Activation of the 26S Proteasome to Reduce Proteotoxic Stress and Improve the Efficacy of PROTACs
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39816802
PubMed Central
PMC11729432
DOI
10.1021/acsptsci.4c00408
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The 26S proteasome degrades the majority of cellular proteins and affects all aspects of cellular life. Therefore, the 26S proteasome abundance, proper assembly, and activity in different life contexts need to be precisely controlled. Impaired proteasome activity is considered a causative factor in several serious disorders. Recent advances in proteasome biology have revealed that the proteasome can be activated by different factors or small molecules. Thus, activated ubiquitin-dependent proteasome degradation has effects such as extending the lifespan in different models, preventing the accumulation of protein aggregates, and reducing their negative impact on cells. Increased 26S proteasome-mediated degradation reduces proteotoxic stress and can potentially improve the efficacy of engineered degraders, such as PROTACs, particularly in situations characterized by proteasome malfunction. Here, emerging ideas and recent insights into the pharmacological activation of the proteasome at the transcriptional and posttranslational levels are summarized.
Zobrazit více v PubMed
Hetz C.; Glimcher L. H. Protein homeostasis networks in physiology and disease. Curr. Opin. Cell Biol. 2011, 23 (2), 123–125. 10.1016/j.ceb.2011.01.004. PubMed DOI PMC
Hipp M. S.; Kasturi P.; Hartl F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20 (7), 421–435. 10.1038/s41580-019-0101-y. PubMed DOI
Ji C. H.; Kwon Y. T. Crosstalk and Interplay between the Ubiquitin–Proteasome System and Autophagy. Molecules Cells 2017, 40 (7), 441–449. 10.14348/molcells.2017.0115. PubMed DOI PMC
Collins G. A.; Goldberg A. L. The Logic of the 26S Proteasome. Cell 2017, 169 (5), 792–806. 10.1016/j.cell.2017.04.023. PubMed DOI PMC
Huang X.; Dixit V. M. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016, 26 (4), 484–498. 10.1038/cr.2016.31. PubMed DOI PMC
Thibaudeau T. A.; Anderson R. T.; Smith D. M. A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nat. Commun. 2018, 9 (1), 1097.10.1038/s41467-018-03509-0. PubMed DOI PMC
Dörrbaum A. R.; Kochen L.; Langer J. D.; Schuman E. M. Local and global influences on protein turnover in neurons and glia. eLife 2018, 7, e3420210.7554/eLife.34202. PubMed DOI PMC
McShane E.; Sin C.; Zauber H.; Wells J. N.; Donnelly N.; Wang X.; Hou J.; Chen W.; Storchova Z.; Marsh J. A.; Valleriani A.; Selbach M. Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation. Cell 2016, 167 (3), 803–815.e21. 10.1016/j.cell.2016.09.015. PubMed DOI
Rolfs Z.; Frey B. L.; Shi X.; Kawai Y.; Smith L. M.; Welham N. V. An atlas of protein turnover rates in mouse tissues. Nat. Commun. 2021, 12 (1), 6778.10.1038/s41467-021-26842-3. PubMed DOI PMC
Komander D.; Rape M. The ubiquitin code. Annu. Rev. Biochem. 2012, 81, 203–229. 10.1146/annurev-biochem-060310-170328. PubMed DOI
Weissman A. M. Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell Biol. 2001, 2 (3), 169–178. 10.1038/35056563. PubMed DOI
Akutsu M.; Dikic I.; Bremm A. Ubiquitin chain diversity at a glance. J. Cell Sci. 2016, 129 (5), 875–880. 10.1242/jcs.183954. PubMed DOI
Pickart C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533. 10.1146/annurev.biochem.70.1.503. PubMed DOI
Zheng N.; Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. 10.1146/annurev-biochem-060815-014922. PubMed DOI
Voges D.; Zwickl P.; Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 1999, 68, 1015–1068. 10.1146/annurev.biochem.68.1.1015. PubMed DOI
Bard J. A. M.; Goodall E. A.; Greene E. R.; Jonsson E.; Dong K. C.; Martin A. Structure and Function of the 26S Proteasome. Annu. Rev. Biochem. 2018, 87, 697–724. 10.1146/annurev-biochem-062917-011931. PubMed DOI PMC
Tanaka K. The proteasome: overview of structure and functions.. Proc. Japan Acad. Ser. B, Phys. Biol. Sci. 2009, 85 (1), 12–36. 10.2183/pjab.85.12. PubMed DOI PMC
Tanaka K.; Yoshimura T.; Kumatori A.; Ichihara A.; Ikai A.; Nishigai M.; Kameyama K.; Takagi T. Proteasomes (multiprotease complexes) as 20 S ring-shaped particles in a variety of eukaryotic cells. J. Biol. Chem. 1988, 263 (31), 16209–16217. 10.1016/S0021-9258(18)37580-X. PubMed DOI
Groll M.; Heinemeyer W.; Jäger S.; Ullrich T.; Bochtler M.; Wolf D. H.; Huber R. The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc. Natl. Acad. Sci. U.S.A. 1999, 96 (20), 10976–10983. 10.1073/pnas.96.20.10976. PubMed DOI PMC
Unno M.; Mizushima T.; Morimoto Y.; Tomisugi Y.; Tanaka K.; Yasuoka N.; Tsukihara T. The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure (London, England: 1993) 2002, 10 (5), 609–618. 10.1016/S0969-2126(02)00748-7. PubMed DOI
Groll M.; Bochtler M.; Brandstetter H.; Clausen T.; Huber R. Molecular machines for protein degradation. Chembiochem: Eur. J. Chem. Biol. 2005, 6 (2), 222–256. 10.1002/cbic.200400313. PubMed DOI
Rousseau A.; Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat. Rev. Mol. Cell Biol. 2018, 19 (11), 697–712. 10.1038/s41580-018-0040-z. PubMed DOI
Husnjak K.; Elsasser S.; Zhang N.; Chen X.; Randles L.; Shi Y.; Hofmann K.; Walters K. J.; Finley D.; Dikic I. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008, 453 (7194), 481–488. 10.1038/nature06926. PubMed DOI PMC
Shi Y.; Chen X.; Elsasser S.; Stocks B. B.; Tian G.; Lee B. H.; Shi Y.; Zhang N.; de Poot S. A.; Tuebing F.; Sun S.; Vannoy J.; Tarasov S. G.; Engen J. R.; Finley D.; Walters K. J. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science (New York, N.Y.) 2016, 351 (6275), aad942110.1126/science.aad9421. PubMed DOI PMC
Stadtmueller B. M.; Hill C. P. Proteasome activators. Mol. Cell 2011, 41 (1), 8–19. 10.1016/j.molcel.2010.12.020. PubMed DOI PMC
Lee D.; Takayama S.; Goldberg A. L. ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation. Proc. Natl. Acad. Sci. U.S.A. 2018, 115 (41), E9550–E9559. 10.1073/pnas.1809934115. PubMed DOI PMC
Fort P.; Kajava A. V.; Delsuc F.; Coux O. Evolution of proteasome regulators in eukaryotes. Genome Biol. Evolution 2015, 7 (5), 1363–1379. 10.1093/gbe/evv068. PubMed DOI PMC
Sakata E.; Eisele M. R.; Baumeister W. Molecular and cellular dynamics of the 26S proteasome. Biochim. Biophys. Acta (BBA)-Proteins and Proteomics 2021, 1869 (3), 140583.10.1016/j.bbapap.2020.140583. PubMed DOI
Schweitzer A.; Aufderheide A.; Rudack T.; Beck F.; Pfeifer G.; Plitzko J. M.; Sakata E.; Schulten K.; Förster F.; Baumeister W. Structure of the human 26S proteasome at a resolution of 3.9 Å. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (28), 7816–7821. 10.1073/pnas.1608050113. PubMed DOI PMC
Dong Y.; Zhang S.; Wu Z.; Li X.; Wang W. L.; Zhu Y.; Stoilova-McPhie S.; Lu Y.; Finley D.; Mao Y. Cryo-EM structures and dynamics of substrate-engaged human 26S proteasome. Nature 2019, 565 (7737), 49–55. 10.1038/s41586-018-0736-4. PubMed DOI PMC
Sahu I.; Mali S. M.; Sulkshane P.; Xu C.; Rozenberg A.; Morag R.; Sahoo M. P.; Singh S. K.; Ding Z.; Wang Y.; Day S.; Cong Y.; Kleifeld O.; Brik A.; Glickman M. H. The 20S as a stand-alone proteasome in cells can degrade the ubiquitin tag. Nat. Commun. 2021, 12 (1), 6173.10.1038/s41467-021-26427-0. PubMed DOI PMC
Soh W. T.; Roetschke H. P.; Cormican J. A.; Teo B. F.; Chiam N. C.; Raabe M.; Pflanz R.; Henneberg F.; Becker S.; Chari A.; Liu H.; Urlaub H.; Liepe J.; Mishto M. Protein degradation by human 20S proteasomes elucidates the interplay between peptide hydrolysis and splicing. Nat. Commun. 2024, 15 (1), 1147.10.1038/s41467-024-45339-3. PubMed DOI PMC
Pepelnjak M.; Rogawski R.; Arkind G.; Leushkin Y.; Fainer I.; Ben-Nissan G.; Picotti P.; Sharon M. Systematic identification of 20S proteasome substrates. Mol. Syst. Biol. 2024, 20 (4), 403–427. 10.1038/s44320-024-00015-y. PubMed DOI PMC
Santos R.; Ursu O.; Gaulton A.; Bento A. P.; Donadi R. S.; Bologa C. G.; Karlsson A.; Al-Lazikani B.; Hersey A.; Oprea T. I.; Overington J. P. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discovery 2017, 16 (1), 19–34. 10.1038/nrd.2016.230. PubMed DOI PMC
Burslem G. M.; Crews C. M. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell 2020, 181 (1), 102–114. 10.1016/j.cell.2019.11.031. PubMed DOI PMC
Leestemaker Y.; de Jong A.; Witting K. F.; Penning R.; Schuurman K.; Rodenko B.; Zaal E. A.; van de Kooij B.; Laufer S.; Heck A. J. R.; Borst J.; Scheper W.; Berkers C. R.; Ovaa H. Proteasome Activation by Small Molecules. Cell Chem. Biol. 2017, 24 (6), 725–736.e7. 10.1016/j.chembiol.2017.05.010. PubMed DOI
An S.; Fu L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine 2018, 36, 553–562. 10.1016/j.ebiom.2018.09.005. PubMed DOI PMC
Ishida T.; Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discovery: Advancing Life Sciences R & D 2021, 26 (4), 484–502. 10.1177/2472555220965528. PubMed DOI PMC
Li J.; Purser N.; Liwocha J.; Scott D. C.; Byers H. A.; Steigenberger B.; Hill S.; Tripathi-Giesgen I.; Hinkle T.; Hansen F. M.; Prabu J. R.; Radhakrishnan S. K.; Kirkpatrick D. S.; Reichermeier K. M.; Schulman B. A.; Kleiger G. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol. Cell 2024, 84 (7), 1304–1320.e16. 10.1016/j.molcel.2024.01.022. PubMed DOI PMC
Li K.; Crews C. M. PROTACs: past, present and future. Chem. Soc. Rev. 2022, 51 (12), 5214–5236. 10.1039/D2CS00193D. PubMed DOI PMC
Liu Z.; Hu M.; Yang Y.; Du C.; Zhou H.; Liu C.; Chen Y.; Fan L.; Ma H.; Gong Y.; Xie Y. An overview of PROTACs: a promising drug discovery paradigm. Mol. Biomed. 2022, 3 (1), 46.10.1186/s43556-022-00112-0. PubMed DOI PMC
Moreau K.; Coen M.; Zhang A. X.; Pachl F.; Castaldi M. P.; Dahl G.; Boyd H.; Scott C.; Newham P. Proteolysis-targeting chimeras in drug development: A safety perspective. Br. J. Pharmacol. 2020, 177 (8), 1709–1718. 10.1111/bph.15014. PubMed DOI PMC
Cantrill C.; Chaturvedi P.; Rynn C.; Petrig Schaffland J.; Walter I.; Wittwer M. B. Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discovery Today 2020, 25 (6), 969–982. 10.1016/j.drudis.2020.03.012. PubMed DOI
Kawanishi N.; Sugimoto T.; Shibata J.; Nakamura K.; Masutani K.; Ikuta M.; Hirai H. Structure-based drug design of a highly potent CDK1,2,4,6 inhibitor with novel macrocyclic quinoxalin-2-one structure. Bioorg. Med. Chem. Lett. 2006, 16 (19), 5122–5126. 10.1016/j.bmcl.2006.07.026. PubMed DOI
Hornberger K. R.; Araujo E. M. V. Physicochemical Property Determinants of Oral Absorption for PROTAC Protein Degraders. J. Med. Chem. 2023, 66 (12), 8281–8287. 10.1021/acs.jmedchem.3c00740. PubMed DOI PMC
Ermondi G.; Garcia-Jimenez D.; Caron G. PROTACs and Building Blocks: The 2D Chemical Space in Very Early Drug Discovery. Molecules (Basel, Switzerland) 2021, 26 (3), 672.10.3390/molecules26030672. PubMed DOI PMC
Pike A.; Williamson B.; Harlfinger S.; Martin S.; McGinnity D. F. Optimising proteolysis-targeting chimeras (PROTACs) for oral drug delivery: a drug metabolism and pharmacokinetics perspective. Drug Discovery Today 2020, 25 (10), 1793–1800. 10.1016/j.drudis.2020.07.013. PubMed DOI
García Jiménez D.; Rossi Sebastiano M.; Vallaro M.; Mileo V.; Pizzirani D.; Moretti E.; Ermondi G.; Caron G. Designing Soluble PROTACs: Strategies and Preliminary Guidelines. J. Med. Chem. 2022, 65 (19), 12639–12649. 10.1021/acs.jmedchem.2c00201. PubMed DOI PMC
Fischer E. S.; Böhm K.; Lydeard J. R.; Yang H.; Stadler M. B.; Cavadini S.; Nagel J.; Serluca F.; Acker V.; Lingaraju G. M.; Tichkule R. B.; Schebesta M.; Forrester W. C.; Schirle M.; Hassiepen U.; Ottl J.; Hild M.; Beckwith R. E.; Harper J. W.; Jenkins J. L.; Thomä N. H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 2014, 512 (7512), 49–53. 10.1038/nature13527. PubMed DOI PMC
Van Molle I.; Thomann A.; Buckley D. L.; So E. C.; Lang S.; Crews C. M.; Ciulli A. Dissecting fragment-based lead discovery at the von Hippel–Lindau protein:hypoxia inducible factor 1α protein–protein interface. Chem. Biol. 2012, 19 (10), 1300–1312. 10.1016/j.chembiol.2012.08.015. PubMed DOI PMC
Buckley D. L.; Van Molle I.; Gareiss P. C.; Tae H. S.; Michel J.; Noblin D. J.; Jorgensen W. L.; Ciulli A.; Crews C. M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 2012, 134 (10), 4465–4468. 10.1021/ja209924v. PubMed DOI PMC
Buckley D. L.; Gustafson J. L.; Van Molle I.; Roth A. G.; Tae H. S.; Gareiss P. C.; Jorgensen W. L.; Ciulli A.; Crews C. M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α.. Angew. Chem., Int. Ed. 2012, 51 (46), 11463–11467. 10.1002/anie.201206231. PubMed DOI PMC
Békés M.; Langley D. R.; Crews C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discovery 2022, 21 (3), 181–200. 10.1038/s41573-021-00371-6. PubMed DOI PMC
He S.; Dong G.; Cheng J.; Wu Y.; Sheng C. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med. Res. Rev. 2022, 42 (3), 1280–1342. 10.1002/med.21877. PubMed DOI
Roy M. J.; Winkler S.; Hughes S. J.; Whitworth C.; Galant M.; Farnaby W.; Rumpel K.; Ciulli A. SPR-Measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate. ACS Chem. Biol. 2019, 14 (3), 361–368. 10.1021/acschembio.9b00092. PubMed DOI PMC
Nijholt D. A.; De Kimpe L.; Elfrink H. L.; Hoozemans J. J.; Scheper W. Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr. Med. Chem. 2011, 18 (16), 2459–2476. 10.2174/092986711795843236. PubMed DOI
Huang Q.; Figueiredo-Pereira M. E. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis: Int. J. Programmed Cell Death 2010, 15 (11), 1292–1311. 10.1007/s10495-010-0466-z. PubMed DOI PMC
Wang X.; Li J.; Zheng H.; Su H.; Powell S. R. Proteasome functional insufficiency in cardiac pathogenesis. Am. J. Physiol., Heart Circulatory Physiol. 2011, 301 (6), H2207–H2219. 10.1152/ajpheart.00714.2011. PubMed DOI PMC
Simonetta K. R.; Taygerly J.; Boyle K.; Basham S. E.; Padovani C.; Lou Y.; Cummins T. J.; Yung S. L.; von Soly S. K.; Kayser F.; Kuriyan J.; Rape M.; Cardozo M.; Gallop M. A.; Bence N. F.; Barsanti P. A.; Saha A. Prospective discovery of small molecule enhancers of an E3 ligase-substrate interaction. Nat. Commun. 2019, 10 (1), 1402.10.1038/s41467-019-09358-9. PubMed DOI PMC
Koizumi S.; Hamazaki J.; Murata S. Transcriptional regulation of the 26S proteasome by Nrf1. Proc. Japan Acad. Ser. B, Phys. Biol. Sci. 2018, 94 (8), 325–336. 10.2183/pjab.94.021. PubMed DOI PMC
Livneh I.; Cohen-Kaplan V.; Cohen-Rosenzweig C.; Avni N.; Ciechanover A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 2016, 26 (8), 869–885. 10.1038/cr.2016.86. PubMed DOI PMC
Kapetanou M.; Athanasopoulou S.; Gonos E. S. Transcriptional regulatory networks of the proteasome in mammalian systems. IUBMB Life 2022, 74 (1), 41–52. 10.1002/iub.2586. PubMed DOI
Liu P.; Kerins M. J.; Tian W.; Neupane D.; Zhang D. D.; Ooi A. Differential and overlapping targets of the transcriptional regulators NRF1, NRF2, and NRF3 in human cells. J. Biol. Chem. 2019, 294 (48), 18131–18149. 10.1074/jbc.RA119.009591. PubMed DOI PMC
Ibrahim L.; Mesgarzadeh J.; Xu I.; Powers E. T.; Wiseman R. L.; Bollong M. J. Defining the Functional Targets of Cap’n’collar Transcription Factors NRF1, NRF2, and NRF3. Antioxidants (Basel, Switzerland) 2020, 9 (10), 1025.10.3390/antiox9101025. PubMed DOI PMC
Wang Y.; Snell A.; Dyka F. M.; Colvin E. R.; Ildefonso C.; Ash J. D.; Lobanova E. S. Overexpression of Nfe2l1 increases proteasome activity and delays vision loss in a preclinical model of human blindness. Sci. Adv. 2023, 9 (28), eadd547910.1126/sciadv.add5479. PubMed DOI PMC
Radhakrishnan S. K.; Lee C. S.; Young P.; Beskow A.; Chan J. Y.; Deshaies R. J. Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol. Cell 2010, 38 (1), 17–28. 10.1016/j.molcel.2010.02.029. PubMed DOI PMC
Steffen J.; Seeger M.; Koch A.; Krüger E. Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop. Mol. Cell 2010, 40 (1), 147–158. 10.1016/j.molcel.2010.09.012. PubMed DOI
Uruno A.; Yamamoto M. The KEAP1-NRF2 System and Neurodegenerative Diseases. Antioxidants Redox Signaling 2023, 38 (13–15), 974–988. 10.1089/ars.2023.0234. PubMed DOI
Liu Y.; Hettinger C. L.; Zhang D.; Rezvani K.; Wang X.; Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington’s disease. J. Neurochem. 2014, 129 (3), 539–547. 10.1111/jnc.12647. PubMed DOI PMC
Kobayashi A.; Tsukide T.; Miyasaka T.; Morita T.; Mizoroki T.; Saito Y.; Ihara Y.; Takashima A.; Noguchi N.; Fukamizu A.; Hirotsu Y.; Ohtsuji M.; Katsuoka F.; Yamamoto M. Central nervous system-specific deletion of transcription factor Nrf1 causes progressive motor neuronal dysfunction. Genes to cells: devoted to molecular & cellular mechanisms 2011, 16 (6), 692–703. 10.1111/j.1365-2443.2011.01522.x. PubMed DOI
Lee C. S.; Lee C.; Hu T.; Nguyen J. M.; Zhang J.; Martin M. V.; Vawter M. P.; Huang E. J.; Chan J. Y. Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc. Natl. Acad. Sci. U.S.A. 2011, 108 (20), 8408–8413. 10.1073/pnas.1019209108. PubMed DOI PMC
Lee C. S.; Ho D. V.; Chan J. Y. Nuclear factor-erythroid 2-related factor 1 regulates expression of proteasome genes in hepatocytes and protects against endoplasmic reticulum stress and steatosis in mice. FEBS J. 2013, 280 (15), 3609–3620. 10.1111/febs.12350. PubMed DOI PMC
Villaescusa J C.; Li B.; Toledo E. M; Rivetti di Val Cervo P.; Yang S.; Stott S. R.; Kaiser K.; Islam S.; Gyllborg D.; Laguna-Goya R.; Landreh M.; Lonnerberg P.; Falk A.; Bergman T.; Barker R. A; Linnarsson S.; Selleri L.; Arenas E. A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson’s disease. EMBO J. 2016, 35 (18), 1963–1978. 10.15252/embj.201593725. PubMed DOI PMC
Nath S. R.; Yu Z.; Gipson T. A.; Marsh G. B.; Yoshidome E.; Robins D. M.; Todi S. V.; Housman D. E.; Lieberman A. P. Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction. J. Clin. Invest. 2018, 128 (8), 3630–3641. 10.1172/JCI99042. PubMed DOI PMC
Chan J. Y.; Kwong M.; Lu R.; Chang J.; Wang B.; Yen T. S.; Kan Y. W. Targeted disruption of the ubiquitous CNC-bZIP transcription factor, Nrf-1, results in anemia and embryonic lethality in mice. EMBO J. 1998, 17 (6), 1779–1787. 10.1093/emboj/17.6.1779. PubMed DOI PMC
Leung L.; Kwong M.; Hou S.; Lee C.; Chan J. Y. Deficiency of the Nrf1 and Nrf2 transcription factors results in early embryonic lethality and severe oxidative stress. J. Biol. Chem. 2003, 278 (48), 48021–48029. 10.1074/jbc.M308439200. PubMed DOI
Kamber Kaya H. E.; Radhakrishnan S. K. Trash Talk: Mammalian Proteasome Regulation at the Transcriptional Level. Trends Genet.: TIG 2021, 37 (2), 160–173. 10.1016/j.tig.2020.09.005. PubMed DOI PMC
Ruvkun G.; Lehrbach N. Regulation and Functions of the ER-Associated Nrf1 Transcription Factor. Cold Spring Harbor Perspect. Biol. 2023, 15 (1), a04126610.1101/cshperspect.a041266. PubMed DOI PMC
Ward M. A.; Vangala J. R.; Kamber Kaya H. E.; Byers H. A.; Hosseini N.; Diaz A.; Cuervo A. M.; Kaushik S.; Radhakrishnan S. K. Transcription factor Nrf1 regulates proteotoxic stress-induced autophagy. J. Cell Biol. 2024, 223 (6), e20230615010.1083/jcb.202306150. PubMed DOI PMC
Hatanaka A.; Nakada S.; Matsumoto G.; Satoh K.; Aketa I.; Watanabe A.; Hirakawa T.; Tsujita T.; Waku T.; Kobayashi A. The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Sci. Rep. 2023, 13 (1), 14405.10.1038/s41598-023-41492-9. PubMed DOI PMC
Bott L. C.; Badders N. M.; Chen K. L.; Harmison G. G.; Bautista E.; Shih C. C.; Katsuno M.; Sobue G.; Taylor J. P.; Dantuma N. P.; Fischbeck K. H.; Rinaldi C. A small-molecule Nrf1 and Nrf2 activator mitigates polyglutamine toxicity in spinal and bulbar muscular atrophy. Human Mol. Genet. 2016, 25 (10), 1979–1989. 10.1093/hmg/ddw073. PubMed DOI PMC
Cuadrado A.; Nebreda A. R. Mechanisms and functions of p38 MAPK signalling. Biochem. J. 2010, 429 (3), 403–417. 10.1042/BJ20100323. PubMed DOI
Munoz L.; Ammit A. J. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 2010, 58 (3), 561–568. 10.1016/j.neuropharm.2009.11.010. PubMed DOI
Yang Y.; Kim S. C.; Yu T.; Yi Y. S.; Rhee M. H.; Sung G. H.; Yoo B. C.; Cho J. Y. Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediators Inflammation 2014, 2014, 35237110.1155/2014/352371. PubMed DOI PMC
Zhu X.; Rottkamp C. A.; Boux H.; Takeda A.; Perry G.; Smith M. A. Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J. Neuropathol. Experimental Neurol. 2000, 59 (10), 880–888. 10.1093/jnen/59.10.880. PubMed DOI
Bendotti C.; Atzori C.; Piva R.; Tortarolo M.; Strong M. J.; DeBiasi S.; Migheli A. Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice. J. Neuropathol. Experimental Neurol. 2004, 63 (2), 113–119. 10.1093/jnen/63.2.113. PubMed DOI
Tortarolo M.; Veglianese P.; Calvaresi N.; Botturi A.; Rossi C.; Giorgini A.; Migheli A.; Bendotti C. Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell. Neurosci. 2003, 23 (2), 180–192. 10.1016/S1044-7431(03)00022-8. PubMed DOI
Atzori C.; Ghetti B.; Piva R.; Srinivasan A. N.; Zolo P.; Delisle M. B.; Mirra S. S.; Migheli A. Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis. J. Neuropathol. Experimental Neurol. 2001, 60 (12), 1190–1197. 10.1093/jnen/60.12.1190. PubMed DOI
Lee S. H.; Park Y.; Yoon S. K.; Yoon J. B. Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. J. Biol. Chem. 2010, 285 (53), 41280–41289. 10.1074/jbc.M110.182188. PubMed DOI PMC
Huang H.; Wang H.; Figueiredo-Pereira M. E. Regulating the ubiquitin/proteasome pathway via cAMP-signaling: neuroprotective potential. Cell Biochem. Biophys. 2013, 67 (1), 55–66. 10.1007/s12013-013-9628-2. PubMed DOI PMC
Kamenetsky M.; Middelhaufe S.; Bank E. M.; Levin L. R.; Buck J.; Steegborn C. Molecular details of cAMP generation in mammalian cells: a tale of two systems. J. Mol. Biol. 2006, 362 (4), 623–639. 10.1016/j.jmb.2006.07.045. PubMed DOI PMC
Goldberg A. L.; Kim H. T.; Lee D.; Collins G. A. Mechanisms That Activate 26S Proteasomes and Enhance Protein Degradation. Biomolecules 2021, 11 (6), 779.10.3390/biom11060779. PubMed DOI PMC
VerPlank J. J. S.; Tyrkalska S. D.; Fleming A.; Rubinsztein D. C.; Goldberg A. L. cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. 2020, 117 (25), 14220–14230. 10.1073/pnas.2003277117. PubMed DOI PMC
VerPlank J. J. S.; Lokireddy S.; Zhao J.; Goldberg A. L. 26S Proteasomes are rapidly activated by diverse hormones and physiological states that raise cAMP and cause Rpn6 phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 2019, 116 (10), 4228–4237. 10.1073/pnas.1809254116. PubMed DOI PMC
Myeku N.; Clelland C. L.; Emrani S.; Kukushkin N. V.; Yu W. H.; Goldberg A. L.; Duff K. E. Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nature medicine 2016, 22 (1), 46–53. 10.1038/nm.4011. PubMed DOI PMC
Lokireddy S.; Kukushkin N. V.; Goldberg A. L. cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (52), E7176–E7185. 10.1073/pnas.1522332112. PubMed DOI PMC
Jarome T. J.; Ferrara N. C.; Kwapis J. L.; Helmstetter F. J. CaMKII regulates proteasome phosphorylation and activity and promotes memory destabilization following retrieval. Neurobiol. Learning Memory 2016, 128, 103–109. 10.1016/j.nlm.2016.01.001. PubMed DOI PMC
Jarome T. J.; Kwapis J. L.; Ruenzel W. L.; Helmstetter F. J. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front. Behav. Neurosci. 2013, 7, 115.10.3389/fnbeh.2013.00115. PubMed DOI PMC
Djakovic S. N.; Schwarz L. A.; Barylko B.; DeMartino G. N.; Patrick G. N. Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 2009, 284 (39), 26655–26665. 10.1074/jbc.M109.021956. PubMed DOI PMC
Kemp B. E.; Pearson R. B. Protein kinase recognition sequence motifs. Trends Biochem. Sci. 1990, 15 (9), 342–346. 10.1016/0968-0004(90)90073-K. PubMed DOI
Makhinson M.; Chotiner J. K.; Watson J. B.; O’Dell T. J. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J. Neurosci: Official Journal of the Society for Neuroscience 1999, 19 (7), 2500–2510. 10.1523/JNEUROSCI.19-07-02500.1999. PubMed DOI PMC
Valverde R. H.; Tortelote G. G.; Lemos T.; Mintz E.; Vieyra A. Ca2+/calmodulin-dependent protein kinase II is an essential mediator in the coordinated regulation of electrocyte Ca2+-ATPase by calmodulin and protein kinase A. J. Biol. Chem. 2005, 280 (34), 30611–30618. 10.1074/jbc.M501880200. PubMed DOI
Zhang F.; Hu Y.; Huang P.; Toleman C. A.; Paterson A. J.; Kudlow J. E. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 2007, 282 (31), 22460–22471. 10.1074/jbc.M702439200. PubMed DOI
Yang L.; Parajuli N.; Wu P.; Liu J.; Wang X. S14-Phosphorylated RPN6Mediates Proteasome Activation by PKA and Alleviates Proteinopathy. Circulation Res. 2023, 133 (7), 572–587. 10.1161/CIRCRESAHA.123.322887. PubMed DOI PMC
Hoffman N. J.; Parker B. L.; Chaudhuri R.; Fisher-Wellman K. H.; Kleinert M.; Humphrey S. J.; Yang P.; Holliday M.; Trefely S.; Fazakerley D. J.; Stöckli J.; Burchfield J. G.; Jensen T. E.; Jothi R.; Kiens B.; Wojtaszewski J. F.; Richter E. A.; James D. E. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metab. 2015, 22 (5), 922–935. 10.1016/j.cmet.2015.09.001. PubMed DOI PMC
Zhang F.; Hu Y.; Huang P.; Toleman C. A.; Paterson A. J.; Kudlow J. E. Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6. J. Biol. Chem. 2007, 282 (31), 22460–22471. 10.1074/jbc.M702439200. PubMed DOI
Rousseau A.; Bertolotti A. An evolutionarily conserved pathway controls proteasome homeostasis. Nature 2016, 536 (7615), 184–189. 10.1038/nature18943. PubMed DOI PMC
Cohen-Kaplan V.; Ciechanover A.; Livneh I. Stress-induced polyubiquitination of proteasomal ubiquitin receptors targets the proteolytic complex for autophagic degradation. Autophagy 2017, 13 (4), 759–760. 10.1080/15548627.2016.1278327. PubMed DOI PMC
Zhao J.; Zhai B.; Gygi S. P.; Goldberg A. L. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (52), 15790–15797. 10.1073/pnas.1521919112. PubMed DOI PMC
Cohen S.; Nathan J. A.; Goldberg A. L. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug Discovery 2015, 14 (1), 58–74. 10.1038/nrd4467. PubMed DOI
Sandri M.; Sandri C.; Gilbert A.; Skurk C.; Calabria E.; Picard A.; Walsh K.; Schiaffino S.; Lecker S. H.; Goldberg A. L. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117 (3), 399–412. 10.1016/S0092-8674(04)00400-3. PubMed DOI PMC
Zhao J.; Brault J. J.; Schild A.; Cao P.; Sandri M.; Schiaffino S.; Lecker S. H.; Goldberg A. L. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metabolism 2007, 6 (6), 472–483. 10.1016/j.cmet.2007.11.004. PubMed DOI
Schlossmann J.; Feil R.; Hofmann F. Signaling through NO and cGMP-dependent protein kinases. Ann. Med. 2003, 35 (1), 21–27. 10.1080/07853890310004093. PubMed DOI
Buglioni A.; Burnett J. C. Jr. New Pharmacological Strategies to Increase cGMP. Annu. Rev. Med. 2016, 67, 229–243. 10.1146/annurev-med-052914-091923. PubMed DOI
Francis S. H.; Busch J. L.; Corbin J. D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 2010, 62 (3), 525–563. 10.1124/pr.110.002907. PubMed DOI PMC
Wunder F.; Tersteegen A.; Rebmann A.; Erb C.; Fahrig T.; Hendrix M. Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol. Pharmacol. 2005, 68 (6), 1775–1781. 10.1124/mol.105.017608. PubMed DOI
Samidurai A.; Xi L.; Das A.; Kukreja R. C. Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 585–615. 10.1146/annurev-pharmtox-040122-034745. PubMed DOI
Stasch J. P.; Evgenov O. V. Soluble guanylate cyclase stimulators in pulmonary hypertension. Handbook Experimental Pharmacol. 2013, 218, 279–313. 10.1007/978-3-642-38664-0_12. PubMed DOI
VerPlank J. J. S.; Gawron J.; Silvestri N. J.; Feltri M. L.; Wrabetz L.; Goldberg A. L. Raising cGMP restores proteasome function and myelination in mice with a proteotoxic neuropathy. Brain: a journal of neurology 2022, 145 (1), 168–178. 10.1093/brain/awab249. PubMed DOI PMC
Ranek M. J.; Terpstra E. J.; Li J.; Kass D. A.; Wang X. Protein kinase g positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 2013, 128 (4), 365–376. 10.1161/CIRCULATIONAHA.113.001971. PubMed DOI PMC
Zhang H.; Pan B.; Wu P.; Parajuli N.; Rekhter M. D.; Goldberg A. L.; Wang X. PDE1 inhibition facilitates proteasomal degradation of misfolded proteins and protects against cardiac proteinopathy. Sci. Adv. 2019, 5 (5), eaaw587010.1126/sciadv.aaw5870. PubMed DOI PMC
de Poot S. A. H.; Tian G.; Finley D. Meddling with Fate: The Proteasomal Deubiquitinating Enzymes. J. Mol. Biol. 2017, 429 (22), 3525–3545. 10.1016/j.jmb.2017.09.015. PubMed DOI PMC
Leggett D. S.; Hanna J.; Borodovsky A.; Crosas B.; Schmidt M.; Baker R. T.; Walz T.; Ploegh H.; Finley D. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10 (3), 495–507. 10.1016/S1097-2765(02)00638-X. PubMed DOI
Verma R.; Aravind L.; Oania R.; McDonald W. H.; Yates J. R. 3rd; Koonin E. V.; Deshaies R. J. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science (New York, N.Y.) 2002, 298 (5593), 611–615. 10.1126/science.1075898. PubMed DOI
Schnell H. M.; Hanna J. DUB-le vision: snapshots of the proteasome during substrate processing. Trends Biochem. Sci. 2022, 47 (11), 903–905. 10.1016/j.tibs.2022.07.007. PubMed DOI PMC
Zhang S.; Zou S.; Yin D.; Zhao L.; Finley D.; Wu Z.; Mao Y. USP14-regulated allostery of the human proteasome by time-resolved cryo-EM. Nature 2022, 605 (7910), 567–574. 10.1038/s41586-022-04671-8. PubMed DOI PMC
Lee M. J.; Lee B. H.; Hanna J.; King R. W.; Finley D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics: MCP 2011, 10 (5), R110.00387110.1074/mcp.R110.003871. PubMed DOI PMC
Hu M.; Li P.; Song L.; Jeffrey P. D.; Chenova T. A.; Wilkinson K. D.; Cohen R. E.; Shi Y. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J. 2005, 24 (21), 3747–3756. 10.1038/sj.emboj.7600832. PubMed DOI PMC
Lee B. H.; Lee M. J.; Park S.; Oh D. C.; Elsasser S.; Chen P. C.; Gartner C.; Dimova N.; Hanna J.; Gygi S. P.; Wilson S. M.; King R. W.; Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467 (7312), 179–184. 10.1038/nature09299. PubMed DOI PMC
Hanna J.; Hathaway N. A.; Tone Y.; Crosas B.; Elsasser S.; Kirkpatrick D. S.; Leggett D. S.; Gygi S. P.; King R. W.; Finley D. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 2006, 127 (1), 99–111. 10.1016/j.cell.2006.07.038. PubMed DOI
Lee B. H.; Lee M. J.; Park S.; Oh D. C.; Elsasser S.; Chen P. C.; Gartner C.; Dimova N.; Hanna J.; Gygi S. P.; Wilson S. M.; King R. W.; Finley D. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 2010, 467 (7312), 179–184. 10.1038/nature09299. PubMed DOI PMC
Bashore C.; Dambacher C. M.; Goodall E. A.; Matyskiela M. E.; Lander G. C.; Martin A. Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat. Struct. Mol. Biol. 2015, 22 (9), 712–719. 10.1038/nsmb.3075. PubMed DOI PMC
Leggett D. S.; Hanna J.; Borodovsky A.; Crosas B.; Schmidt M.; Baker R. T.; Walz T.; Ploegh H.; Finley D. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10 (3), 495–507. 10.1016/S1097-2765(02)00638-X. PubMed DOI
Moon S.; Muniyappan S.; Lee S. B.; Lee B. H. Small-Molecule Inhibitors Targeting Proteasome-Associated Deubiquitinases. Int. J. Mol. Sci. 2021, 22 (12), 6213.10.3390/ijms22126213. PubMed DOI PMC
Boselli M.; Lee B. H.; Robert J.; Prado M. A.; Min S. W.; Cheng C.; Silva M. C.; Seong C.; Elsasser S.; Hatle K. M.; Gahman T. C.; Gygi S. P.; Haggarty S. J.; Gan L.; King R. W.; Finley D. An inhibitor of the proteasomal deubiquitinating enzyme USP14 induces tau elimination in cultured neurons. J. Biol. Chem. 2017, 292 (47), 19209–19225. 10.1074/jbc.M117.815126. PubMed DOI PMC
McKinnon C.; Goold R.; Andre R.; Devoy A.; Ortega Z.; Moonga J.; Linehan J. M.; Brandner S.; Lucas J. J.; Collinge J.; Tabrizi S. J. Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin-proteasome system. Acta Neuropathologica 2016, 131 (3), 411–425. 10.1007/s00401-015-1508-y. PubMed DOI PMC
Homma T.; Ishibashi D.; Nakagaki T.; Fuse T.; Mori T.; Satoh K.; Atarashi R.; Nishida N. Ubiquitin-specific protease 14 modulates degradation of cellular prion protein. Sci. Rep. 2015, 5, 1102810.1038/srep11028. PubMed DOI PMC
Doeppner T. R.; Doehring M.; Bretschneider E.; Zechariah A.; Kaltwasser B.; Müller B.; Koch J. C.; Bähr M.; Hermann D. M.; Michel U. MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathologica 2013, 126 (2), 251–265. 10.1007/s00401-013-1142-5. PubMed DOI
Xu D.; Shan B.; Lee B. H.; Zhu K.; Zhang T.; Sun H.; Liu M.; Shi L.; Liang W.; Qian L.; Xiao J.; Wang L.; Pan L.; Finley D.; Yuan J. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. eLife 2015, 4, e1051010.7554/eLife.10510. PubMed DOI PMC
Chen L.; Zhu G.; Johns E. M.; Yang X. TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nat. Commun. 2018, 9 (1), 1223.10.1038/s41467-018-03499-z. PubMed DOI PMC
VerPlank J. J. S.; Lokireddy S.; Feltri M. L.; Goldberg A. L.; Wrabetz L. Impairment of protein degradation and proteasome function in hereditary neuropathies. Glia 2018, 66 (2), 379–395. 10.1002/glia.23251. PubMed DOI PMC
Min J. W.; Lü L.; Freeling J. L.; Martin D. S.; Wang H. USP14 inhibitor attenuates cerebral ischemia/reperfusion-induced neuronal injury in mice. J, Neurochem. 2017, 140 (5), 826–833. 10.1111/jnc.13941. PubMed DOI PMC
Banerjee C.; Roy M.; Mondal R.; Chakraborty J. USP14 as a Therapeutic Target Against Neurodegeneration: A Rat Brain Perspective. Front. Cell. Dev. Biol. 2020, 8, 727.10.3389/fcell.2020.00727. PubMed DOI PMC
D’Arcy P.; Brnjic S.; Olofsson M. H.; Fryknäs M.; Lindsten K.; De Cesare M.; Perego P.; Sadeghi B.; Hassan M.; Larsson R.; Linder S. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 2011, 17 (12), 1636–1640. 10.1038/nm.2536. PubMed DOI
Tian Z.; D’Arcy P.; Wang X.; Ray A.; Tai Y. T.; Hu Y.; Carrasco R. D.; Richardson P.; Linder S.; Chauhan D.; Anderson K. C. A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 2014, 123 (5), 706–716. 10.1182/blood-2013-05-500033. PubMed DOI PMC
Wang X.; Mazurkiewicz M.; Hillert E. K.; Olofsson M. H.; Pierrou S.; Hillertz P.; Gullbo J.; Selvaraju K.; Paulus A.; Akhtar S.; Bossler F.; Khan A. C.; Linder S.; D’Arcy P. The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci. Rep. 2016, 6, 2697910.1038/srep26979. PubMed DOI PMC
Kim E.; Park S.; Lee J. H.; Mun J. Y.; Choi W. H.; Yun Y.; Lee J.; Kim J. H.; Kang M. J.; Lee M. J. Dual Function of USP14 Deubiquitinase in Cellular Proteasomal Activity and Autophagic Flux. Cell Rep. 2018, 24 (3), 732–743. 10.1016/j.celrep.2018.06.058. PubMed DOI
Chakraborty J.; von Stockum S.; Marchesan E.; Caicci F.; Ferrari V.; Rakovic A.; Klein C.; Antonini A.; Bubacco L.; Ziviani E. USP14 inhibition corrects an in vivo model of impaired mitophagy. EMBO Mol. Med. 2018, 10 (11), e9014.10.15252/emmm.201809014. PubMed DOI PMC
VerPlank J. J.; Gawron J. M.; Silvestri N. J.; Wrabetz L.; Feltri M. L. Knockout of PA200 improves proteasomal degradation and myelination in a proteotoxic neuropathy. Life Sci. Alliance 2024, 7 (4), e20230234910.26508/lsa.202302349. PubMed DOI PMC
Chondrogianni N.; Petropoulos I.; Franceschi C.; Friguet B.; Gonos E. S. Fibroblast cultures from healthy centenarians have an active proteasome. Experimental Gerontol. 2000, 35 (6–7), 721–728. 10.1016/S0531-5565(00)00137-6. PubMed DOI
Cabreiro F.; Perichon M.; Jatje J.; Malavolta M.; Mocchegiani E.; Friguet B.; Petropoulos I. Zinc supplementation in the elderly subjects: effect on oxidized protein degradation and repair systems in peripheral blood lymphocytes. Experimental Gerontol. 2008, 43 (5), 483–487. 10.1016/j.exger.2007.10.007. PubMed DOI
Medina D. X.; Caccamo A.; Oddo S. Methylene blue reduces aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathology (Zurich, Switzerland) 2011, 21 (2), 140–149. 10.1111/j.1750-3639.2010.00430.x. PubMed DOI PMC
Rodriguez K. A.; Edrey Y. H.; Osmulski P.; Gaczynska M.; Buffenstein R. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PloS one 2012, 7 (5), e3589010.1371/journal.pone.0035890. PubMed DOI PMC
Rodriguez K. A.; Osmulski P. A.; Pierce A.; Weintraub S. T.; Gaczynska M.; Buffenstein R. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition. Biochim. Biophys. Acta 2014, 1842 (11), 2060–2072. 10.1016/j.bbadis.2014.07.005. PubMed DOI PMC
Pérez V. I.; Buffenstein R.; Masamsetti V.; Leonard S.; Salmon A. B.; Mele J.; Andziak B.; Yang T.; Edrey Y.; Friguet B.; Ward W.; Richardson A.; Chaudhuri A. Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (9), 3059–3064. 10.1073/pnas.0809620106. PubMed DOI PMC
Lehrbach N. J.; Ruvkun G. Endoplasmic reticulum-associated SKN-1A/Nrf1 mediates a cytoplasmic unfolded protein response and promotes longevity. eLife 2019, 8, e4442510.7554/eLife.44425. PubMed DOI PMC
Kruegel U.; Robison B.; Dange T.; Kahlert G.; Delaney J. R.; Kotireddy S.; Tsuchiya M.; Tsuchiyama S.; Murakami C. J.; Schleit J.; Sutphin G.; Carr D.; Tar K.; Dittmar G.; Kaeberlein M.; Kennedy B. K.; Schmidt M. Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genetics 2011, 7 (9), e100225310.1371/journal.pgen.1002253. PubMed DOI PMC
Kapeta S.; Chondrogianni N.; Gonos E. S. Nuclear erythroid factor 2-mediated proteasome activation delays senescence in human fibroblasts. J. Biol. Chem. 2010, 285 (11), 8171–8184. 10.1074/jbc.M109.031575. PubMed DOI PMC
Kapetanou M.; Chondrogianni N.; Petrakis S.; Koliakos G.; Gonos E. S. Proteasome activation enhances stemness and lifespan of human mesenchymal stem cells. Free Radical Biol. Med. 2017, 103, 226–235. 10.1016/j.freeradbiomed.2016.12.035. PubMed DOI
Chondrogianni N.; Sakellari M.; Lefaki M.; Papaevgeniou N.; Gonos E. S. Proteasome activation delays aging and in vivo. Free Radical Biol. Med. 2014, 71, 303–320. 10.1016/j.freeradbiomed.2014.03.031. PubMed DOI
Chondrogianni N.; Georgila K.; Kourtis N.; Tavernarakis N.; Gonos Efstathios S. Enhanced proteasome degradation extends Caenorhabditis elegans lifespan and alleviates aggregation-related pathologies. Free Radical Biol. Med. 2014, 75 (Suppl 1), S18.10.1016/j.freeradbiomed.2014.10.632. PubMed DOI
Chondrogianni N.; Gonos E. S. Proteasome function determines cellular homeostasis and the rate of aging. Adv. Experimental Med. Biol. 2010, 694, 38–46. 10.1007/978-1-4419-7002-2_4. PubMed DOI
Anderson R. T.; Bradley T. A.; Smith D. M. Hyperactivation of the proteasome in Caenorhabditis elegans protects against proteotoxic stress and extends lifespan. J. Biol. Chem. 2022, 298 (10), 10241510.1016/j.jbc.2022.102415. PubMed DOI PMC
Papaevgeniou N.; Panagiotidou E.; Filippopoulou K.; Chondrogianni N. Quest for Bioactive Compounds in Our Diet with Anti-Ageing and Anti-Aggregation Properties. Proceedings 2019, 11 (1), 34.10.3390/proceedings2019011034. DOI
Chondrogianni N.; Gonos E. S. Proteasome activation as a novel antiaging strategy. IUBMB Life 2008, 60 (10), 651–655. 10.1002/iub.99. PubMed DOI
Vilchez D.; Morantte I.; Liu Z.; Douglas P. M.; Merkwirth C.; Rodrigues A. P. C.; Manning G.; Dillin A. RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 2012, 489 (7415), 263–268. 10.1038/nature11315. PubMed DOI
Mayor T.; Sharon M.; Glickman M. H. Tuning the proteasome to brighten the end of the journey. Am. J. Physiol. Cell Physiol. 2016, 311 (5), C793–C804. 10.1152/ajpcell.00198.2016. PubMed DOI PMC
Giżyńska M.; Witkowska J.; Karpowicz P.; Rostankowski R.; Chocron E. S.; Pickering A. M.; Osmulski P.; Gaczynska M.; Jankowska E. Proline- and Arginine-Rich Peptides as Flexible Allosteric Modulators of Human Proteasome Activity. J. Med. Chem. 2019, 62 (1), 359–370. 10.1021/acs.jmedchem.8b01025. PubMed DOI PMC
Kelmer Sacramento E.; Kirkpatrick J. M.; Mazzetto M.; Baumgart M.; Bartolome A.; Di Sanzo S.; Caterino C.; Sanguanini M.; Papaevgeniou N.; Lefaki M.; Childs D.; Bagnoli S.; Terzibasi Tozzini E.; Di Fraia D.; Romanov N.; Sudmant P. H.; Huber W.; Chondrogianni N.; Vendruscolo M.; Cellerino A.; Ori A. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 2020, 16 (6), e9596.10.15252/msb.20209596. PubMed DOI PMC
Katsiki M.; Chondrogianni N.; Chinou I.; Rivett A. J.; Gonos E. S. The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res. 2007, 10 (2), 157–172. 10.1089/rej.2006.0513. PubMed DOI
Chondrogianni N.; Tzavelas C.; Pemberton A. J.; Nezis I. P.; Rivett A. J.; Gonos E. S. Overexpression of proteasome beta5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J. Biol. Chem. 2005, 280 (12), 11840–11850. 10.1074/jbc.M413007200. PubMed DOI
Nguyen N. N.; Rana A.; Goldman C.; Moore R.; Tai J.; Hong Y.; Shen J.; Walker D. W.; Hur J. H. Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Sci. Rep. 2019, 9 (1), 3170.10.1038/s41598-019-39508-4. PubMed DOI PMC
Hwang J. S.; Hwang J. S.; Chang I.; Kim S. Age-associated decrease in proteasome content and activities in human dermal fibroblasts: restoration of normal level of proteasome subunits reduces aging markers in fibroblasts from elderly persons. J. Gerontol. Series A, Biol. Sci. Med. Sci. 2007, 62 (5), 490–499. 10.1093/gerona/62.5.490. PubMed DOI
Chocron E. S.; Munkácsy E.; Kim H. S.; Karpowicz P.; Jiang N.; Van Skike C. E.; DeRosa N.; Banh A. Q.; Palavicini J. P.; Wityk P.; Kalinowski L.; Galvan V.; Osmulski P. A.; Jankowska E.; Gaczynska M.; Pickering A. M. Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer’s-like pathology in mouse and fly APP overexpression models. Sci. Adv. 2022, 8 (23), eabk225210.1126/sciadv.abk2252. PubMed DOI PMC
Choi W. H.; de Poot S. A.; Lee J. H.; Kim J. H.; Han D. H.; Kim Y. K.; Finley D.; Lee M. J. Open-gate mutants of the mammalian proteasome show enhanced ubiquitin-conjugate degradation. Nat. Commun. 2016, 7, 1096310.1038/ncomms10963. PubMed DOI PMC