Sulfonation of IAA in Urtica eliminates its DR5 auxin activity
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 23-06931S
Grantová Agentura České Republiky
IGA_PrF_2024_005
Univerzita Palackého v Olomouci
PubMed
39704813
PubMed Central
PMC11662057
DOI
10.1007/s00299-024-03399-1
PII: 10.1007/s00299-024-03399-1
Knihovny.cz E-zdroje
- Klíčová slova
- N-Sulfoindole-3-acetic acid, Indole-3-acetic acid, Mass spectrometry, Metabolomics, Phytohormone, Sulfonated,
- MeSH
- Arabidopsis metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- Urtica dioica metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- indoleacetic acid MeSH Prohlížeč
- kyseliny indoloctové * MeSH
- regulátory růstu rostlin MeSH
N-Sulfonated IAA was discovered as a novel auxin metabolite in Urtica where it is biosynthesized de novo utilizing inorganic sulfate. It showed no auxin activity in DR5::GUS assay, implying possible inactivation/storage mechanism. A novel auxin derivative, N-sulfoindole-3-acetic acid (IAA-N-SO3H, SIAA), was discovered in stinging nettle (Urtica dioica) among 116 sulfonated metabolites putatively identified by a semi-targeted UHPLC-QqTOF-MS analysis of 23 plant/algae/fungi species. These sulfometabolites were detected based on the presence of a neutral loss of sulfur trioxide, as indicated by the m/z difference of 79.9568 Da in the MS2 spectra. The structure of newly discovered SIAA was confirmed by synthesizing its standard and comparing retention time, m/z and MS2 spectrum with those of SIAA found in Urtica. To study its natural occurrence, 73 species in total were further analyzed by UHPLC-QqTOF-MS or targeted UHPLC-MS/MS method with a limit of detection of 244 fmol/g dry weight. However, SIAA was only detected in Urtica at a concentration of 13.906 ± 9.603 nmol/g dry weight. Its concentration was > 30 times higher than that of indole-3-acetic acid (IAA), and the SIAA/IAA ratio was further increased under different light conditions, especially in continuous blue light. In addition to SIAA, structurally similar metabolites, N-sulfoindole-3-lactic acid, 4-(sulfooxy)phenyllactic acid and 4-(sulfooxy)phenylacetic acid, were detected in Urtica for the first time. SIAA was biosynthesized from inorganic sulfate in seedlings, as confirmed by the incorporation of exogenous 34S-ammonium sulfate (1 mM and 10 mM). SIAA exhibited no auxin activity, as demonstrated by both the Arabidopsis DR5::GUS assay and the Arabidopsis phenotype analysis. Sulfonation of IAA may therefore be a mechanism for IAA deactivation and/or storage in Urtica, similar to sulfonation of the jasmonates in Arabidopsis.
Zobrazit více v PubMed
Abdullah Y, Schneider B, Petersen M (2008) Occurrence of rosmarinic acid, chlorogenic acid and rutin in DOI
Arcos M, Olivera ER, Arias S, Naharro G, Luengo JM (2010) The 3,4-dihydroxyphenylacetic acid catabolon, a catabolic unit for degradation of biogenic amines tyramine and dopamine in PubMed DOI
Baek D, Pathange P, Chung JS, Jiang JF, Gao LQ, Oikawa A, Hirai MY, Saito K, Pare PW, Shi HZ (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in PubMed DOI
Bialek K, Cohen JD (1986) Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic-acid from phaseolus-vulgarIS L. Plant Physiol 80:99–104 PubMed DOI PMC
Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Vanonckelen H, Vanmontagu M, Inze D (1995) Superroot, a recessive mutation in arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419 PubMed PMC
Brunoni F, Pencík A, Zukauskaite A, Ament A, Kopecná M, Collani S, Kopecny D, Novák O (2023) Amino acid conjugation of oxIAA is a secondary metabolic regulation involved in auxin homeostasis. New Phytol 238:2264–2270 PubMed DOI
Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20 PubMed DOI
Davies PJ (2004) The plant hormones: Their nature, occurrence, and functions. Plant Hormones: Biosynthesis, Signal Transduction, Action. 1–15
De Diego N, Fürst T, Humplík JF, Ugena L, Podlesáková K, Spíchal L (2017) An automated method for high-throughput screening of PubMed DOI PMC
Di Q, Li Y, Zhang DP, Wu W, Zhang L, Zhao X, Luo L, Yu LL (2022) A novel type of phytosulfokine, PSK-ε, positively regulates root elongation and formation of lateral roots and root nodules in PubMed DOI PMC
Elliott MC, Stowe BB (1970) A novel sulphonated natural indole. Phytochemistry 9:1629–2000 DOI
Faulkner IJ, Rubery PH (1992) Flavonoids and flavonoid sulfates as probes of auxin-transport regulation in cucurbita-pepo hypocotyl segments and vesicles. Planta 186:618–625 PubMed DOI
Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, Köllner TG, Zhang T, Cargnel MD, Lichy MZ, Fiorucci AS, Fankhauser C, Koo AJ, Austin AT, Gershenzon J, Ballaré CL (2020) A light-dependent molecular link between competition cues and defence responses in plants. Nature Plants 6:223–230 PubMed DOI
Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900 PubMed DOI
Gläser K, Kanawati B, Kubo T, Schmitt-Kopplin P, Grill E (2014) Exploring the PubMed DOI
Günal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294:12293–12312 PubMed DOI PMC
Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463 PubMed DOI
Hayashi K, Arai K, Aoi Y, Tanaka Y, Hira H, Guo RP, Hu Y, Ge CN, Zhao YD, Kasahara H, Fukui K (2021) The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 12:6752 PubMed DOI PMC
Hilbert M, Voll LM, Ding Y, Hofmann J, Sharma M, Zuccaro A (2012) Indole derivative production by the root endophyte PubMed DOI
Hirschmann F, Krause F, Papenbrock J (2014) The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. Front Plant Sci. 10.3389/fpls.2014.00556 PubMed DOI PMC
Horng AJ, Yang SF (1975) Aerobic oxidation of indole-3-acetic-acid with bisulfite. Phytochemistry 14:1425–1428 DOI
Kai K, Wakasa K, Miyagawa H (2007) Metabolism of indole-3-acetic acid in rice: Identification and characterization of N-β-D-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68:2512–2522 PubMed DOI
Keuskamp DH, Sasidharan R, Pierik R (2010) Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant Signal Behav 5:655–662 PubMed DOI PMC
Kleinenkuhnen N, Büchel F, Gerlich SC, Kopriva S, Metzger S (2019) A novel method for identification and quantification of sulfated flavonoids in plants by neutral loss scan mass spectrometry. Front Plant Sci. 10.3389/fpls.2019.00885 PubMed DOI PMC
Koprivova A, Kopriva S (2016) Sulfation pathways in plants. Chem Biol Interact 259:23–30 PubMed DOI
Korasick DA, Enders TA, Strader LC (2013) Auxin biosynthesis and storage forms. J Exp Bot 64:2541–2555 PubMed DOI PMC
Kurth C, Welling M, Pohnert G (2015) Sulfated phenolic acids from PubMed DOI
Lacomme C, Roby D (1996) Molecular cloning of a sulfotransferase in PubMed DOI
Lau OL, John WW, Yang SF (1978) Inactivity of oxidation-products of indole-3-acetic-acid on ethylene production in mung bean hypocotyls. Plant Physiol 61:68–71 PubMed DOI PMC
Li Y, Di Q, Luo L, Yu LL (2024) Phytosulfokine peptides, their receptors, and functions. Front Plant Sci. 10.3389/fpls.2023.1326964 PubMed DOI PMC
Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943–950 PubMed DOI
Ludwig-Muller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773 PubMed DOI
Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S, Varin L (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from PubMed DOI
Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of PubMed DOI PMC
Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127 PubMed DOI
Noleto-Dias C, Harflett C, Beale MH, Ward JL (2020) Sulfated flavanones and dihydroflavonols from willow. Phytochem Lett 35:88–93 PubMed DOI PMC
Nzowa LK, Teponno RB, Tapondjou LA, Verotta L, Liao Z, Graham D, Zink MC, Barboni L (2013) Two new tryptophan derivatives from the seed kernels of PubMed DOI PMC
Pencík A, Casanova-Sáez R, Pilarová V, Zukauskaite A, Pinto R, Micol JL, Ljung K, Novák O (2018) Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in PubMed DOI PMC
Porco S, Pencík A, Rashed A, Voss U, Casanova-Sáez R, Bishopp A, Golebiowska A, Bhosale R, Swarup R, Swarup K, Penáková P, Novák O, Staswick P, Hedden P, Phillips AL, Vissenberg K, Bennett MJ, Ljung K (2016) Dioxygenase-encoding PubMed DOI PMC
Qin GJ, Gu HY, Zhao YD, Ma ZQ, Shi GL, Yang Y, Pichersky E, Chen HD, Liu MH, Chen ZL, Qu LJ (2005) An indole-3-acetic acid carboxyl methyltransferase regulates PubMed DOI PMC
Rárová L, Ncube B, Van Staden J, Fürst R, Strnad M, Gruz J (2019) Identification of narciclasine as an in vitro anti-inflammatory component of PubMed DOI
Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L (1999) Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from PubMed DOI
Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant PubMed DOI
Sardar P, Kempken F (2018) Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in PubMed DOI PMC
Shen Y, Diener AC (2013) PubMed DOI PMC
Sprunck S, Jacobsen HJ, Reinard T (1995) Indole-3-lactic acid is a weak auxin analogue but not an anti-auxin. J Plant Growth Regul 14:191–197 DOI
Supikova K, Kosinova A, Vavrusa M, Koplikova L, François A, Pospisil J, Zatloukal M, Wever R, Hartog A, Gruz J (2022) Sulfated phenolic acids in plants. Planta 255:124 PubMed DOI
Tarakhovskaya ER, Maslov YI, Shishova MF (2007) Phytohormones in algae. Russ J Plant Physiol 54:163–170 DOI
Torrens-Spence M, Gillaspy G, Zhao B, Harich K, White R, Li J (2012) Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem Biophys Res Commun 418:211–216 PubMed DOI
Ugena L, Hylová A, Podlesáková K, Humplík JF, Dolezal K, De Diego N, Spíchal L (2018) Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of PubMed DOI PMC
Walz A, Park S, Cohen JD, Momonoki YS, Slovin JP, Ludwig-Mueller J (2001) A gene encoding a protein modified by the phytohormone indoleacetic acid. Plant Biology (Rockville) 2001:82 PubMed PMC
Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents.6. isolation and structure of taxol, a novel antileukemic and antitumor agent from taxus-brevifolia. J Am Chem Soc 93:2325–2327 PubMed DOI
Woodward AW, Bartel B (2005) Auxin: Regulation, action, and interaction. Ann Bot 95:707–735 PubMed DOI PMC
Xu JJ, Fang X, Li CY, Zhao Q, Martin C, Chen XY, Yang L (2018) Characterization of PubMed DOI PMC
Yi L, Dratter J, Wang C, Tunge JA, Desaire H (2006) Identification of sulfation sites of metabolites and prediction of the compounds’ biological effects. Anal Bioanal Chem 386:666–674 PubMed DOI PMC
Zazímalová E, Murphy AS, Yang HB, Hoyerová K, Hosek P (2010) Auxin transporters - why so many? Cold Spring Harb Perspect Biol 2:a001552 PubMed DOI PMC
Zhang S, van Duijn B (2014) Cellular auxin transport in algae. Plants-Basel 3:58–69 PubMed DOI PMC
Zhao YD (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61(61):49–64 PubMed DOI PMC
Zhao YD (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant 5:334–338 PubMed DOI PMC
Zubieta C, Ross JR, Koscheski P, Yang Y, Pichersky E, Noel JP (2003) Structural basis for substrate recognition in the salicylic acid carboxyl methyltransferase family. Plant Cell 15:1704–1716 PubMed DOI PMC