Application of Long-Chained Auxin Conjugates Influenced Auxin Metabolism and Transcriptome Response in Brassica rapa L. ssp. pekinensis

. 2023 Dec 28 ; 25 (1) : . [epub] 20231228

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203617

Grantová podpora
IP-2014-09-4359 Croatian Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF grant
57560291 German Academic Exchange Service (DAAD) and Croatian Ministry of Science and Education

Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.

Zobrazit více v PubMed

Gomes G.L.B., Scortecci K.C. Auxin and its role in plant development: Structure, signalling, regulation and response mechanisms. Plant Biol. 2021;23:894–904. doi: 10.1111/plb.13303. PubMed DOI

Yu Z., Zhang F., Friml J., Ding Z. Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 2022;64:371–392. doi: 10.1111/jipb.13225. PubMed DOI

Bartel B., LeClere S., Magidin M., Zolman B.K. Inputs to the active indole-3-acetic acid pool: De novo synthesis, conjugate hydrolysis, and indole-3-butyric acid b-oxidation. J. Plant Growth Regul. 2001;20:198–216. doi: 10.1007/s003440010025. DOI

Ludwig-Müller J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011;62:1757–1773. doi: 10.1093/jxb/erq412. PubMed DOI

Ljung K. Auxin metabolism and homeostasis during plant development. Development. 2013;140:943–950. doi: 10.1242/dev.086363. PubMed DOI

Strader L.C., Bartel B. Transport and metabolism of the endogenous auxin precursor indole-3-butyric acid. Mol. Plant. 2011;4:477–486. doi: 10.1093/mp/ssr006. PubMed DOI PMC

Mihaljević S., Salopek-Sondi B. Amide conjugate of Indole-3-butyric acid improves rooting of highbush blueberry. Plant Soil Env. 2012;58:236–241. doi: 10.17221/34/2012-PSE. DOI

Savić B., Tomić S., Magnus V., Gruden K., Barle K., Grenković R., Ludwig-Müller J., Salopek-Sondi B. Auxin amidohydrolases from Brassica rapa cleave the alanine conjugate of indolepropionic acid as a preferable substrate: A biochemical and modeling approach. Plant Cell Physiol. 2009;50:1577–1589. doi: 10.1093/pcp/pcp101. PubMed DOI

Ludwig-Müller J. Indole-3-butyric acid in plant growth and development. Plant Growth Regul. 2000;32:219–230. doi: 10.1023/A:1010746806891. DOI

Novák O., Hényková E., Sairanen I., Kowalczyk M., Pospíšil T., Ljung K. Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J. 2012;72:523–536. doi: 10.1111/j.1365-313X.2012.05085.x. PubMed DOI

Zolman B.K., Yoder A., Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics. 2000;156:1323–1337. doi: 10.1093/genetics/156.3.1323. PubMed DOI PMC

Kreiser M., Giblin C., Murphy R., Fiesel P., Braun L., Johnson G., Wyse D., Cohen J.D. Conversion of indole-3-butyric acid to indole-3-acetic acid in shoot tissue of hazelnut (Corylus) and elm (Ulmus) J. Plant Growth Regul. 2016;35:710–721. doi: 10.1007/s00344-016-9574-5. DOI

Aryal B., Huynh J., Schneuwly J., Siffert A., Liu J., Alejandro S., Ludwig-Müller J., Martinoia E., Geisler M. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 2019;10:899. doi: 10.3389/fpls.2019.00899. PubMed DOI PMC

Segal L.M., Wightman F. Gas chromatographic and GC–MS evidence for the occurrence of 3-indolylpropionic acid and 3-indolylacetic acid in seedlings of Cucurbita pepo. Physiol. Plant. 1982;56:367–370. doi: 10.1111/j.1399-3054.1982.tb00354.x. DOI

Schneider E.A., Kazakoff C.W., Wightman F. Gas chromatography–mass spectrometry evidence for several endogenous auxins in pea seedling organs. Planta. 1985;165:232–241. doi: 10.1007/BF00395046. PubMed DOI

Walker T.S., Bais H.P., Halligan K.M., Stermitz F.R., Vivanco J.M. Metabolic profiling of root exudates of Arabidopsis thaliana. J. Agric. Food Chem. 2003;51:2548–2554. doi: 10.1021/jf021166h. PubMed DOI

Elsden S.R., Hilton M.G., Waller J.M. The end products of the metabolism of aromatic amino acids by Clostridia. Arch. Microbiol. 1976;107:283–288. doi: 10.1007/BF00425340. PubMed DOI

Mohammed N., Onodera R., Or-Rashid M.M. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Amino Acids. 2003;24:73–80. doi: 10.1007/s00726-002-0330-8. PubMed DOI

Barkawi L.S., Yuen-Yee Tam Y.-Y., Tillman J.A., Pederson B., Calio J., Al-Amier H., Emerick M., Normanly J., Cohen J.D. A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal. Biochem. 2008;372:177–188. doi: 10.1016/j.ab.2007.08.009. PubMed DOI

Ostrowski M., Ciarkowska A., Jakubowska A. The auxin conjugate indole-3-acetyl-aspartate affects responses to cadmium and salt stress in Pisum sativum L. J. Plant Physiol. 2016;191:63–72. doi: 10.1016/j.jplph.2015.11.012. PubMed DOI

Fu X., Shi Z., Jiang Y., Jiang L., Qi M., Xu T., Li T. A family of auxin conjugate hydrolases from Solanum lycopersicum and analysis of their roles in flower pedicel abscission. BMC Plant Biol. 2019;19:233. doi: 10.1186/s12870-019-1840-9. PubMed DOI PMC

LeClere S., Tellez R., Rampey R.A., Seiichi P.T., Matsuda S.P.T., Bartel B. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. J. Biol. Chem. 2002;277:20446–20452. doi: 10.1074/jbc.M111955200. PubMed DOI

Campanella J.J., Olajide A.F., Magnus V., Ludwig-Müller J. A novel auxin conjugate hydrolase from wheat with substrate specificity for longer side-chain auxin amide conjugates. Plant Physiol. 2004;135:2230–2240. doi: 10.1104/pp.104.043398. PubMed DOI PMC

Campanella J.J., Smith S.M., Leibu D., Wexler S., Ludwig-Müller J. The auxin conjugate hydrolase family of Medicago truncatula and their expression during the interaction with two symbionts. J. Plant Growth Regul. 2008;27:26–38. doi: 10.1007/s00344-007-9027-2. DOI

Smolko A., Šupljika F., Martinčić J., Jajčanin-Jozić N., Grabar-Branilović M., Tomić S., Ludwig-Müller J., Piantanida I., Salopek-Sondi B. The role of conserved Cys residues in Brassica rapa auxin amidohydrolase: The Cys139 is crucial for the enzyme activity and the Cys320 regulates enzyme stability. Phys. Chem. Chem. Phys. 2016;18:8890–8900. doi: 10.1039/C5CP06301A. PubMed DOI

Smolko A., Ludwig-Müller J., Salopek-Sondi B. Auxin amidohydrolases—From structure to function: Revisited. Croat. Chem. Acta. 2018;91:233–239. doi: 10.5562/cca3356. DOI

Korasick D.A., Enders T.A., Strader L.C. Auxin biosynthesis and storage forms. J. Exp. Bot. 2013;64:2541–2555. doi: 10.1093/jxb/ert080. PubMed DOI PMC

Tanaka K., Hayashi K., Natsume M., Kamiya Y., Sakakibara H., Kawaide H., Kasahara H. UGT74D1 catalyzes the glucosylation of 2-oxindole-3-acetic acid in the auxin metabolic pathway in Arabidopsis. Plant Cell Physiol. 2014;55:218–228. doi: 10.1093/pcp/pct173. PubMed DOI PMC

Porco S., Pěnčík A., Rashe A., Voß U., Casanova-Sáez R., Bishopp A., Golebiowska A., Bhosale R., Swarup R., Swarup K., et al. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2016;113:11016–11021. doi: 10.1073/pnas.1604375113. PubMed DOI PMC

Hayashi K.-I., Arai K., Aoi Y., Tanaka Y., Hira H., Guo R., Hu Y., Ge C., Zhao Y., Kasahara H., et al. The main oxidative inactivation pathway of the plant hormone auxin. Nat. Commun. 2021;12:6752. doi: 10.1038/s41467-021-27020-1. PubMed DOI PMC

Brunoni F., Pěnčík A., Žukauskaitė A., Ament A., Kopečná M., Collani S., Kopečný D., Novák O. Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol. 2023;238:2264–2270. doi: 10.1111/nph.18887. PubMed DOI

Mikkelsen M.D., Naur P., Halkier B.A. Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J. 2004;37:770–777. doi: 10.1111/j.1365-313X.2004.02002.x. PubMed DOI

Rampey R.A., LeClere S., Kowalczyk M., Ljung K., Sandberg G., Bartel B. A Family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiol. 2004;135:978–988. doi: 10.1104/pp.104.039677. PubMed DOI PMC

Pěnčík A., Casanova-Sáez R., Pilařová V., Žukauskaite A., Pinto R., Micol J.L., Ljung K., Novák O. Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis. J. Exp. Bot. 2018;69:2569–2579. doi: 10.1093/jxb/ery084. PubMed DOI PMC

Östin A., Kowalyczk M., Bhalerao R.P., Sandberg G. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 1998;118:285–296. doi: 10.1104/pp.118.1.285. PubMed DOI PMC

Barratt N., Dong W., Gage D., Magnus V., Town C. Metabolism of exogenous auxin by Arabidopsis thaliana: Identification of the conjugate Na-(indol-3-ylacetyl)-glutamine and initiation of a mutant screen. Physiol Plant. 1999;105:207–217. doi: 10.1034/j.1399-3054.1999.105204.x. DOI

Pěnčík A., Simonovik B., Petersson S.V., Henyková E., Simon S., Greenham K., Zhang Y., Kowalczyk M., Estelle M., Zažímalová E., et al. Regulation of auxin homeostasis and gradients in Arabidopsis roots through the formation of the IAA catabolite oxIAA. Plant Cell. 2013;25:3858–3870. doi: 10.1105/tpc.113.114421. PubMed DOI PMC

Ayala P.G., Acevedo R.M., Luna C.V., Rivarola M., Acuña C., Marcucci Poltri S., González A.M., Sansberro P.A. Transcriptome dynamics of rooting zone and leaves during in vitro adventitious root formation in Eucalyptus nitens. Plants. 2022;11:3301. doi: 10.3390/plants11233301. PubMed DOI PMC

Paponova I.A., Paponov M., Teale W., Menges M., Chakrabortee S., Murray J.A.H., Palme K. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol. Plant. 2008;1:321–337. doi: 10.1093/mp/ssm021. PubMed DOI

Wei L., Yang B., Jian H., Zhang A., Liu R., Zhu Y., Ma J., Shi X., Wang R., Li J.-N., et al. Genome-wide identification and characterization of Gretchen Hagen3 (GH3) family genes in Brassica napus. Genome. 2019;62:597–608. doi: 10.1139/gen-2018-0161. PubMed DOI

Toufighi K., Brady S.M., Austin R., Ly E., Provart N.J. The botany array resource: E-northerns, expression angling, and promoter analyses. Plant J. 2005;43:153–163. doi: 10.1111/j.1365-313X.2005.02437.x. PubMed DOI

Winter D., Vinegar B., Nahal H., Ammar R., Wilson G.V., Provart N.J. An “Electronic fluorescent pictograph” browser for exploring and analyzing large scale biological data sets. PLoS ONE. 2007;2:e718. doi: 10.1371/journal.pone.0000718. PubMed DOI PMC

Goda H., Sasaki E., Akiyama K., Maruyama-Nakashita A., Nakabayashi K., Li W., Ogawa M., Yamauchi Y., Preston J., Aoki K., et al. The AtGenExpress hormone and chemical treatment data set: Experimental design, data evaluation, model data analysis and data access. Plant J. 2008;55:526–542. doi: 10.1111/j.1365-313X.2008.03510.x. PubMed DOI

Staswick P.E., Serban B., Rowe M., Tiryaki I., Maldonado M.T., Maldonado M.C., Suza W. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell. 2005;17:616–627. doi: 10.1105/tpc.104.026690. PubMed DOI PMC

Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., Wiermer M., Zhang Y., Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365:498–502. doi: 10.1126/science.aaw1720. PubMed DOI

Lee D.J., Park J.W., Lee H.W., Kim J. Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J. Exp. Bot. 2009;60:3935–3957. doi: 10.1093/jxb/erp230. PubMed DOI PMC

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Chen H., Wang T., He X., Cai X., Lin R., Liang J., Wu J., King G., Wang X. BRAD V3.0: An upgraded Brassicaceae database. Nucleic Acids Res. 2022;50:D1432–D1441. doi: 10.1093/nar/gkab1057. PubMed DOI PMC

Anders S., Pyl P.T., Huber W. HTSeq—A Python framework to work with high throughput sequencing data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: Architecture and applications. MC Bioinform. 2009;10:421. doi: 10.1186/1471-2105-10-421. PubMed DOI PMC

Poole R.L. The TAIR Database. In: Edwards D., editor. Plant Bioinformatics. Methods in Molecular Biology™. Volume 406 Humana Press; Totowa, NJ, USA: 2005.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...