Sulfated phenolic acids in plants

. 2022 May 13 ; 255 (6) : 124. [epub] 20220513

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35562552

Grantová podpora
IGA_2022_007 Univerzita Palackého v Olomouci
CZ.02.1.01/0.0/0.0/17_048/0007323 European Regional Development Fund

Odkazy

PubMed 35562552
DOI 10.1007/s00425-022-03902-6
PII: 10.1007/s00425-022-03902-6
Knihovny.cz E-zdroje

Sulfated phenolic acids are widely occurring metabolites in plants, including fruits, vegetables and crops. The untargeted UHPLC-QTOF-MS metabolomics of more than 50 samples from plant, fungi and algae lead to the discovery of a small group of sulfated metabolites derived from phenolic acids. These compounds were detected in land plants for the first time. In this study, zosteric acid, 4-(sulfooxy)benzoic acid, 4-(sulfoooxy)phenylacetic acid, ferulic acid 4-sulfate and/or vanillic acid 4-sulfate were detected in a number of edible species/products, including oat (Avena sativa L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), tomato (Solanum lycopersicum L.), carrot (Daucus carota subsp. Sativus Hoffm.), broccoli (Brassica oleracea var. Italica Plenck), celery (Apium graveolens L.), cabbage (Brassica oleracea convar. sabauda L.), banana tree (Musa tropicana L.), pineapple fruit (Ananas comosus L.), radish bulb (Raphanus sativus L.) and olive oil (Olea europaea L.). The structural identification of sulfated compounds was performed by comparing retention times and mass spectral data to those of synthesized standards. In addition to above-mentioned compounds, isoferulic acid 3-sulfate and caffeic acid 4-sulfate were putatively identified in celery bulb (Apium graveolens L.) and broccoli floret (Brassica oleracea var. Italica Plenck), respectively. While sulfated phenolic acids were quantified in concentrations ranging from 0.34 to 22.18 µg·g-1 DW, the corresponding non-sulfated acids were mostly undetected or present at lower concentrations. The subsequent analysis of oat symplast and apoplast showed that they are predominantly accumulated in the symplast (> 70%) where they are supposed to be biosynthesized by sulfotransferases.

Zobrazit více v PubMed

Abola AP, Willits MG, Wang RC, Long SR (1999) Reduction of adenosine-5’-phosphosulfate instead of 3’-phosphoadenosine- 5’-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 181:5280–5287. https://doi.org/10.1128/jb.181.17.5280-5287.1999 PubMed DOI PMC

Achamlale S, Rezzonico B, Grignon-Dubois M (2009) Evaluation of Zostera detritus as a potential new source of zosteric acid. J Appl Phycol 21:347–352. https://doi.org/10.1007/s10811-008-9375-8 DOI

Achenbach H, Hübner H, Brandt W, Reiter M (1994) Cardioactive steroid saponins and other constituents from the aerial parts of Tribulus cistoides. Phytochemistry 35:1527–1543. https://doi.org/10.1016/s0031-9422(00)86890-9 PubMed DOI

Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, Mik V, Vain T, Mateo-Bonmatí E, Karady M, Pernisová M, Plačková L, Opassathian K, Hejátko J, Robert S, Friml J, Doležal K, Ljung K, Turnbull C (2020) Cell-surface receptors enable perception of extracellular cytokinins. Nat Commun 11(10). https://doi.org/10.1038/s41467-020-17700-9

Baek D, Pathange P, Chung JS et al (2010) A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ 33:1383–1392. https://doi.org/10.1111/j.1365-3040.2010.02156.x PubMed DOI

Baker CJ, Mock NM, Aver’yanov AA (2018) The dynamics of apoplast phenolics across the apoplast/symplast barrier in tobacco leaves following bacterial inoculation. Physiol Mol Plant Pathol 103:114–121. https://doi.org/10.1016/j.pmpp.2018.05.007 DOI

Barron D, Varin L, Ibrahim RK et al (1988) Sulphated flavonoids-an update. Phytochemistry 27:2375–2395. https://doi.org/10.1016/0031-9422(88)87003-1 DOI

Buanafina MMDO, Langdon T, Hauck B et al (2006) Manipulating the phenolic acid content and digestibility of Italian ryegrass (Lolium multiflorum) by vacuolar-targeted expression of a fungal ferulic acid esterase. Appl Biochem Biotechnol 130:416–426. https://doi.org/10.1007/978-1-59745-268-7_34 DOI

Carroll KS, Gao H, Chen H et al (2005) A conserved mechanism for sulfonucleotide reduction. PLoS Biol. https://doi.org/10.1371/journal.pbio.0030250 PubMed DOI PMC

Carvalhal F, Correia-da-Silva M, Sousa E et al (2018) Sources and biological activities of marine sulfated steroids. J Mol Endocrinol 61:T211–T231. https://doi.org/10.1530/JME-17-0252 PubMed DOI

Cattò C, Dell’Orto S, Villa F et al (2015) Unravelling the structural and molecular basis responsible for the anti-biofilm activity of zosteric acid. PLoS ONE 10:1–24. https://doi.org/10.1371/journal.pone.0131519 DOI

Ciancia M, Fernández PV, Leliaert F (2020) Diversity of sulfated polysaccharides from cell walls of coenocytic green algae and their structural relationships in view of green algal evolution. Front Plant Sci 11:1–15. https://doi.org/10.3389/fpls.2020.554585 DOI

Correia MSP, Thapa B, Vujasinovic M et al (2021) Investigation of the individual human sulfatome in plasma and urine samples reveals an age-dependency. RSC Adv 11:34788–34794. https://doi.org/10.1039/d1ra05994g PubMed DOI PMC

Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arab B 9:e0156. https://doi.org/10.1199/tab.0156 DOI

Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51. https://doi.org/10.1016/s0031-9422(00)00316-2 PubMed DOI

Fernández-Milmanda GL, Crocco CD, Reichelt M et al (2020) A light-dependent molecular link between competition cues and defence responses in plants. Nat Plants 6:223–230. https://doi.org/10.1038/s41477-020-0604-8 PubMed DOI

Gidda SK, Miersch O, Levitin A et al (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–17900. https://doi.org/10.1074/jbc.M211943200 PubMed DOI

Gläser K, Kanawati B, Kubo T et al (2014) Exploring the Arabidopsis sulfur metabolome. Plant J 77:31–45. https://doi.org/10.1111/tpj.12359 PubMed DOI

Günal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294(33):12293–12312. https://doi.org/10.1074/jbc.REV119.007422 PubMed DOI PMC

Harada T, Spencer B (1960) Choline sulphate in fungi. Microbiology 22:520–527

Hartmann A, Ganzera M, Karsten U et al (2018) Phytochemical and analytical characterization of novel sulfated coumarins in the marine green macroalga dasycladus vermicularis (Scopoli) Krasser. Molecules. https://doi.org/10.3390/molecules23112735 PubMed DOI PMC

Hirschmann F, Krause F, Papenbrock J (2014) The multi-protein family of sulfotransferases in plants: Composition, occurrence, substrate specificity, and functions. Front Plant Sci 5:1–13. https://doi.org/10.3389/fpls.2014.00556 DOI

Holst B, Fenwick GR (2003) Glucosinolates. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition, 2nd edn. Academic Press, Oxford, Second Edi, pp 2922–2930 DOI

Huson DH, Scornavacca C (2012) Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol 61:1061–1067. https://doi.org/10.1093/sysbio/sys062 PubMed DOI

Klaassen CD, Boles JW (1997) The importance of 3‘-phosphoadenosine 5‘-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11:404–418. https://doi.org/10.1096/fasebj.11.6.9194521 PubMed DOI

Kleinenkuhnen N, Büchel F, Gerlich SC et al (2019) A novel method for identification and quantification of sulfated flavonoids in plants by neutral loss scan mass spectrometry. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00885 PubMed DOI PMC

Kolodziej H, Kayser O, Tan N (2002) Novel Coumarin Sulfates from Pelargonium sidoides. In: Rauter AP, Palma FB, Justino J et al (eds) Natural products in the new millennium: Prospects and industrial application. Springer, Netherlands, Dordrecht, pp 59–64 DOI

Kopriva S, Büchert T, Fritz G et al (2002) The presence of an iron-sulfur cluster in adenosine 5’-phosphosulfate reductase separates organisms utilizing adenosine 5’-phosphosulfate and phosphoadenosine 5’-phosphosulfate for sulfate assimilation. J Biol Chem 277:21786–21791. https://doi.org/10.1074/jbc.M202152200 PubMed DOI

Kurth C, Cavas L, Pohnert G (2015) Sulfation mediates activity of zosteric acid against biofilm formation. Biofouling 31:253–263. https://doi.org/10.1080/08927014.2015a.1034697 PubMed DOI

Kurth C, Welling M, Pohnert G (2015) Sulfated phenolic acids from Dasycladales siphonous green algae. Phytochemistry 117:417–423. https://doi.org/10.1016/j.phytochem.2015b.07.010 PubMed DOI

Lackus ND, Müller A, Kröber TDU et al (2020) The occurrence of sulfated salicinoids in poplar and their formation by sulfotransferase11[open]. Plant Physiol 183:137–151. https://doi.org/10.1104/pp.19.01447 PubMed DOI PMC

Malojčić G, Owen RL, Glockshuber R (2014) Structural and mechanistic insights into the PAPS-independent sulfotransfer catalyzed by bacterial aryl sulfotransferase and the role of the DsbL/DsbI system in its folding. Biochemistry 53:1870–1877. https://doi.org/10.1021/bi401725j PubMed DOI

Manurung J, Kappen J, Schnitzler J et al (2021) Analysis of unusual sulfated constituents and anti-infective properties of two indonesian mangroves, Lumnitzera littorea and Lumnitzera racemosa (Combretaceae). Separations. https://doi.org/10.3390/separations8060082 DOI

Marsolais F, Boyd J, Paredes Y et al (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225:1233–1244. https://doi.org/10.1007/s00425-006-0413-y PubMed DOI

Martí R, Valcárcel M, Herrero-Martínez JM et al (2015) Fast simultaneous determination of prominent polyphenols in vegetables and fruits by reversed phase liquid chromatography using a fused-core column. Food Chem 169:169–179. https://doi.org/10.1016/j.foodchem.2014.07.151 PubMed DOI

Matsubayashi Y, Sakagami Y (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proc Natl Acad Sci U S A 93:7623–7627. https://doi.org/10.1073/pnas.93.15.7623 PubMed DOI PMC

Matsubayashi Y, Ogawa M, Kihara H et al (2006) Disruption and overexpression of Arabidopsis phytosulfokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53. https://doi.org/10.1104/pp.106.081109 PubMed DOI PMC

Moreno JE, Tao Y, Chory J, Ballaré CL (2009) Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 106:4935–4940. https://doi.org/10.1073/pnas.0900701106 PubMed DOI PMC

Mugford SG, Lee BR, Koprivova A et al (2011) Control of sulfur partitioning between primary and secondary metabolism. Plant J 65:96–105. https://doi.org/10.1111/j.1365-313X.2010.04410.x PubMed DOI

Nørskov NP, Bruhn A, Cole A, Nielsen MO (2021) Targeted and untargeted metabolic profiling to discover bioactive compounds in seaweeds and hemp using gas and liquid chromatography-mass spectrometry. Metabolites. https://doi.org/10.3390/metabo11050259 PubMed DOI PMC

Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: Fusions, relocations and lateral transfers. BMC Evol Biol 8:1–14. https://doi.org/10.1186/1471-2148-8-39 DOI

Ram JL, Purohit S, Zhang Newby BM, Cutright TJ (2012) Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels - A preliminary study. Nat Prod Res 26:580–584. https://doi.org/10.1080/14786419.2010.541873 PubMed DOI

Rochfort SJ, Trenerry VC, Imsic M et al (2008) Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Phytochemistry 69:1671–1679. https://doi.org/10.1016/j.phytochem.2008.02.010 PubMed DOI

Sakurai N (1998) Dynamic function and regulation of apoplast in the plant body. J Plant Res 111:133–148. https://doi.org/10.1007/bf02507160 DOI

Shen Y, Diener AC (2013) Arabidopsis thaliana resistance to fusarium oxysporum 2 implicates tyrosine-sulfated peptide signaling in susceptibility and resistance to root infection. PLOS Genet 9:1–16. https://doi.org/10.1371/journal.pgen.1003525 DOI

Todd JS, Zimmerman RC, Crews P, Alberte RS (1993) The antifouling activity of natural and synthetic phenolic acid sulphate esters. Phytochemistry 34:401–404. https://doi.org/10.1016/0031-9422(93)80017-M DOI

Van der Horst MA, Hartog AF, El Morabet R, Marais A, Kircz M, Wever R (2015) Enzymatic sulfation of phenolic hydroxy groups of various plant metabolites by an arylsulfotransferase. Eur J Org Chem. https://doi.org/10.1002/ejoc.201402875 DOI

Van Rymenant E, Grootaert C, Beerens K et al (2017) Vasorelaxant activity of twenty-one physiologically relevant (poly)phenolic metabolites on isolated mouse arteries. Food Funct 8:4331–4335. https://doi.org/10.1039/C7FO01273J PubMed DOI

Varin L, DeLuca V, Ibrahim RK, Brisson N (1992) Molecular characterization of two plant flavonol sulfotransferases. Proc Natl Acad Sci U S A 89:1286–1290. https://doi.org/10.1073/pnas.89.4.1286 PubMed DOI PMC

Varin L, Marsolais F, Brisson N (1995) Chimeric flavonol sulfotransferases define a domain responsible for substrate and position specificities. J Biol Chem 270:12498–12502. https://doi.org/10.1074/jbc.270.21.12498 PubMed DOI

Villa F, Pitts B, Stewart PS et al (2011) Efficacy of zosteric acid sodium salt on the yeast biofilm model Candida albicans. Microb Ecol 62:584–598. https://doi.org/10.1007/s00248-011-9876-x PubMed DOI

Welling M, Pohnert G, Küpper FC, Ross C (2009) Rapid biopolymerisation during wound plug formation in green algae. J Adhes 85:825–838. https://doi.org/10.1080/00218460903291452 DOI

Welling M, Ross C, Pohnert G (2011) A desulfatation-oxidation cascade activates coumarin-based cross-linkers in the wound reaction of the giant unicellular alga dasycladus vermicularis. Angew Chemie - Int Ed 50:7691–7694. https://doi.org/10.1002/anie.201100908 DOI

Widhalm JR, Dudareva N (2015) A familiar ring to it: Biosynthesis of plant benzoic acids. Mol Plant 8:83–97. https://doi.org/10.1016/j.molp.2014.12.001 PubMed DOI

Xue D-Q, Wang J-D, Guo Y-W (2008) A new sulphated nor-sesquiterpene from mangrove Laguncularia racemosa (L.) Gaertn. F J Asian Nat Prod Res 10:367–371. https://doi.org/10.1080/10286020701833545 PubMed DOI

Yu Q, Tang C, Chen Z, Kuo J (1999) Extraction of apoplastic sap from plant roots by centrifugation. New Phytol 143(2):299–304. https://doi.org/10.1046/j.1469-8137.1999.00454.x DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...