Laurie C., and Weir B. S.. 2012. “A High‐Performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data.” Bioinformatics 28, no. 24: 3326–3328. 10.1093/bioinformatics/bts606. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace