Application of Long-Chained Auxin Conjugates Influenced Auxin Metabolism and Transcriptome Response in Brassica rapa L. ssp. pekinensis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IP-2014-09-4359
Croatian Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000827
ERDF grant
57560291
German Academic Exchange Service (DAAD) and Croatian Ministry of Science and Education
PubMed
38203617
PubMed Central
PMC10778880
DOI
10.3390/ijms25010447
PII: ijms25010447
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica rapa, amino acid auxin conjugates, auxin metabolome, indole-3-acetic acid, indole-3-butyric acid, indole-3-propionic acid, root growth inhibition, transcriptome,
- MeSH
- alanin MeSH
- Brassica rapa * genetika MeSH
- indoly MeSH
- kyseliny indoloctové farmakologie MeSH
- plži * MeSH
- semenáček genetika MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alanin MeSH
- indoly MeSH
- kyseliny indoloctové MeSH
Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.
Department for Molecular Biology Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia
Institute of Botany Technische Universität Dresden Zellescher Weg 20b 01062 Dresden Germany
Zobrazit více v PubMed
Gomes G.L.B., Scortecci K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021;23:894–904. doi: 10.1111/plb.13303. PubMed DOI
Yu Z., Zhang F., Friml J., Ding Z. Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 2022;64:371–392. doi: 10.1111/jipb.13225. PubMed DOI
Bartel B., LeClere S., Magidin M., Zolman B.K. Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis, and indole-3-butyric acid b-oxidation. J. Plant Growth Regul. 2001;20:198–216. doi: 10.1007/s003440010025. DOI
Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI
Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI
Strader L.C., Bartel B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant. 2011;4:477–486. doi: 10.1093/mp/ssr006. PubMed DOI PMC
Mihaljević S., Salopek-Sondi B. Amide conjugate of Indole-3-butyric acid improves rooting of highbush blueberry. Plant Soil Env. 2012;58:236–241. doi: 10.17221/34/2012-PSE. DOI
Savić B., Tomić S., Magnus V., Gruden K., Barle K., Grenković R., Ludwig-Müller J., Salopek-Sondi B. Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: A biochemical and modeling approach. Plant Cell Physiol. 2009;50:1577–1589. doi: 10.1093/pcp/pcp101. PubMed DOI
Ludwig-Müller J. Indole-3-butyric acid in plant growth and development. Plant Growth Regul. 2000;32:219–230. doi: 10.1023/A:1010746806891. DOI
Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI
Zolman B.K., Yoder A., Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics. 2000;156:1323–1337. doi: 10.1093/genetics/156.3.1323. PubMed DOI PMC
Kreiser M., Giblin C., Murphy R., Fiesel P., Braun L., Johnson G., Wyse D., Cohen J.D. Conversion of indole-3-butyric acid to indole-3-acetic acid in shoot tissue of hazelnut (Corylus) and elm (Ulmus) J. Plant Growth Regul. 2016;35:710–721. doi: 10.1007/s00344-016-9574-5. DOI
Aryal B., Huynh J., Schneuwly J., Siffert A., Liu J., Alejandro S., Ludwig-Müller J., Martinoia E., Geisler M. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 2019;10:899. doi: 10.3389/fpls.2019.00899. PubMed DOI PMC
Segal L.M., Wightman F. Gas chromatographic and GC–MS evidence for the occurrence of 3-indolylpropionic acid and 3-indolylacetic acid in seedlings of Cucurbita pepo. Physiol. Plant. 1982;56:367–370. doi: 10.1111/j.1399-3054.1982.tb00354.x. DOI
Schneider E.A., Kazakoff C.W., Wightman F. Gas chromatography–mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta. 1985;165:232–241. doi: 10.1007/BF00395046. PubMed DOI
Walker T.S., Bais H.P., Halligan K.M., Stermitz F.R., Vivanco J.M. Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem. 2003;51:2548–2554. doi: 10.1021/jf021166h. PubMed DOI
Elsden S.R., Hilton M.G., Waller J.M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 1976;107:283–288. doi: 10.1007/BF00425340. PubMed DOI
Mohammed N., Onodera R., Or-Rashid M.M. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Amino Acids. 2003;24:73–80. doi: 10.1007/s00726-002-0330-8. PubMed DOI
Barkawi L.S., Yuen-Yee Tam Y.-Y., Tillman J.A., Pederson B., Calio J., Al-Amier H., Emerick M., Normanly J., Cohen J.D. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal. Biochem. 2008;372:177–188. doi: 10.1016/j.ab.2007.08.009. PubMed DOI
Ostrowski M., Ciarkowska A., Jakubowska A. The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 2016;191:63–72. doi: 10.1016/j.jplph.2015.11.012. PubMed DOI
Fu X., Shi Z., Jiang Y., Jiang L., Qi M., Xu T., Li T. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biol. 2019;19:233. doi: 10.1186/s12870-019-1840-9. PubMed DOI PMC
LeClere S., Tellez R., Rampey R.A., Seiichi P.T., Matsuda S.P.T., Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 2002;277:20446–20452. doi: 10.1074/jbc.M111955200. PubMed DOI
Campanella J.J., Olajide A.F., Magnus V., Ludwig-Müller J. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant Physiol. 2004;135:2230–2240. doi: 10.1104/pp.104.043398. PubMed DOI PMC
Campanella J.J., Smith S.M., Leibu D., Wexler S., Ludwig-Müller J. The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts. J. Plant Growth Regul. 2008;27:26–38. doi: 10.1007/s00344-007-9027-2. DOI
Smolko A., Šupljika F., Martinčić J., Jajčanin-Jozić N., Grabar-Branilović M., Tomić S., Ludwig-Müller J., Piantanida I., Salopek-Sondi B. The role of conserved Cys residues in Brassica rapa auxin amidohydrolase: The Cys139 is crucial for the enzyme activity and the Cys320 regulates enzyme stability. Phys. Chem. Chem. Phys. 2016;18:8890–8900. doi: 10.1039/C5CP06301A. PubMed DOI
Smolko A., Ludwig-Müller J., Salopek-Sondi B. Auxin amidohydrolases—From structure to function: Revisited. Croat. Chem. Acta. 2018;91:233–239. doi: 10.5562/cca3356. DOI
Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC
Tanaka K., Hayashi K., Natsume M., Kamiya Y., Sakakibara H., Kawaide H., Kasahara H. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 2014;55:218–228. doi: 10.1093/pcp/pct173. PubMed DOI PMC
Porco S., Pěnčík A., Rashe A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC
Hayashi K.-I., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., Hu Y., Ge C., Zhao Y., Kasahara H., et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 2021;12:6752. doi: 10.1038/s41467-021-27020-1. PubMed DOI PMC
Brunoni F., Pěnčík A., Žukauskaitė A., Ament A., Kopečná M., Collani S., Kopečný D., Novák O. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 2023;238:2264–2270. doi: 10.1111/nph.18887. PubMed DOI
Mikkelsen M.D., Naur P., Halkier B.A. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 2004;37:770–777. doi: 10.1111/j.1365-313X.2004.02002.x. PubMed DOI
Rampey R.A., LeClere S., Kowalczyk M., Ljung K., Sandberg G., Bartel B. A Family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135:978–988. doi: 10.1104/pp.104.039677. PubMed DOI PMC
Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaite A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC
Östin A., Kowalyczk M., Bhalerao R.P., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC
Barratt N., Dong W., Gage D., Magnus V., Town C. Metabolism of exogenous auxin by Arabidopsis thaliana: Identification of the conjugate Na-(indol-3-ylacetyl)-glutamine and initiation of a mutant screen. Physiol Plant. 1999;105:207–217. doi: 10.1034/j.1399-3054.1999.105204.x. DOI
Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the IAA catabolite oxIAA. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC
Ayala P.G., Acevedo R.M., Luna C.V., Rivarola M., Acuña C., Marcucci Poltri S., González A.M., Sansberro P.A. Transcriptome dynamics of rooting zone and leaves during in vitro adventitious root formation in Eucalyptus nitens. Plants. 2022;11:3301. doi: 10.3390/plants11233301. PubMed DOI PMC
Paponova I.A., Paponov M., Teale W., Menges M., Chakrabortee S., Murray J.A.H., Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant. 2008;1:321–337. doi: 10.1093/mp/ssm021. PubMed DOI
Wei L., Yang B., Jian H., Zhang A., Liu R., Zhu Y., Ma J., Shi X., Wang R., Li J.-N., et al. Genome-wide identification and characterization of Gretchen Hagen3 (GH3) family genes in Brassica napus. Genome. 2019;62:597–608. doi: 10.1139/gen-2018-0161. PubMed DOI
Toufighi K., Brady S.M., Austin R., Ly E., Provart N.J. The botany array resource: E-northerns, expression angling, and promoter analyses. Plant J. 2005;43:153–163. doi: 10.1111/j.1365-313X.2005.02437.x. PubMed DOI
Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. An “Electronic fluorescent pictograph” browser for exploring and analyzing large scale biological data sets. PLoS ONE. 2007;2:e718. doi: 10.1371/journal.pone.0000718. PubMed DOI PMC
Goda H., Sasaki E., Akiyama K., Maruyama-Nakashita A., Nakabayashi K., Li W., Ogawa M., Yamauchi Y., Preston J., Aoki K., et al. The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. Plant J. 2008;55:526–542. doi: 10.1111/j.1365-313X.2008.03510.x. PubMed DOI
Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldonado M.T., Maldonado M.C., Suza W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005;17:616–627. doi: 10.1105/tpc.104.026690. PubMed DOI PMC
Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., Wiermer M., Zhang Y., Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365:498–502. doi: 10.1126/science.aaw1720. PubMed DOI
Lee D.J., Park J.W., Lee H.W., Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J. Exp. Bot. 2009;60:3935–3957. doi: 10.1093/jxb/erp230. PubMed DOI PMC
Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Chen H., Wang T., He X., Cai X., Lin R., Liang J., Wu J., King G., Wang X. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Res. 2022;50:D1432–D1441. doi: 10.1093/nar/gkab1057. PubMed DOI PMC
Anders S., Pyl P.T., Huber W. HTSeq—A Python framework to work with high throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. MC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC
Poole R.L. The TAIR Database. In: Edwards D., editor. Plant Bioinformatics. Methods in Molecular Biology™. Volume 406 Humana Press; Totowa, NJ, USA: 2005.